CHAPTER 12

FORMALIZATION OF DATA MODELS

This chapter illustrates the use of VDM on database applications. Data-
base architectures can be likened to programming languages; implementa—~
tions can be likened to interpreters and compilers and are discussed in
chapter 13. Although not the main purpose, this chapter introduces the
reader to many of the current concepts in the database world (relational,
hierarchical, and network approaches). The material comprises a careful
demonstration of how models are constructed; their components; the inter-

relation of the components: and the choice of abstraction principles.

This chapter is based on [Bjgrner 80c], but is extensively revised and
enlarged. Other papers which apply VDM specification techniques to data-—
base problems include [Hansal 76a, Nilsson 76a, Owlett 77a, Owlett 79a,
Bidrner 80e, Lamersdorf 80ab, Neuhold 80a, Lindenau 8la, Olnhoff 8la,
Neuhold 8la, Bjgrner 82¢].

379

380 VDM AND OTHER SYSTEMS

CONTENTS

12.0 Introductory C‘haracterizations.g.......,..n....‘.M..Ho ses s, 381
12.1 The Relational Data Model...... D Sttt e s eaesienias..,382
12.1.1 The bata Aggregates..,...............e...b..,...........382
12.1.2 The Operations................. tet st i et ia.,..383

An Algebraic Query Language......,......................384

A Predicate Calculus Query Language....oaa...........,..390

12.2 The Hierarchical Data Model..................;.. N L T
12.2.1 Concepts of the Hierarchical Model......................396
Modelling the Schema......,.............,...............397

The Hierarchical Model.....o............e..q............401

12.2.2 Hierarchy Oriented Languages........,..q..............a.406

A Hierarchy Oriented Query Language....q..eq...........,407

Towards IMS...,..*...................a....a..o..........413

..416
A Small Selection Language........ea..n.acgann..a...a...422

12.2.3 Selection Languages...................,..,.,..,e..,....°

A Boolean Selection Language...ﬁ........................425

12.2.4 Concluding Remarks on the Hierarchical Data Model.......429

12.3 The Wetwork Data Model,..............................,..........430
12.3.1 The Dpata Aggregate.......................,..e...........430

12.3.2 The Operations..,..................s................o...437

FORMALIZATION OF DATA MODELS 381

12.0 INTRODUCTORY CHARACTERIZATIONS

By a Data Model (DM) we shall simply understand a data type; that is: a
set of objects and operations.

By a Database Management System (DBMS) we shall (corresponding simply)
understand a system which supports the storing of the DM objects and the

execution of the DM operations.

By a Database (DB) we shall understand a particular such collection of

data being administered by a particular such DBMS.

Thus a DM is to us like a programming language. A DBMS, then, is like a
processor (for example interpreter) for the DM. Finally a DB is like a
specific program formulated in the DM language and interpreted on the

DBMS processor for that language.

Like we can distinguish, in the area of "ordinary" pProgramming languages,
among “equivalence classes" of so-called ALGOL-like, LISP-like, SNOBOI,~
like, etc, languages (that is languages built up around rather distint
data type and programming construct ideas), so we will, at the moment
distinguish between three kinds of Data Models.

Our treatment, in this chapter, will therefore focus on abstract speci-
fications of these three Data Models. They are the so-called Relational,
the Hierarchical and the Network Data Models. Chapter 13 will then
sketch stages of developments towards Database Management Systems for
the latter two of the Data Models, namely an IBM IMS-like DBMS for the
hierarchical DM and a CODASYL/DBTG-1ike DBMS for the network DM.

Common to all three DMs is the ability to speak of their objects in iso-
lation from the Operations applicable to themn. Our presentation will
therefore, within each of the three models, be subdivided into a first

part dealing with representional abstractions of data objects, followed

by a second part dealing with operational abstractions of operations on
data.

Operations on data, that is on the entire aggregate of the usually com-
posite data object of a database, fall in two classes: meta-functions

——rdartunctions
and functions. Meta-functions are Operations concerned with manipula-

ting a description of the data of the database; functions are operations

382 VDM AND OTHER SYSTEMS

concerned with operating upon the data "“itself", that is the non-descrip-
tive parts. Some Data Models do not elaborate on this (so-called Schema-
based) distinction. Our treatment will mostly focus on ordinary data
functions. Such functions fall in two groups: data querying- and data

manipulation commands. Data querying commands denote the evaluation,
——z-arilon

Oor extraction of data, d e D, from, but no change to, the database data
aggregate, db ¢ DB. Data manipulation commands denote that is inter-

pret to a change of the database aggregate (from db to db').

type: Val-Query: DB - D
type: Int-Manip: DB - DB

Given a definition of the Domain of database objects one can, in gener -
al, define a variety of classes of for example query operations. This
variety can be characterized by two extremes. These are sometimes refer-

red to as procedural versus non-procedural operations. We shall term
poyeEadral

them algebraic, respectively logic operations. An algebraic operator
basically speaking specifies how to extract data -—- based on its its
form. A logic operator roughly speaking specifies what to extract --
based on its content, that is on properties. (We could as well call the
operation classes: syntactic, respectively semantic.)

In our treatment we shall exemplify both kinds of Ooperations in the rela-
tional DM. The sections on the two other PMs will only exemplify alge-
braic operations. We invite the reader to propose and properly formalize
for example predicate calculus based query operations on the hierarchical
and/or network DMs. There 1is nothing intrinsic in these latter DMs

which prevent such a set of Operations.

12.1 THE RELATIONAL DATA MODET,

12.1.1 The Data Aggregates

The major, or main, data (structure or) aggregate of the RDM is that of
a set of uniquely named relations:

1. RDS = Rnm gy REL

Fach relation consists of an unordered collection of TOWS 3

FORMALIZATION OF DATA MODELS 383
2. REL = ROW-get

(Rows are often referred to as ‘tuples’ -- not to be confused with the
VDM specification language data type tuples.) BFach row consists of a
fixed number of distinctly attributed, that is 'named’ element values.
Two ways of modelling rows are possibles

3'. ROW' = vart

models rows as tuples of values with these being individually ‘'named’ by
their index position. Since ordering among row elements is of no import-
ance and since, moreover, one mostly prefers to refer to individual row
elements by a more freely chosen attribute name we usually prefer the
model rows by:

3% ROW" = Anm w VAL

All rows of any relation have the same number of similarly named elements:
4."' {s~wlf-REL'(rel) A (sz,rg € rel)((len r; = len o) A (o))
respectively:

4." is-wf-REL" (rel) A (Vri,rs € rel)((dom ry = dom rg) A (...)")

We also illuatrate, but do not detail, the well-formedness constraints

which express, (...), that values from corresponding fields of any two

rows rust be of the same primitive ("scalar") type:
(eee)” ¢ (¥Yn ¢ dom ry)(typel(ry(n)) = (type(rg(n)))

The issues at stake when choosing between ROW' and ROW” will be illus-

trated as we turn to an explication of algebraic operations on and be-
tween relations.

12.1.2 The Operations

We shall illustrate two kinds of operations: algebraic and logic. The

latter are embedded in a rather general form of a predicate calculus.

384 VDM AND OTHER SYSTEMS

AN ALGEBRAIC QUERY LANGUAGE

The relational algebra consists, besides relations, of the following ope-

rations: select, project, 8~join and divide. We consider these to be de-

noted by objects of the like~named command Domains:
5. Cmd = Sel | Proj | Join | piv

We can now either base our further description on the tuple, that is Row’,
explication of rows, or on the map, that is ROW", or attribute named ex-
plication of rows. To illustrate the cousequences of choosing one over

the other we exemplify both alternatives, thus illuminating their con-

sequences.

Before, however, detailing the fornmal definition of each of the individu-

al vidual command Domains we informally define their semantics.

Informal Semantics and Formal Syntax

Selection operates on a single relation, rel, and delivers the relation
2zmzetion
of all those rows, in rel, whose elements in giveun attribute positions

equals correspondingly given values:

6. Sel! :: Rnm (Nat1m VAL)
6." gel" 2 Rnm (Anm m VAL)

Projection operates on a single relation, rel, and delivers the relation

of rows each of which is a sub-segment of the rows of rel:

7.'" Proj' :: ERum Nat1*

7." Prog" :: FRum Anm-sget

Join operates on two, not necessarily distinct relations, rel; and relg .
It forms the "composition" of exactly those rows, r;8r,, from rely and

rely, which in pairwise given positiqgns have equal values:

B."' Join' :: (Ram x Nati1t) (Nat1* x Rnm)
8." Join" :: (Rum x Anm*) (Anm* x Rnm)
(The @ operation is meta~-linguistic. Ttsg particular meaning will be def-

ined, below, relative to each of the two row-variants.)

FORMALIZATION OF DATA MODELS 385

Division operates on two relations: the dividend, rel and the divisor,

ar
relp. The quotient is a relation. It is a projection of rel, with respect
to the complement of dividend fields, ilg, with only those rows, symbol -
ically: z®y in rel,, contributing a sub-segment x all of whose cor-
responding ({l,-projected) y components form a relation which includes
the 713 projected divisor. Thus to specify a divide command we require,
besides the names of the dividend and divisor relations, the respective

(complementing) row element positions (field selectors):

9," Div' :: (Rnm x FNat1't) (Nat1t x Rnum)

9," piv" 22 (Rnm x Anm') (Anmt x Rnm)

Syntactic Well-formedness

Given just the syntactic command objects certain obvious constraints must

be safisfied:
10. <is-wf-Proj'[mk-Proj'(,i1)] A unique(il)

where unique is a function which checks that the elements of its argument

list, al, are all unique, for example:
11. unique(al) A (Vi,J € inds at)(alli]=allj] > i=g)
12.0 is-wf-Join[mk—Join((,a11),(alg,))] A

.1 (len aly = len alg)

L .2 A (uniquelaly) A unique(aly))]

Where, optionally ([...] around line 12.2}, we have expressed uniqueness

of individual join fields.

13.0 is—wf—Div[mk—Div((,aZl),(alg,))] A

.1 -— same as for Progj!
Types of fe-wf-... and unique Ffunctions are:

14. type: dis~wf-... Cmd -+ BOOL
15. type: wunique: (Natit | Anm*) - Boor

386 VDM AND OTHER SYSTEMS

Semantic Constraints

Given commands in the context of g relational data system, rdecRDS, addi-

tional constraints must be satisfied:

16.0 pre-g,,4lci(rds) A
.1 cases ¢:
.2 mk-Sel'(r, ivm) > ((r e dom rds) (rds(r) + {})
.3 Alet row ¢ rde(r) in
-4 dom ivm < inds row)),
.5 mk-Prog"(r, ans) * ((r ¢ dom rds) 4 (rds(r) + {})
.6 AMlet row e rds(n) in
.7 ans < dom row)),
.8 mk-Join'((rz,ZI),(Zg,rg)) + ((r; ¢ dom rds) a (re ¢ dom rds)
.9 Arde(ry) £ {}) 4 (rde(rg) + {})
.10 Allet rwy e rde(ry),
<11 rwg € rds(ry) in
012 (elems 1, € inds rwy)a
.13 (elems 1,5 < inds rwy))),
.14 mk-Div"((Pz,Zl),(Zg,rg)) + ((ry ¢ dom rds) a (rg € dom rds)
.15 Alrds(ry) + {}) A (rde(ry) + {})
.16 Allet rwy € rds(rl),
.17 rwg € rds(ry) in
.18 (elems 1; < dom ruy)
.19 rleleme 1y = dom rwg)))

16.20 type: pre-Eemd: Cmd - (RDS - Boor)

The constraint reég@ rds expresses that the relation name names a rela-
tion in the actual system (rds), ang rds(r) % {} that this relation is
non-empty. The latter requirements are strictly speaking not necessary,
but are included here to be able to test syntactic correctness of remain-
ing command components. Normally the pre~ checking could be, or is, done
"against" (not the proper data part, but) a 'catalogue’ describing all
relations. We have not modelled such a 'schema’ facility, one which

could itself be a (specifically designated) relation. But we could ea-
sily do so.

Semantic Functions

Given the informal description semantics descriptions of the meaning of

individual command categories it should now be easy to decipher:

FORMALIZATION OF DATAMODELS 387

17.0" E-Sel'[mk-Sel’(r,ivm)](rds) A

10 { row | row e rde(r) A (Vi e dom ivm)(rowl[i] = ivom(i)) }
17.0" E-Sel"[mk-Sel"(r,avm)](rds) A
L1 { row | row ¢ rds(r) A (Va « dom avm) (row(a) = ivm(a)) }

Here the distinction between the two (the row-tuple and the row-map) mo-

dels was almost invisible (row[i] versus rowl(a)).

18.0" E-Proj’'[mk-Proj'(r,i11)](rds) A

.1 U<rowlillg1] | 1 < 4 < len i1> | row € rde(r) }

in contrast to:

18.0" E-Proj"[mk-Proj"(r,as)](rds) A

v {Lavp rowla) | aecas 1| row e rde(r) }

Next:

19.0° E~Join'[mk-Join'((r1,ZJ),(Zg,rg))J{rds) A

.10 Urogtrug | (rug e rds(ry)) A (rwg € rds(ry))
o2 A (V1 € inds Z]}(PMI[ZZEi]] = rngZZEi]])) }

in sharper contrast to:

19.0a E-Join"[mk-Join"(rZ,Zz),(Zg,rg))J(rds) A

.la Urug u rug | (rug € rds(ry)) A (rwg e rds(rg))
. 2a A (Vi € inds Z])(”wlfll[i] = sz(lg[i])) }

This latter (specifically: rwy; U rwy) only works, that is is only well-def-
ined provided line 20.4:

20.0 pre-E—Join"[mk~Join"((rz,ZZ),(Zg,rg))](rds} A

.1 (... repetition of 16.8-9 ...

.2 allet rwg e rde(ry),

3 rwg € rde(rg) in

4 ((dom rw; n dom rwy = {})

.5 nleleme 1; e dom rw;) A (elems 1y < dom rwg))

If we permit attribute (that 1is column) names of joined relations to be

common then we must "invent" sonme "renaming" scheme, for example:

388 VDM AND OTHER SYSTEMS

19.1b { [(”Z,Clz) = ’sz(az) ! az € dom ?’h)zj
20 u [(ry,ay) » ruglag) | ay e dom ruwy]

.3b I (rwg € rde(rz)) A (rwy e rde(ry))
.4b A (VL ¢ indg Z])(Fh)](lg[‘i])) = P&?g(lz[i])) }

which then replaces 19.1a"-2a". The map merge, v, in 19.1a" and the rela-
tion~-attribute name pairing and merge, (..,..) and u, in 19.1b-2b, then

"explains"” the previously unexplained @ meta-operator.

Finally we formalize division. Without proof (of equivalence) we re-
phrase the earlier stated description of the division Ooperator. Let
mk-Diu((rz,Zz),(Zg,rz)) be the divided command in guestion. First we con-
struct an auxiliary relation rel from the dividend relation rds(ry) by
projecting on the' positions complementary to those listed in l7. Then
we select only those rows, row, from rel, for which the following condi -
tion is satisfied. Namely the relation, relf, formed Ffrom the divisor
relation, rds(rg), by projections on lo, must be wholly contained in,
that is a subset of, the relation formed by projections on 17 of those

rows row' in the dividend, rds(rl), whose complementing positions equal
row.

21.0 E-Div’[mk—Div’({r],Zz),(Zg,rg))](rds) A

.1 (let (dvd,dsr) = (rds(rl),rds{rg)) in

.2 el = complement(ll,dvd) in

<3 let (rel,rel’) - (projeat(dvd,cZ),project(dar,12) in
.4 {row | (rowere1)

.5 Arel'c{p(row’,ll)lnow'edvdArowzp(row’,cZ)}})

22.0 complement(rel,l,rel) A (let rv ¢ pel in
<t | 1<i<len rw A i~eelems 1>)
23.0 project(rel,1) A {plrow,1) | row « rel}
24.0 p(row,1) A <rowli(<1] | 1 i < len 1>
where:
22. type: complement: Nati+ REL' = Nat1+
23. type: project: REL' X Nati1*t - REp'
24, type: p: ROW' X Matl?t - Row!

and, in general:

FORMALIZATION OF DATA MODELS 389
17-19. type: E-Cmd: Cmd 3 (RDS 3 REL)

Other ways of specifying the semantic functions could be given. We next

illustrate function definition by so-called pre-/post- conditions. If:

25, type: F: A =+ B

then:
26. type: pre-F: A -+ BOOL
27. type: post-F: A x B - BOOL

are the types of functions which determine the applicability of an 4 arg-
ument to F, that is specifies Fs domain, respectively give the property
that any result, beB, must satisfy relative to an applicable argument

aeh:

28. pre-F(a) > (3'b € B)(F(a) = b)
29. pre-F(a) A post-F(a,b) » (F(a) = b))

30.0 pre~E-Sel’([mk-Sel’(r,ivm)],rds)) A

.1 ((r ¢ dom rde)
) allrds(r) + {}) > (let row e rds(r) in (dom ivm < inds row))))

-- which we already specified in 16.2-4.
31.0 post~E~Sel'(([mk~Sel’(v,ivm)], rds), rel) A
.1 ((rel < »rde(r))

.2 AVrow € rel)(vi < dom ivm) (rowlil=<ivm(i)))

32.0 post-E—Proj'(([mk—Proj’(r,il),rds)],rel) 4

.1 (Yrow € rel)

.2 (3rw e rds(r))

.3 ((len row = len il)

-4 AYE e inds row) (rowli] = rwl[il[1]]))

33.0 post~E—JOin'(([mk—Join’((rl,Zl),(Zg,rg))],rds),rel) A

.1 (Yrwy e rds(ry),rwy ¢ rds(ry))
.2 ((rwg“rwy e rel)
.3 = (Vi ¢ inds Ly)(rwgll10id]=rwgl19[1]]))

etc.

390 VDMAND OTHER SYSTEMS

A PREDICATE CALCULUS QUERY LANGUAGE

The predicate calculus based query language now to be illustrated is the
basis for the sor, query language of IBMs System/R relational DBMS, but
is otherwise based on DSL-alpha.

Syntax and Informal Semantics

A program in this language is 3 query. A query consists of three parts,
The first part is a specification of the hames of relations, possibly
projected to individual columns, that is attributes, to be delivered as
the result. This part is called a target specification list. The second
part is a specification of which Properties rows of these, bossibly
projected, relations must satisfy. Thisg part is a predicate expression
in which arbitrary identifiers may be used to stand for virtual relations.
Which relations they stand Ffor ig specified in the thirds part, the
virtual relation identifier to virtual relation expression. A virtual

relation expression is g possibly operator/ operand expression which
evaluates to a relations

1. Query r: Tapgt (Vid 2 Range) Pred
2. Targ pr vid [Wat1]

which are the set theoretic union, intersection or non-symmetric comple-
ment of two, Possibly virtual relations:

3. Range Ram | Infizr

4. InfizR :: Range SOp Range

5. 80p UNION | INTERSECTION | COMPLEMENT

l

Finally we analyze the syntax of predicates. Four kinds are provided:

quantified, infix and negated propositional and atomic:

6. Pred = QPred | IPred | WPred | apred

7. QPred :: ((ALL|EXIST) Tid Rnm) Pred
8. IPred :: Ppred (AND|OR) pred

9, NPred 2 Pred

10, APred ¢ Term ROp Term

11. ROp = LESEQ | LESS | EQ | NEQ | LAREQ | LARG

FORMALIZATION OF DATA MODELS 391

Quantified predicates mk-QPned((q,t,r}Sp) representationally abstract
(Yter)(p) or (3ter)(p) where q=ALL, respectively ¢ = EXIST. Semantic-
ally they express whether p is true for all rows, respectively at least
one, row, t, in the relation named ». Infix predicates express the
conjunction or disjunction of two predicates. Negate predicates the
negation of a predicarte. Finally an Atomic predicate expresses relations

between row elements and/or constant values, that is:

12. Term = Elem | var
13. Flem sro(vid | Tid) x Wati

Well-formedness, or Context Constraints

It is clear that certain constraints on queries must be satisfied. These
constraints are of two kinds referred to as internal and external con-
straints. 1Internal constraints express well-formedness of one query
part with respect to another query part. External constraints express

well-formedness with respect to existing relations of the database.

Examples of constraints are: [internal:] only virtual relation iden-
tifiers defined in the range part of a query can be referred to in the
target specifications, FTexternal:] and the row position used there must
be in the interval of positions for tuples, that is rows, of the identi-
fied virtual relation. Similar for virtual relations mentioned in a-
tomic predicates. 1In these latter, if a term refers to a row identi-
fier, in Tid, [internal:] then the term wmust be in the scope of a quan-
tification defining that row identifier, and [external:] the row ele-
ment position of the term must likewise be in the internal of positions
for tuples, that is rows, of the ‘range' relation correspondingly named

in the quantification, that is of » in mk—QPred({q,t,r),p).

We therefore define a function, Interval, which when applied to an ac-
tual relation name, Ram, and a relational data system, RDS, yields the

index set of row tuples of the named relation:
13. type: Interval: Rnm - (RDS - Natl-set)
13.0 Interval(r)(rds) A

.1 (let row e rde(r) in inds row)

) pre: rda(») + {}

392 VDM AND OTHER SYSTEMS

We express both internal and external constraints in one functions

14.0 pre~E—Query[mk-Query(tl,rm,p)](rds) A
.1 wfRanges rm](rds)
.2 A waaﬁgZ[tZ](D(rm,ﬁds)}
.3 A is-wf—Pred[p](rds}(D(rm,rds))

15.0 WfRanges[rm](nds) 4
-1 (Vr e rng rm)(is~wf—ﬁange[r](rds))

16.0 is—wf-Range[rng](rds) 4

.1 cases rng:
) (mk—InfixR(rl,,r2) -+ (is—wfwﬁange[rz](rds)
.3 Ais—wf~Range[r2](rds)
.4 A (rl,rds) = I(r2,rds))
.5 T * rng ¢ dom rds)

17. type: I: Range RDS - WNati-set

17.0 I(rng,rds) A
.1 cases rng: (mk~InfixR(r1,,) + I(rl,rds),
) T * Interval(rds(rng)))

al) relations:
18. DICT = ((vid | Tid) 4 Nati-set)
19. type: D: (Vid z Range) RDS -+ prer

19.0 D(rm,rds) A lro Itrmir),rds) | p» € dom rm)

0.0 WfTargl[t1](s) p
.1 (Vt ¢ elems tl)(is—wf-Targ[t](d))

21.0 is—wf—Targ[mk—Targ(v,i)](G)
.1 (v € dom diet) A (i « §fv))

FORMALIZATION OF DATA MODELS 393

22.0 is~wf-Pred[p](rds)(6) Y

.1 caseg p:

.2 (mk-QPred((,t,r),p') -+ (r « dom rds)

.3 Alet 8" = 6 + [t o I(r,rds)] in
.4 is—wf—Pred[p'](rds)(6’))),

.5 mk~IPred(p;,,pg) * (is-wf-Pred[p;](rds)(6)

.6 Ais—wf~Pred[p2](rds)(6)),

o7 mk-NPred(p') + is-wf-Predlp'](rds)(6),

.8 mk-APred(ty,,tq) + (ie~wf-Term[t;](6)

.9 rie-wf-Term{tq](6)))

23.0 Zs-wf-Term[t](6) A

.1 caseg t: (mk-Elem(id,1) - (id « dom §)

.2 Aid e 6(id)),

.3 r + true)
14. type: pre-E-Query: Query -+ (RDS -+ BOOL)
15. WfRanges: (Vid m Range) + (RDS =+ BOOL)
16. ie~-wf-Range: Range + (RDS + BOOL)
20. WfTargl: Targ* - (DICT - BOOL)
21. is-wf-Targ: Targ -+ (DICT - BOOL)
22, 18-wf-Pred: Pred = (RDS » (DICT > BOOL))
23. ie~wf-Term: Term -+ (DICT - BOOL)

We have highlighted some, but not all aspects of checking the consistency
of queries of a predicate-based language. We next turn to their seman-

tics.

Formal Semantics

The general form of a query can be given schematically:
24, mk-Query(<mk—Targ(vi,ini),mk~Targ(vj,inj),...,mk—Targ(uk,ink)>,
[vyg PTG,V B PGy, e, Uy B rng,,]

predicate)

We refer to the informal semantics subsection of this section for an in-

formal wording of the semantics of such a query. We "traunslate" that (in-
complete) specification into the complete formalization below. This
formal definition is based on the following auxiliary constructs: Tor

each of the virtual relation names, v, we construct the relation denoted

394 VDM AND OTHER SYSTEMS

by its corresponding range expression, rng. We collect these in a table
rm {25.1). This table, or map, thus pairs names to sets of rows. For
each combination, m, of rows, one from each naned virtual relation, we
check (F-Pred) whether the predicate is satisfied. Tf SO, wWe construct
(¢), from m, a projection based on the target list specification #7. And

we do so for all combinations. Applicable such m contribute to the

final answer which itself is a relation:

25.0 E—Query[mk—Queny(tZ,irm,p)](vds) A

.1 {let rm = [v E-Rangelirm(v)](rds) | v ¢ dom irm] in
) {econctciti,m)) | m e G(rm) A E-Pred[p](m)(rde)})
25, type: Query 3 (RDS 3 REL ')

26.0 E-Rangelr](rds) A

.1 cases r:

.2 (mk-InfixR(rz,o,rg)

.3 + (let rel; = E-Rangelr;](rds),

.4 rely = E-Rangelry](rds) in

5 ¢ases o: (UNION + rel; u rely,
) INTERSECTION - rel; n rel,,
.7 COMPLEMENT =+ rel; \ rely)),
.8 T = rds(r))

~

26. type: Rang ¥ (RDS - REL')
27. type: E-Pred: Pred - (TABLE - (RDS - BOOL))

27.0 E-Pred{pl(map)(vrds) A

.1 eases p:

.2 (mk-QPred((q,t,ﬁ),p’)

.3 = (let rel = pdg(n) in

-4 cases q:

.5 (ALL + (Vrow ¢ rel)

.6 (E-Pred[p'](map + [t row]) (rds),
.7 EXISTS -+ (3row ¢ rel)

.8 (E-Predlp'](map + [t rowl) (rds))),
.9 mk-IPred(p;,o0,ps)

.10 + (let by = E-Pred{p;](map)(rds),

211 by = E-Pred[py](map)(rds) in

212 cases o: (AND =+ byjaby, OR - byvho)),

FORMALIZATION OF DATA MODELS 385

.13 mk-NPred(p’)
.14 + =E-Pred[p'](map)(rds),
.15 mk-APred(tl,o)tg)
.16 » (let e; = E-Term(tq;](map),
17 €y = E-Term[tqg](map) in
-18 cases o: (LESEQ ~ ey < ey, LESS - e; < e
.19 EQ T e; = ey, NEQ =+ 27 £ ey
.20 LAREQ =+ e; > ey, LARG + e; > es)))
where:
28. TABLE = ((vid | Tid) 3 ROW')

29.0 E-Term[t](tb1) A

.1 cases t:
.2 (mk-Elem(<id,i) - (tbl(id))[i],
.3 T + t)

29. type: Term ™ (TABLE 5 VAL)

The two auxiliary functions ¢ and ¢ are finally defined. ¢ takes an ob~
ject in (4 i B-set) and delivers an object in (4 # B)-set. For each
combination of (a;,b70)¢ oo, (am,bmj) in:

Lag > bggs e sbingde e b ag o bpg, e, by}
¢ delivers an element map:

[a1 > bzk, oo ey Ay > bmj]

in the set G(rm) of such maps :

30. tgge: G: (vid # ROW-set) - (vid 7 ROW)-set
30.0 G(rm) A

.1 if rm =[]
.2 then {1}
.3 else {lvw rowl um | » ¢ dom rm A row € rm(v)
.4 A moe G(rm\{v})}
and:
31. type: C: Targ® TABLE 3 Row*
31.0 Cltl,map) A
.1 <cases tl[i]:
.2 mk-Targ(v,Qii) -+ map(v),

.3 mk-Targ(v,) = <(map(v))[i]> 1 <4 < len #1>

396 VDM AND OTHER SYSTEMS

This concludes our treatment of the semantics of the [SOL~] (or DSL-

alpha) predicate-based query language as basically used in the IBM
System/R DBMS.

12.2 THE HIERARCHICAL DATA MODEL

In this section we describe the development of various models of database

systewms using the hierarchical model.

First, we introduce the hierarchical model and set up a data model of a
very simple hierarchical database. Using this model, the semantics is
defined for two simple query languages corresponding to the languages

of the Information Management system (IMS) of IBM, and the SYSTEM 2000
of MRI.

12.2.1 Concepts of the Hierarchical Model

The aim of this section is to explain the concepts of the hierarchical
data model, and to show how these may be formalized. We shall do this on
basis of a traditional example from which we isolate the main concepts:

the schema and the data hierarchy.

A Traditional Presentation

Hierarchical Database concepts are very often explained on the basis

of a sample or "snapshot” database like the one in the figure below:

Dept.
1 | PRODUCTION Dept.
2 |MANAGEMENT
Empl. Part
Smith NUT | 5 [Part Empl. Part
BOLT | 10 ADAMS PAPER 100
Suppl. Clark Suppl.
Boltfix OK {Suppl. Jones Paper Co. (;3?

Johnson |OK

Fig. 1

FORMALIZATION OF DATA MODELS

397

Usually, one is told that the example is simple and unrealistic. But

one can deduct the following laws from the diagram:

(1)
(2)
(3)
(4)

(5)

—
N
—

(4) and (5) are consequences of (6).

tionships among types,

Data are grouped into "boxes" called records.

The records are arranged in a tree structure.

Some records share

the same structure,

called record type.

Records having the same type occur at the same level of the data-

base.

Records of one type have children out of a certain set of other

types. WNo record of another

type has children of this type.

For all records of the same type, the parents of these share a

type too.

or Hierarchy Diagram is often given:

To summarize the

specific rela-

a Hierarchical Definition tree, Hievarchy Chart,

DEPT.
D.No. D.Name
intg string
EMPLOYEE PART
Emp.Name Pt.Name Quant.
string string intg
SUPPLIER
S.Name Status
string quotation
Fig. 2

The diagram shows the

times called the schema of the database.

We start our modelling by considering a

MODELLING THE SCHEMA

like the left one on the next page:

simplified

"pattern" of data in the database, and is some-

Hierarchy Diagram

398 VDM AND OTHER SYSTEMS

A

ure. How do we model this? ¥From the right hand diagram, which is just
another way of picturing the one on the left, we more readily see that a

Hierarchy Diagram (H#D) can be modelled by:

1. HD = RTId 3 #D

where RTId are Record Type Identifiers which may be considered to be

Token's. An AD-object corresponding to the diagram above isg thus:
2. L4n [Bwr (Lew I Do r11]

-~ Extension
=2eiision

most level, thereby introducing a forest of hierarchies corresponding to
several databases. The tree wiew may be retained by introducing an imag-

inative anonymous "system" type being the parent of all upper level
types:

-
]
L]
- o

>

.
‘]
”it.
<

Fig. 4

FORMALIZATION OF DATA MODELS 399
The #D model thus shows the tree below the "system® type.
Inclusion of Record Types

The schema should also record the various record structures, the record

types. How these may be included in the model depends on the con-
straints on the type names. Three policies arise:

(a) Duplicate names allowed; they denote the same type.
(b) Duplicate names allowed: they may denote different types.

(c) Duplicate names not allowed,
In actual systems, case (c) is usually dominant.

Now, turning to the problem of including Record Types two alternatives
seem to emerge. FRither we can give the association of Record Types to
Record Type Names in conjunction with the hierarchy, or the Record Types
can be inserted in the hierarchy (at the place of the "boxes"). Intro-
ducing the term catalogue for the data structure that describes the
"shape" of a database or the "pattern" of its data, we get;

3. CTLG' :: HD (RTId @ ReeTp)
4. CTLG = RTId # (ReeTp x CTLG)

We see that CTLG' is able to handle cases (a) and (c), but that CTLG can

handle all three cases. We therefore choose ¢7r¢ being the most general
model.

-~ The Record Type

The Record Type should describe the structure of all records of a record
class. Since a record is a collection of named data values, the Record
Type must include the names of the data items, and the type of values
allowed for each named item. We shall call the names for field identi-

fiers (FieldId's). The Types may be INTEGER, STRING, etc.:

5. ReeTp = Fieldrid z TYPE
6. FieldId = Token
7. TYPE = ... | INTEGER | ...

400 VDMAND OTHER SYSTEMS

Well-formedness

Having defined the whole catalogue we nust decide whether to allow alil
such catalogues. Although not necessary for the model, we choose to
apply name-constraint (c) since this is typical for actual systems and

seems to be part of the hierarchical data model .

Thus, we do not allow any two type names in the whole catalogue to be
identical. Using an auxiliary function which collects all names of ga

(sub) catalogue this can be formalized by:

8.1 inv-CTLG (etlg) A

.2 (Yidedom ctlg)

.3 (let (rectp,ctlyg’) = ctlg(id) in

.4 inv-Rean(rectp) A TnVv-CTLG(etlg'))

.5 A (Vidy,idsy € dom ctlg)

.6 (let idsy = coZZect~names{s-CTLG(thf(idl)),

.7 idsy = coZZect~names(s—OTLG(thg(idg)) in

.8 (idsyndom ctlg = {}) , (idi+idy > didesnidsy = [}))

.9 type: CTLG -+ Bool

9.1 coZZeat—names(etZg) A
.2 dom etlg vy union {aoZZect—names(s-CTLG(thg(id))lidedom ctlg}

.3 type: CTLG - RTId~set

field to be present:
10.1 inv-RecTp(rectp) A ((reetp =+ [7) A ...)

The Hierarchical Path Concept

A hierarchical path (HP) is a useful notion by which we shall understand

a sequence of record type names which starts at (one of) the root(s) of

the hierarchical diagram, and follows the branches of the tree, Thus:

11. qpP = RTId*

The validity of such a path must be checked against a given catalogue:

FORMALIZATION OF DATAMODELS 401

12.1 pre-HP(hp)(ctlg) A
-2 cases hp:
.3 <> + true,
-4 <id>"hp' =+ idedom ectlg pre-HP(hp') (8~CTLG(ctlg(id)))

.5 type: HP ~+ (CTLG 3 Bool)

—-- Some Hierarchical Path Operations

A Hierarchical Path may be used to select the corresponding sub-catalogue

and record type:

13.1 sub-catalogue(hp,ctlyg) A
.2 cases hp: <> -+ etlg,
.3 <id>"hp' = sub~catalogue(hp',e~CTLG (ctlg(id)))
.4 type: RTId* x CTLG 3 CTLG

14.1 lookup-rectp(hp,etlg) A

.2 (let hp'"<id> = hp in §~-RecTp(sub-catalogue(hp',ctlyg)(id)))
.3 type: HP x CTLG S ReeTp

Finally, we will utilize our unique record type names to find the com-

plete Hierarchical Path corresponding to such a name.

15.1 find-hp(id,ctlg) A

.2 (idedom ctlg - <id>,

.3 T @ (let id'' = (Aid'edom ctlg)

.4 (idecollect-names(s-~CTLG (etlg(id'))) in
.5 <id'>Afind—hp(id,s—CTLG(@tlg(id'))))

-6 type: RTId x CTLG 5 gP
.7 pre: tdecollect-names(ctly)

THE HIERARCHICAL MODEL

Record Instances

A record is a collection of named data values:

16. Rec
17. VAL

i

FieldId » VAL
v LMt | ...

A record is said to be an instance or occurrence of a record type if

it has the "structure" prescribed by the record type, that is, it has

402 VDM AND OTHER SYSTEMS

exactly the same field-names as present in the type, and the value of
each named field belongs to the type associated with the name in the

record type. Assuming a function type-of that returns the type of a
value, we can formalize the above statement:

18.1 inv—Rec(rec)rectp A

.2 (dom ree = dom rectp) A
.3 (Vfideégﬂ rec) (type—of(rec(fid)) = reetp(fid))

.4 type: Rec - (ReeTp 3 Bool)
19, type: type-of: VAL - TYPE

Observe that the name-set is fixed (18.2) thereby pProhibiting varying
records etc.

Hierarchy Model

Consider part of the hierarchy diagram above:

Fig. 5
The branch from 4 down to ¢ is indicates a I:n relationship between
4-records and C-records, that is to say:

= With each 4 record is associated a number (possibly zero) of ¢ re-
cords called the 4 record's children of type ¢ .

=~ With each C-record is associated exactly one 4 record called the
parent of the (-~record.

To illustrate these relations, a sample or ‘“snapshot" database is
often drawn:

FORMALIZATION OF DATAMODELS 403

Fig. 6

The right side refiguring shows that we may model the database by:

20. DB = RTId % (Rec x DB)-set
21. HDBS :: CTLG DB

In fact, the model covers several databases under the imaginary system-
record. Finally, a Hierarchical Database System (HDBS) is defined as

consisting of a Catalogue and a Database.

Well-formedness

Of course we will not accept all DB-objects as databases;: only database
8 corresponding to some catalogue are allowed. We may try to exploit
the database structure to see that sub, and sub-sub-records have the
same structure etc, However it is much more couvenient only to consider
databases in connection with a catalogue. We therefore define a function
to check that a database has the structure given by a catalogue, that is

we define the invariant over the HDBS Tomain:

22.1 inv—HDBS(mk—HDBS(thg,db)) A

.2 dom db = dom ctlg a

.3 (Videdom db)

.4 (let (rectp,ctlg’) = etlg(id) in
.5 (Y(ree,db')edb(id))

.6 (inv-Rec(rec)rectp A

.7 inv-HDBS(mk-HDBS(thg’,db’))))

.8 type: HDBS =+ Bool

Note in 22.2 that we demand all Record Type names to be present in the
database. As a result, the database part {id » {},...] is not equivalent
to [...] .

404 VDM AND OTHER SYSTEMS

Unigque Identification
9 —zEutitication

When defining the data manipulation languages, it ig convenient to be
able to uniquely identify each record occurrence., Since our model is a
top-down model of the tree, such an identification nmust reflect thig,
That is, the identification should indicate how to reach the record
starting at the database root. Therefore, to identify a record R we must
at the top-level indicate which record occurrence contains R in its ag-
sociated sub-database. For this sub-database, we must again identi fy
the record of which R is a descendant.

require unique key fields of the records, or we may choose to assign a
unique name or label to each record in the set. To lead up to the re-
trieval languages defined later in which no key fields are required, we
choose the latter technique.

When Record labels are introduced, the database domain is redefined to:

23, DB
24, ReelLab

I

RTId & (RecLab # (Rec x DB))
Token

fi

We shall call the unique record identification a path:

25, Path = (RTId x RecLab)*

The record identifications from the upper level to the record level are
given from left to right. The empty path identifies the imaginary "sys-~
tem record". Thus, the set of all records in a database can be repre-
sented by the set of all possible paths in the database:

26.0 all-paths(db) A

.1 {<>} v { <(2d,1>"p | idedom db A ledom db(id)
.2 peall~paths(s~DB(db(id)(Z))) }

.3 type: DB -+ Path-set

Given a path, it is often convenient to look up the record it designates

and its associated sub~database:

FORMALIZATION OF DATA MODELS 405

0 sub-database(p,db) A
.1 cases p: <> -+ db
2 <(id,lab)>"p" - sub-database(p',s-DB(db(id) (lab))})

3 type: Path DB 3 DB
! pre: peall-paths(db)

28.0 lookup-rec(p,db) A
.1 (let p'"<(id,lab)> = p in
.2 s-Rec(subdatabase(p',db(id)(lab)))

.3 type: Path =~ (DB 3 Ree)
.4 pre: peall-paths(db)\{<>}

Note that the "system" record cannot be retrieved.

With the path identification of records, we see that one record is an
ancestor of another if its path is an prefix of the other path. We
shall say that two records are independent if none of them is an ances-

tor of the other. This may be formalized by:

29.1 ie-prefiz(py,py) A (3pzePath) (py = 1 pz)
.2 type: Path x Path - Bool

30.1 indep(py,pg) A ~te~prefix(pys,pg) A ~is-prefiz(pg,py)
e2 type: Path x Path - Bool

SUMMARY OF A SIMPLE HIERARCHICAL DATABASE SYSTEM

These semantic domains form the basis for the languages defined in section
12.2.2 and 12.2.3.

31. HDBS ;2 CTLG DB

32. CTLG = RTId # (ReeTp x CTLG)

33. DB = RTId @ (RecLab z (Rec x DB))
34, ReeTp = Fieldld m TYPE

35, Rec = FieldId # VAL

36. TYPE = INTEGER | ...

37. VAL = Intg | ...

38. RTId = Token

39. RecLab = Token

40, Fieldlrd = Token

406 VDM AND OTHER SYSTEMS

12.2.2 A Hierarchy Orienteq Query Language
T~ —————f YIlented Query —=Juage

In this section, we define a simple language that uses hierarchical
paths as a basic concept. The DL/1 language of 1Mg does so, However,

our language will be less procedural than DL/1,

Search String

The main idea in the hierarchy~oriented languages is that the records to
be considered are denoted by essentially a hierarchical path augmented
with qualifications at each level., The records selected are those of the
last type of the path for which the qualifications for themselves andg all
their anchestors are satisfied. The syntactical construct whose purpose
is to select records in the database for further actions is here calledq
a Search String. We There assume that either the qualification ig

omitted, or it demands a given field to have a certain value,

i

44, SearchStr
45, Qual

(RTTd x TQual])*
(Fieldrd VAL)

ti

(The empty search string can (as usual) be considered to select the imag-
inary "system record”,)

For a search string to be valid, the record types must follow 1 hierar-
chical path from the root andg the last recorgd type. Furthermore, at
each level, the qualification mast, if present, use a field of the cor-

responding record type and the vatlue must be of the right type:

43.1 pre—SearchStr[ss]ctlg A
.2 cases ss:
.3 (<> + true,
.4 <(id,qual)>"se' - ig . dom ctlg
.5 (let (rectp,ctig’) - etlg(id) in
.6 (qual:gig v pre-QuaZ[quaZ]rectp) A
.7 pre-SearchStr[ss']ctlg’))

.8 type: SearchStr - (CTLG 3 Bool)

44,1 pre~QuaZ[quaZ]wtp A

o2 (let (fid,v)=qual in fidedom rtp A type-of (v)=rtp(fid))
.3 type: Qual - (ReeTp - Bool)

FORMALIZATION OF DATA MODELS 407

-~ Selection

As all the ancestors have to Ffulfil their qualification for an "end"
record to be selected, we may start our search at the vroot of the data-
base. Since the selected set is given by the set of paths identifying
the records, the meaning of evaluating a search string may then be

formally defined by:

45.1 eval-SearchStr[ss]db A
.2 cases ss:
.3 (<> + {<>1,
.4 <(id,q)> = ss!’
.5 + (let rs = db(id) in
.6 let re' = rell{ 1 | ledom rs o
.7 satisfy(s-Rec(rs(1),q)} in
.8 {<(id,l)>kplleégm rs’ A
.9 peeuaZ—SearekStr[ss']s-DB(rs’(Z})}))

-10 type: SearchStr 3 (pB 3 Path-set)
-1l pre: (3Jetlg e CTLG)(inv—HDBS(mk—HDBS(ctlg,db))

46.1 satisfy(r,q) s ((q=nil) v (let (fid,v)=q in r(fid)=v))
.2 type: Ree x [Quall 3 Bool

.3 pre: (Entpeﬁech)(inv—Rec(r)rtp) A pre~Quallqlrtp)

A HIERARCHICY ORIENTED LANGUAGE

How, having defined the basic concept of our language, we are ready to

set up a full set of commands covering retrieval, insertion, deletion,
and updating.

a7. Cmd = Search | Insert | Delete | Update
48 . Search :: SearchStr .

49, Insert :: SearchStr RTId Rec

50. Delete :: SearchStr

51. Update :: SearchStr Fieldrd Op

52. Op =

All of these commands are data functions, that is they do not modify, or

directly list catalogue information although they use it for accessing
the database properly. Informally we wish the semantics of the commands
to be as follows:

408 VDM AND OTHER SYSTEMS

Search: The result is the set of records identified by the search
string.
Insert: The recorgd, which must be of the given type, is inserted

directly below each record denoted by the search string.

Delete: Each record denoted by the search String is deleted, ang
with it ali of its descendants.

Update: The given field of each record denoteg by the search String

ple "45¢ denoting AZ.x+5). However, we are not interesteq
in the abstract Syntax of thig function, and will assume

functions to check andg evaluate such an object.

Well—formedness, Pre~Conditions
T————————=¢ re-Conditions

The commands must satisfy certain constraints ag indicated above. The
pPrecondition predicate ig defined by cases below. Tt yses only cata-
logue information:

53. type: opre-cmd- Cmd - (CTLe 3 Bool)

Of course, for all commands the search string must be well-formed. wor

the Search command, this is the only condition to be checked:
54.1 pre-Cmd[mk-Search(66)]ctlg A pre—SearchStr[ss]thg

For an Ingept command it must be checked that the given record type ig
in continuation of the search string, that ig that the type is immediate-
ly below the type designateq by the hierarchical path of the search
string (55.5), Also, the given record nust belong to this type:

55.1 pwe-Cmd[mk-Insert(ss,rtpid,rec)]atlg A

.2 pne~SearchStr[ss]thg A

.3 (let hp = extract-hp[gs] in
.4 let ctlg’ - sub~aatalogue(hp,ctlg) in
.5 rtpid ¢ dom ctlg'

.6 (let (rectp,) - ctlg'(rtpid) in

o7 inv~Rea(rec)ﬁectp J)

FORMALIZATION OF DATA MODELS 409

56.1 extract-hples] A < id | 1 < i < len ss n ssl[i]=(id,) >

.2 type: SearehStr - HP
With the Delete command, one is not allowed to delete the "system record":
57.1 pre-Cmd[mk-Delete(ss)]etlg A sst<> A pre-SearchStr[ssjctlyg
For an Update command it must be checked that the search string does not
designate the system record, that is 1is empty. Furthermore, the field

must belong to the record type of the search string, and the type of the

operator must be applicable to the field. Given:

58. type: 1is-wf-0p: Op -+ Bool left unspecified
and
59. type: operatortype: Op 3 Type left unspecified
we get:
60.1 pre-Cmd[mk-Update(ss,fid,op)Jetly A
.2 §8¥<> A pre-SearchStr[ss]etlg A
.3 (let hp = extrtact-hplss] in
.4 let rectp = lookup~-rectp(hp,ctly) in
.5 fidedom rectp a rectp(fid)=operatortypelopl)an pre-0plop]

Semantic Functions

The meaning of a command depends on its kind:

61.1 elab-Cmd[emdIhdbse A

.2 (is-Search(emd) - eval-Searchlemd]hdbs
.3 ie-Insert(emd) - int-Insertlemd]hdbs
.4 is~Delete(emd) - int-Deletelemdlhdbs
.5 te-Update(emd) -+ int-Updatelemd]hdbs)

-6 type: Cmd - (HDBS 3 (Rec-set | HDBS)
-7 pre: pre-Cmd[emdjhdbs

The commands are divided into two groups: the retrieval command and the
moditfying commands, respectively Searech and Insert, Delete &% Update.
The retrieval command only extracts information from the database:

52. type: eval-Search: Seareh - (HDBS 3 Rec~set)

whereas the modifying commands only alters the data of the ADBS:

410 VDM AND OTHER SYSTEMS

63, type: Iint-Insert: Insert » (ypps HDBS)
64 . type: int-Update: Urdate - (HDBS HDBS)
65. type: int-Delete: Delete - (gDBS 3 HDBS)
-— Retrieval

The result of the Search command is the set of records ldentified by the
search string. Since the search string does not specify any order among

the selecteqd records, the result is likewise unordered, that ig a set:

66.1 evaZ~Search[mk—Seaﬂch(ss)] mk-HDBS (ctlg,db) 4

.2 (let paths = eval-SearchStr[ss]db in
.3 [Zookup-rec(p,db) [p e paths\{<>}})

Note that the "system recorg" cannot be yielded.

~- Modification Functions
——=—oz21onh Functions

The modification commands usually change some sub-database, but since our
model is top down, this has to be reflected all the way up to the root.

Therefore, it Seems convenient to have one function which

+ given a "ref-
erence" to a sub-database (that is a path) and a change-function for this
subdatabase, Propagates the change all the way up to the root. Suppose

only one sub-database is to be changed. Then the required function could
be:

67.1 modifyl(p,mod,db) 4

.2 cases p:

.3 {<> = mod(db),

.4 <(id,lab)>"p' 4 (let (rec,db’) - (db(id)) (1lab) in
.5 let db" = modifyl(p’,mod,db") in
.6 db + [id » db(id) + [Zab » (rec,db")1]))

-7 type: Path x (DB - DB) x DB 3 pp
-8 pre: peall-pathe(db)

This function may also be specifiegd indirectly, using:
69.1 indep-paths(p,db) A {pr | p'eall~paths(db) indep(p,p’)}

.2 type: Path x pB Path-get
.3 pre: peall-paths(db)

FORMALIZATION OF DATAMODELS 411

68.1 type: modifyl': Path x (DB - DB) x DB 5 DB
) pre-modifyl’'(p,mod,db) A peall-paths(db)
-3 post-modifyl'(p,mod,db)(db’) Iy

.4 (peall-paths(db’)

.5 Aindep—paths(p,db):indep~paths(p,db’)

.6 A(Vp'eindep-paths(p,db))

.7 (Lookup-rec(p',db)=lookup-rec(p’,db'))

.8 rsub-database(p,db’') = mod(sub-database(p,db)))

Here, the case will be that many sub-databases should be changed using
the same change function. The sub-databases should be independent to
get a deterministic effect. Such a modification function may be written

in many ways. We could do the changes one at a time, but in unspecified
order:

70.1 modify(ps,mod,db) A
.2 if ps = {}

<3 then db

.4 else (let p ¢ ps in

.5 let db'" = modifyl(p,mod,db) in
.6 modify(pe\lp},mod,db"))

.7 type: Path-set x (DB - DB) x DB S5 DB
.8 pre: pscall-paths(db) n (Yp,p'eps) (ptp' > indep(p,p'))

A rather mechanic solution. An implicit specification may easily be

given changing (in 68.) P to ps, {in 68.2,4) ¢ to <. extending indep-
pathe to handle sets, and finally changing (68.8) to:

68.8" A (Vpeps) (sub-database(p,db’') = mod(sub-database(p,db))

~— Modification Commands

Having defined the modification function we are now able to give the se-
mantics of the modifying commands. For the Insert command, the change is

to add a new record associated with an enpty subdatabase:

412 VDM AND OTHER SYSTEMS

71.1 int~Insert[mkuInsewt(ss,rtpid,rec)] mk-HDBS(thg,db) Y

<2 (let np = extract~hp[ss]“<rtpid> in
3 let ps = eval-SearchStrl ss]db in
.4 let empty =~ [id - (11 idedom sub~catalogue(hp,ctlg)] in
5 let mod(subdb) =

.6 (let labeReclab \ dom subdb(rtpid) in

.7 subdb + [rtpid > subdb(rtpid)ullab w (rec,empty)]]) in
-8

mk—HDBS(thg,modify(ps,mod,db)))

For the Delete command we have to view the search string as Cconsisting
of two parts. The first lewngs-7 elements which identify the records which
are to stay and which records in their sub-database are to Dbe deleted,

and the 1last element which selects the records of the sub~database to
be deleted, Using:

72.1 satisfying—labels(rs,q) A {2 | ledom rg A satisfy(rs(l),q) }
.2 type: (ReecLab i (Ree x HDB)) x[Quall -~ RecLab-get

we gat:

73.1 int—DeZete[mk—DeZete(ss)] mk~HDBS(thg,db) A

.2 (let 88'"<(id,qual)> = gg

in

+3 let ps = eval-SearchStr[ss ' 1dp in
.4 let mod(subdp) =
.5 (let rs = subdb(id) in
.6 let rs' = pg \ satisfying—labels{rs,quaZ) in
.7 subdb + [id » pg']) in
.8 mk—HDBS(thg,modify(ps,mod,db)))

The Update commangd goes almost the same way:

74.1 int—Update[mk—Update{ss,fid,op)] mk-HDBS (ctlyg,db) A
o2 (let 88'"<(id,qual)> = gg in
3 let ps = eval-SearchStr[ss' 1dp in
4 let f(r) = p 4 [fid » eval-Oplop](r(fid))] in
.5 let mod(subdb) =
.6 (let rs = subdb(id) in
.7 let 1ls = satisfying~labels(vs,qual} in
.8 let re'= pe 4 [B> (f(r),db) | lels Ar,db)=rs(1)] in
.9 subdb + [id w» pgt]) in

.10 mk—HDBS(etZg,modify(ps,mod,db)))

FORMALIZATION OF DATA MODELS 413
TOWARDS IMS
We shall, as the final subject of our treatment of hierarchical search

languages, indicate how the principles given here may ve extended to the

so-called traversal languages like DL/1 of IMS. An IMS based model on

these ideas can be found in [Bidrner 82c]. Here too, we shall use IMS as

a reference for our discussion of traversal languages.

The main differences between the language given so Ffar and IMS is that
in IMS, the records are accessed One at a time, and in a certain order
called the hierarchical order or sequence. Here we shall show how this

will influence our mwodel. For brevity, we will consider only record

retrieval.

Hierarchical Order

The hierarchical ordering of the records corresponds to a parent-first,
left-to-right traversal of the database tree when drawn as a diagram.
The parent-first part of the ordering is given by the top-down structure,
but the left-to-right ordering must be established explicitly at each
level, that is in each sub-database. The records of a sub-database are
first of all ordered by their record types, in the same way as the record
types in each sub-catalogue are ordered as from left to right in the
hierarchical diagram. Within each record type of a sub-database, the

records must be ordered by some means, for example by the value of a key
field.

There are various ways to incorporate the hierarchical ordering into our
data model. To determine the ordering among record types in each sub-

catalogue, we could add an extra component to the catalogue:

75. CTLG :: (RTId g ReeTp) Ord

The order component should impose sonme ordering on the record types of

the catalogue, for example by associating an ordinal number to each type,
or by establishing a "chain":

76. ord
77. ord

il

RTId & WNat or
RTId & [RTId]

il

The ordering of records within each record type could be done through a

VDM AND OTHER SYSTEMS

key field, but since IMS does not require unique keys this is not applic-
able here. The ordering could also be given by an ordering component as

above, where the ordinal number casge would be equivalent to arranging
the records in a list:

78. DB = RTId @ (Rec x DB)*

However, since we do not wish to change our established data model and
associated operations here, we shall simply assume that we implicitly,
at each level, have access to a total, irreflexive, assymetric, and
transitive ordering operation among record types <$tpr and to one among

record labels <<1aps where 2z << ¥ models that z is to the left of Yy in
the diagram.

responds to a lexicographical ordering on the paths identifying the
records. Therefore, we can define that one record given by the path p,

precedes a record with path ps in the hierarchical sequence by:

79.1 pnecedes(pz,pg) A

.2 (Pe=<> - false,

-3 P1=<> = true,

.4 T + (let <(idg,laby)>"py’ = Py in

-5 let <(id2,lab2)>'\p2’ = pg in

-6 (idy+idy o idy Kip tdg,

.7 Zabzilabg » laby <<y laby,

.8 T -+ precedes(pl’,pg’))))

.9 type: Path x Path 3 Bool

80.1 first(paths) A (Apepaths)(Vp'epaths)(p¢p’ » precedes(p,p'))
.2 type: Path-set 3 parh

Record retrieval

In IMS, only one record is retrieved at a time. Therefore, in order to
achieve the effect of our Search command, that is +to get all records

satisfying the search string, two commands are provided:

FORMALIZATION OF DATA MODELS 415

1. GetlUnique :: SearchStr

82. GetNext 2 UBearchstr]

Get Unique will return the first record in the hierarchical sequence
satisfying the search string. Tt will furthermove establish what is

called current position of this record. This position is used in Get

Next commands which will return the first record following the current
position and satisfying the search string, and will set 'curreat DOsi~-
tion' to this record. 1If no search string is given, Get Next will return
the record immediately after ‘current position' thereby allowing a com-~
pPlete traversal of the dJdatabase in hierarchical order. The 'current

position' is held as a separate component of the database system:

83, HDBS? s COTLG DB POS
84. POS = Path

If no record can be found, we indicate this by returning the nil object.
Since 'current position' is changed by the retrieval, the type of the

interpretations functions for these commands become:

B5. type: int-GetUnique: GetUnique S (HDBS' % HDBS' x [Reel)
86. type: int-GethWext: GetNext 3 (HDBS' 3 HDBS' x [Rec])

87.1 int~GetUnique[mk~GetUnique(ss)]hdbs 1y
.2 (let mk-hdbs'(ctlg,db,pos) = hdbs in

.3 let paths = eval-SearchStr[ss]db in
.4 paths={} - (hdbs,nil),
T + (let path = first(paths) in
.6 (mk-HDBS’(ctlg,db,path),Zookup—rec(path,db))

88.1 int—GetNext[mk-GetNext(as)]hdbs A

.2 (ng_mk—HDBS’(thg,db,pos) = hdbs in

.3 let paths = (es=nil - all-pathe(db),

.4 T *+ eval-SearchStr[ss]dpb in

.5 let paths' = { p | pepaths A precedes(pos,p) } in

.6 paths'={} - (hdbs,nil), B

.7 T + (let path = first(paths) in

.8 (manDBS'(atlg,db,path},Zookup-ree(path,db))

IMS also maintains a position called Parent Position which is used by a

so~called Get Next Within Parent command. Furthermore, parts of the

416 VDM AND OTHER SYSTEMS
search string (which is called Search Argument List in IMS) may be left

out. The detailled modelling of thesge facilities can be found in
[Bidrner 82c7.

12.2.3 Selection Lanquages

In this section we describe and model the characteristics of languages
used in hierarchical database systems as for example SYSTEM 2000 of MRT.
Due to their nature, such languages are often called "selection lan-
guages". They are high~level languages andg given a proper syntax the
semantics may be quite close to the intuitive meaning of the construct
interpreted as a sentence. In SYSTEM 2000 the language is even called

the "Natural Language Feature".

First, we give some examples of selective queries to introduce the idea
behind these languages. on the basis of these we then introduce some
basic views on the database and give some basic operations including the
important broom concept. These are used in the following definition of
a small language including only single selection. We then show how
single selections may be combined in two different ways using boolean
Operators, and finally we discuss some disadvantages of the so-called

tree and how they can be remedied by a special selection construct.

diagram:

Dept
No. Name
|
Empl. H Article
Name |Salary No. [Name |Stock
|
Suppl.] Purchases
Name |[Status Name [Orders

Fig. 7

FORMALIZATION OF DATA MODELS 417

The diagram describes the database structure of a larger trading firm

divided into departments which each deals with certain articles.
In general, a selection language request or command has the form:
<action part> where <selection part>

The intended semantics is that the action in the action part is applied

to the set of nodes designated by the selection part.

We start with one of the most simple kinds of query, for example "print
the names of articles for which there are more than 1000 items in stock™.

This may be achieved by the command:
print Article.Name where Article.Stock >= 1000

All the employees in a certain department, for example the Food Depart-

ment, may be found by
print Empl.Name where Dept.Name = "Food"

Note that we select on the basis of a Department field, but actually use
an Employee field. Thus, the selection of Department records automatic-—
ally gives access to all descendants of the selected records. This is
often called "downward normalization". In the same way all suppliers

that supply a certain department can be found. Another query could be:
print Dept.Name where Article.No = 123

which will be interpreted as "all departments which deal with article no.
123". Thus, in this case we see that the selection of an article on the
basis of its number automatically includes its parent (in general: an-
cestors). This may be called "upward normalization". Changing the

command to:
print Suppl.Name where Article.No = 123

will give us all suppliers which supply the specific article to one or
more departments. If we are interested 1in only those which supply a

specific department, we can use:

418 VMMANDOTHERSYSTEMS

print Suppl.Name where Article.No = 123 and Dept.Name = "Food"

As we see, selections may in general be combined by boolean Ooperators,
Another example is to “find the departments which trade with the firn
"Smith'",

print Dept.Name where Suppl.Name = "Smith"
and Purchases.Name = "Smith"

The semantics of booclean combinators, which seems rather natural, 1{s
discussed later. Finally, Suppose we are interested in those articleg

which may be supplied by "Jones § co." and may be sold to “Printall". we
may trye

print Article.Name where Suppl.Name = "Jones s Co."
and Purchaser.Name = "Printall"

Unfortunately, this command will return the desired article names in some
Systems, whereas other Systems will tell us that there are no such arti-

Cles. This problem is further treated in the section named "The Has
Clause",

Regarding the Database as a Tree

The readers who are familiar with the MS System may have wondered why
we have chosen such an avstract view on the hierarchical tree in the
model presented (31.-40.), kKnowing that, in IMS it suffices to make a
pointer structure imposing both a hierarchical structure on the records,
and a sequential order in which they are to be retrieved. The reason is
that such a model (which {ig really one kind of IMS implementation, see
Chapter 13) is not a good starting point for explaining and modelling
selection languages. The main view of the database in these languages
is that of a tree of nodes where each node has an associated record. Now,
as stated above, a selection command Ffirst qualifies a set of nodes (and
thereby records) which are then considered (but not Necessarily used) by

some action., Therefore, a good data model should easily adapt to the
tree view.

-- The Database as a Tree gﬁ Records

Recalling the model of the database part (33.):

FORMALIZATION OF DATA MODELS 419
39, DB = RTId @ (RecLab z (Reec x DB))

we see that it does not immediately regard the database as a tree of

records. However, changing the model to:

20. TDB = (RTId x RecLab)ﬂ'(Rec X TDB)

we get a model where each record is directly connected to its children
by branches labelled by (id,lab) pairs. A given DB may easily be trans-—

formed into a "pure" tree 7TpB Dy

91.1 tree-view(db) A

.2 Trid,lab) (rec,tree~view(db') | idedom db A labedom db(id) A
.3 (reec,db?) = db(id) (Lab) J

-4 type: DB - TDB

Being aware of this relationship we retain the original model, but speak

in terms of the tree viewl!

-— Interpreting a Path

The path concept was introduced to enable unique identification of the
records in the database thereby making it possible to speak of a record
from the "outside" of the database in spite of its top-down structure.
Speaking in tree terms, a Path (28.) is the sequence of branch-labels on
the way from the root record ("system record") to a certain record occur-

rence. Therefore, a path nmay have two immediate interpretations:

A. The path designates one record: the record at the end of the path,

This is the view which motivated the path concept.

B. The path designates a set of records: all the records along the path,
including the “system" record and the record at the end of the path.

It may also be considered as a subtree; one without branches.

As both interpretations will be used in this section, we rename the Path
domain to emphasize this differentiation. Thus, when speaking of single
records or nodes we use the domain Node. The second interpretation will

be used only for paths ending in leaf nodes of the database tree. In

this case, the path will be called a stem:

420 VDM AND OTHER SYSTEMS

92, Node = Stem = Path = (RTId x ReeLab)*

—-— Node and Stem Operations

Stems are important since they form the basis for regular trees defined
below. We therefore introduce a few node and stem operations here. The

first one is for pragmatic reasons only.

93.1 all-nodes(db) A all-paths(dp)

94.1 node~type(n) 5 cases n: (<> = SYSTEM, n'"(<d,) - id)
.2 type: Node - (SYSTEM | 7YpE)

A stem must end in a leaf node of the database (see figure bvelow). 1In

terms of our wmodel this requirement can be expressed by:

95.1 inv-Stem(st)db A steall-paths(db) 4 sub-database(st,db)=[]

.2 type: Stem -+ (DB 3 Bool)
All the stems of a database can be determined in the same way:

.1 all-gtems(db) A {st | steall—paths(db)Asub—database(st,db)z[]}
.2 type: DB 3 Stem-set

We shall also be interested in the nodes represented in a stem:

95.1 nodes-of-stem(st) A { p | peWode a ie~prefiz(p,st))}
.2 type: Stem - Fode-set

(Note that the type: Path - Path-set might have been confusing.)
-- Brooms

A broom is a general tree concept which turns out to be very iwmportant in
many selection languages. Given a node in.a tree, the broom of this node

is generally defined by:

broom(n) A (n} v [n' | n' is a descendant of n }

u { n" | n" is an ancestor of n }

See illustration below. Tn our model we may use the dependency concept:

FORMALIZATION OF DATA MODELS 491

96.1 broom(n) db L n' | n'eall-nodes(db) a - indep(n,n') }
.2 type: Node (DB 3 Node-set)
.3 re: neall-paths(db)

4
-

—-—- Regular Trees

The notion of regular trees given here is a slightly modified version of
the one given in [Hardgrave 72a] upon which much of the following materi-

al based. A regular tree with respect to a database tree is a sub-tree

whose leaf nodes are also leaf nodes in the database. See illustration
below. As it can be seen, the nodes of a regular tree is the union of
the stems leading to the leaves. A reqular tree may therefore be repre-

sented by the stems of its leaves:
97. RegTree = Stem-set

We also see that a broom of some node is a regular tree. TIn this repre-

sentation the broom is given by:

98.1 broomp(n)db o [n"stem | stemeall-stems(sub-database(n,db)) }
) type: WNode 3 (DB 3 RegTree)
99.1 nodes-of-tree(rt) A union { nodes-of-stem(st) | stert }

.2 type: RegTree - Node-set

We now define the reqular tree operations intersection, union, and nega-

tion as the corresponding set operations on the Stem-sets representing

the trees. 1In this way the operations always results in regular trees.

- Illustration of Tree Concepts

A stem broom(n) A regular tree

Fig. 8

422 VDM AND OTHER SYSTEMS

A SMALL SELECTION LANGUAGE

We are now ready to define and model a small language involving only se-

lection on the basis of one field,

Abstract Syntax

100. Cmd sr Aetion Where
101. Where r: SelEBxp

102. SelExp = FieldSel | ...
103. FieldSel :: FieldDesiy Qual
104. Action = Print |

105, Print {: FieldDesig-set
106. FieldDesig :: Rrrd Fieldrd
107. Qual = Eq | ...

108. Eq 2 Val

(The bPurpose of the extra Where-level will become apparent later.)

Well-formedness

The only constraints which we shall impose on the constructs are that

Field~designators must exist in the catalogue, and that the qualification
is of the right type.

109.1 pre-cmdlmk- Cmd(act,mk- Where(se))Jetly A
.2 pre- Acttan[act]ctlg A pre-SelExplselectly

110.1 pre-dctionlact]etly 4

.2 cases act:
.3 (mk-Print(fds) - (Vfdefds) pre—FieZdDesig[fd]thg, e)

111.1 pre—SeZEmp[se]thg A

.2 cases ge:
.3 (mk-FieldSel(,) - pre—FieZdSeZ[se]thg, ees)

112.1 pre-rieldSel[mk- FieldSel(fd, qual)letlg A

) pre~ erZdDe81g[fd]etZg A
.3 (let hp = fznd—hp(s—RTId(fd) etlyg) in
.4 let fieldtp = gub- catalogue(hp,ctlg)(s- Fieldrd(fd)) in

.5 pre- Qual[qual]fteldtp)

FORMALIZATION OF DATA MODELS 423

113.1 pre-Quallquallfieldtp A
.2 cases qual: (mk-Eq(val) - type-of(val)=fieldtp, ...)

114.1 pre-FieldDesig[mk-FieldDeeig(id, fid)Jetly A
.2 idecolloct-names(ctlyg)

.3 A fidesub-catalogue(find-hp(id,ctlyg),ctlyg)
115. type: pre-X: X ~» (CTLG 3 Bool) where X is Action,SelExp,
FieldSel, resp. FieldDesig

116. type: pre~Qual: Qual -+ (TYPE - Bool)

Action interpretation

The semantics of a command is to select a set of records by the Where-

clause, and then impose the specified action on these.

117.1 int-Cmd[mk~Cmd(act,wh)]hdbs A
.2 (let nodes = eval-Where[whlhdbe in
.3 int-detionfact](nodes)hdbs)
-4 type: C(md 3 (HDBS 3 (HDBS | Table | ...)

The type of the result depends on the specific action. For example, the
result of a Print command may be a Table giving the different values

occurring in the specified fields of the selected records.

118. Table = FieldDesig @ Val-set
119.1 int-Adectionlmk-Print(fds)](nodes) mk-HDBS (etlg,db) A
) L fd v~ select-field-vals(nodes,fd,db) | fdefds 1
-3 type: Action 3 (Node-set - (HDBS % Table)))
120.1 select—field~vals(nodes,mk-FieZdDesig(id,fid),db) A
.2 { Tookup-rec(n)(fid) | n ¢ nodes »
.3 n % <> pn nllen nl = (id,) }

-4 type: Node-set x FieldDesig x DB 3 Val-set

Where evaluation

The Where-clause is evaluated in two steps. First, a number of nodes are

directly selected according to the Field Selector. To achieve the effect

of upward and downward ‘"normalization" mentioned in the introduction

VDMANDOTHERSWHEMS
these nodes are then qualified ko give an extended set of nodes.,

1 evaZ-Where[mkwwhene(se)] mk-HDBS(,db) 4 eval-Selbxplse]dp
+2 type: Whepe 3 (HDBS 3 Node-get)

122.1 eval-SelExp[se]dp A
2

cases ge:
.3 (mk—FieZdSeZ(fdsquaZ) * (let nodes = select(fd,qual)db in
.4 qualify(nodes)db),
5)
6 type: SelExp 3 (pp 3 Node-set)

123.1 select(mk—EieZdDesig(id,fid),qual) db A
.2 fn | neall-nodes(dp) node-type(n)=id A
.3 match((lookup—rec(n,db}(fid),qual) }
-4 type: FieldDesig x Qual 3 (pB 3 Node-set)

124.1 mateh(val, qual) 4 cases qual: (mk-Eq(val’) - val=val"’,
.2 type: VAL x Qual - Bool

cee)

-= Qualification
=ooodlbication

The purpose of qualification is to extend the set of selected notes by
including nodes which are in a certain relationship to those directly

selected. These nodes are called 1nd1rect1x selected. In almost a1
systems, the relation is given by:

A node 1is indirectly Selected if at least one of jts ancestors or
descendants ig directly selected,

This notion of qualification corresponds well to an intuitive interpreta-
tion of upward and downward normalization, Furthermore, it is easily
seéen that the nodes qualified by a directly selected node are those of

the broom of the node. Thus, the total set of qualified nodesg may be
found by

125.1 qualify(nodes)dp & union { broom(n)dp | nenodes }
-2 type: Node-set 3 (DB % Node-set)

FORMALIZATION OF DATA MODELS 425

A BOOLEAN SELECTION LANGUAGE

We now extend our language by constructs which will allow us to select
on the basis of more than one field as indicated in the introduction,

The new select constructs are:

126, SelExp = FieldSel | 4and | 0r | Wot | ...
127. And 22 SelExp SelExp

128. Or 22 SelExp SelEzxp

129. Nok :r SelExp

These constructs are well-defined if their components are.

In order to achieve the "natural" interpretation effect on these con-
structs, all systems combine the nodes of their components. Also, the
systems agree that directly selected nodes should still be qualified
before they are combined. However, there are two essentially different
ways to do these combinations: the set-theoretic and the tree-theoretic

which we shall deal with in turn.

Set~Theoretic Combination

According to this principle, the nodes designated by the component ex-
pressions are simply combined using the usual set operations. Therefore

we simply get the following new cases of the eval-SelFzp function:

130.1 evaZ~SeZExp[mk~And(seZ,seg)]db A

.2 (let nodes; = eval-SelExpl se;]db,
.3 nodesg = eval-SelExplseqy]db in
.4 nodes; n nodesy)

The Or case is of course similar.
131.1 eval-SelExplmk-Not(se)]db A
.2 (let nodes = eval-SelExp[se]db in

.3 all-nodes(db)\nodes)

Tree-Theoretic Combination

It is easily seen that the set combinations may result in node-sets which

are not sub-trees of the database, and upward and downward normalization

426 VDMANDOTHERSYSTEWS

may therefore become Adifficult to define properly. To avoid this, some
systems (including SYSTEM 2000) apply another combination Principle based
On regular trees andg the associateq tree operations.

In this approach, the denotation of 4 Select FExpression is no longer 4
set of nodes, but instead (more restrictively) a regular tree. The seman -
tics of the select operators may then defineg by (or as) the Ccorrespon-
ding tree operations. In order to incorporate this in our model, a Ffey

functions and types need to be redefined:

132.1 qualifym(ns)db A union | broomp(n)db | nens }
-2 type: Node-set (DB 3 RegTree)

The type of evaZ—SeZExp changes to:
133, type: evaZ—SeZExpT: SelEzp 3 (pp o RegTree)

However, the function definition remains the same, except that "nodes*
for pragmatic reasons should be renamed "stemg" everywhere except in
122. Finally we are now ready to use the extra Where-level in the syntax

since the result of evaluating a Where-clause should still pe 3 Node-set,

134.1 evaZ~WhereT[mk-Where(se)] mk-HDBS(,db) A
.2 nodes—of—tnee(euaZ—SeZExp[se]db)

Differenceg Between Set and Tree Combination

Here we shall 1ook at the semantics and pragmatics of the two kinds of
boolean combination. As already stated, the set operations work on node
sets whereas the tree operations wWork on regular trees. We shaill say

that a node set is similar to a regular tree if i+t €quals the nodes of

similar results provided the operands are similar. Thus, the origin of

any differences must be the and ang the not operators which are discus-
sed below.

=- The And Operator

Analyzing the ang operation we fing that as long as the fields combined

are different ang on the same hierarchical path, the results will be

FORMALIZATION OF DATA MODELS 427

similar. This was the case in the introductory example (now a little

less concrete):
print Suppl.Name where Dept.Name = D and Article.No = n

where the semantics in both cases corresponds to "those suppliers which
supply article n to department D". However, in the last example of the

introduction:
print Article.No where Suppl.Name = S and Purchaser.Name = p

the field selectors are no longer on the same hierarchical path. In the
tree combination case, this implies that they cannot have any stems in
common and therefore the result is an empty regular tvee. Hsging set
combination, we see that the result is those records on the common path
which have descendants satisfying the qualifications. Thus, the command

above will result in exactly the articles we want. However, consider:
print Dept.Name where Suppl .Name = S and Purchaser.Name = P

This command will give the "departments which are supplied by § and sell
to P", but there need not be a single article in the department for which
this is the case. Thus, the latter command may give results even though
the first does not, that is the effect of upward normalization has been
lost, and it is not possible to get those departments where the condition
is satisfied by at least one single article. We may also try to get
“those suppliers that supply articles also supplied by S and sold to p"

using:
print Suppl.Name where Suppl.Name = S and Purchaser.Name = p

However, this command will not give any results even using set combina-
tion since we have lost the descendants of the selected articles. Finally

we try to conjoin two selections on the same field:
print Dept.Name where Suppl .Name = 57 and Suppl.Name = So

(S7#59). Using tree combination we get no result, justified by the fact
that no supplier can have two names. 1In the set approach we get "those
departments which are supplied by both $; and §9". Again we cannot get

the departments which deal with an article supplied by both suppliers.

428 VDM AND OTHER SYSTEMS

== The Not Operator
—= 2 YPerator

Since the not operator in both approaches may be distributed according
to De Morgans Laws, we need only consider Negation of single Field Selec-

tors. A command like:
print Dept.Name where Article.No = n

is generally interpreted as "those departments under which there exists

an article with number n". Now consider:
brint Dept.Name where not Article.No = n
Using set combination thisg will result in "those departments which do not

deal with article n", whereas the tree principle will give "those depart-

ments under which there is anything different from article number n",

Note the difference, ang that none of them makes “not Article.No = u"
equivalent to "Article.No + “! Another problem is that:

print Empl.Name where not Article.No = p

will in both cases give all employees although they have nothing to do
with article numbers, This problem may be solved by using type con-
strained negation, where the negation returns only nodes with types

such as those negated. Here we consider only the tree combination case:

135.1 euaZ—SeZExp[mk~N0t(se)]hdbe A

.2 (let stems = eval-SelExpl se]db in
.3 let types = { node~type(st) | stestems } in
.4 { st | st'call-stems(db)\etens A node—type(st’)etypes 1)

Now "not Article.No = n" becomes equivalent to "Article.No £ n"!
The Has-Clause
To sum up, both combination Principles have some advantages:

Set: Useful, although restricted and operation. Negation corresponds
to universal quantification.

Trees Always regular trees as result, that is no normalization lost,

FORMALIZATION OF DATAMODELS 429

Not operation negates select condition.

In practice, many systems use the tree combination principle (among
others SYSTEM 2000). The main disadvantage is the rvestricted and opera-
tion. To compensate for this, these systems also offer a so-called

Has-clause which enables re-selection/qualification at any level:

136. SelExp = ... | Has
137, Has :: RTId SelExp

138.1 eval-SelExp[mk-Has(id,se)]db A

) (let nodes = nodes-of-tree(eval-SelExp[seldb) in
.3 let nodes’ = { n | nenodes A node-type(n)=id } in
.4 qualify(nodes’)db)

The Has-clause gives us many new possibilities. For example we can get
"the employees in the departments where at least one single article is

supplied by S and sold to P", and we may achieve the universal quanti-

fication effect:

print Empl.Name where Dept has Article has (Suppl.Name = § and

Purchaser .Name = P)
print Dept.Name where not Dept has Article.No = n

12.2.4 Concluding Remarks on the Hierarchical Data Model

We have in 12.2.1 build up a top-down model of a hierarchical database.
This model was used directly for the hierarchy-oriented language defined
in 12.2.2. Although a little more abstract than needed, the model could
also be used for the more procedural traversal languages like IMS. In
12.2.3 we formalized a number of concepts (brooms, etc.) on top of our
top-down model in order to enable a more global tree-view of the data-
base. Using these, we could easily give the semantics of the most impor-
tant selection language constructs. All this seems to indicate that our
model is a reasonable starting point for hierarchical database model~
ling -- as also evidenced by [Bidrner 82c¢]. However, for use in connec-

tion with selection languages only, a more global tree-like model may
turn out to be more suitable.

430 VDMANDOTHERSYSTEMS

We shall finally stress that a primary concern of this section has been
to illustrate g model development process. This has been tried through
many concrete eéxamples and careful model description. The length of thjig
section, compared to those on the relational wmodel and on the network
model, is thus not an indication of 3 special interest in, or sSupport of
the hierarchical model, but rather of a general emphasis on modelling

pragmatics.

12.3 THE NETWORK DATA MODET,

The network data model to be formalized in this section is based on
Bachmanns 'Data Structure Diagrams'. We present abstractions of the
data model behindg the CODASYL/DBTG Proposal and, hence of the data model
underlying such DBMSs as IDS/2, IDMs, DMS81100, etc.

By a network we understand a directed graph. By a network data model we
understand an interpretation and utilization of the nodes ang edges as
follows: nodes denotesg aggregag_e_g~ of records; edges denotes relations
between the records denoted by the connected nodes; and the paths of the
graph enable operations to extract collections of records of the "enq"
node of a path based on properties satisfied by records of all nodes
of the path. Exactly what is meant by aggregates, relations and ex-

traction is then the purpose of our formalization.

12.3.1 The Data Aggregate

Our presentation OF the relational data model data aggregate was 'matter-
of-factly': we merely stated the model. The hierarchical data aggregate
model was arrived. at ag the result of an analysis of given example
pictures. 1Ip bresenting the network data aggregate model we shall pro-
ceed in yet a thirq way. Whereas our analysis of hierarchical database
"snapshots" leaq ko a top-down bresentation, we shall now start with
the primitives andq end up with their synthesis into networks. As was
the case in our bresentation of the hierarchical model we shall also use

pictures, but now in an a-posteriori supporting rble.

Our objective is to describe the Syntax and semantics of so-called data
Structure diagrams. These consists, picturially of boxes (nodes) and
arrows (directed edges). ¥We next explain the meaning of boxes, the

meaning of arrows, and finally the syntactic rules for well~-formed data

FORMALIZATION OF DATA MODELS 431

structure diagrams.

A box denotes, ~, a set of Records. We take records as our first pri-
mitive:
1. ~ R-set

Fig. 9

Arrows will (come to) play the rdle of operators infixed between two, not

necessarily distinct boxes:

2. U

Fig. 10
The meaning of arrows, in general, is that of a map from records to sets
of records:

3. el ~ (R 3 R-set)

Fig. 11

The meaning of an arrow, in particular from a box denoting the record
set réf to a box denoting the record set rty, is a map, m, whose domain

is, in general, a subset of rsf, and whose range is a set of sets of

records whose union is, in general, a subset of ey

4. m e (R 5 R-set);
5. dom m < rsp, union rng m < rsy

A data structure diagram is a collection of uniquely named boxes and u-
niquely named arrows, the latter infixed between existing hoxes. Box
and arrow names are then our remaining primitives. The records of the

Box from which an arrow emanates and which are in the domain of the map

432 VDM AND OTHER SYSTEMS

The arrow denotation is, in CODASYL/DBTG rather confusingly, called a
"settype'; we shall call it a relation.

The Domain of data structure diagrams can syntactically then be form-
alized as:

6. DSDgyy :: Fid-set x (s5id i (Fid x Fid)

The set of file names represent the boxes, and the map from arrow names
to the pairs of from box and to box names Tepresent the arrows and where
they are infixed. The diagram:

$4
f > f f
i SO 2 < S 3
4 5]
S3{ [S2
i
fa s
Fig. 12

7.0 mk—DSDsyn({fl,fg,fg,f4},
.1 Lsp > (f1,F9), 8 P> (f3,f2),89 (f1,F47,
.2 83 2 (f4.f1),84 » (F4,f3),85 (f3,f2)1)

We observe the constraint that "to each arrow there corresponds two
boxes in the data structure diagram"

8.0 inu—DSDsyn(mk~DSDsyn(fs,sffm)) A

.1 (Ve € dom sffm)
.2 (let (fr,fe) = effm(s) in {fe,fe} < fs)

Semantically the data structure diagrams can be formalizeqd, using (1.)
and (3.):

FORMALIZATION OF DATA MODELS 433
9. DSDgom ¢ (Fid p R-set) (Sid @ (R 3 R-set))

which we annotate: to file names, in Fid, correspond sets of records;
and to arrow names, in Sid, maps from records to (sub)sets of records.
Combining the syntactic and semantic abstractions we get:

10. DSD ;2 (Fid g R-set) (Sid g ((Fid x Fid) x (R 3 R-set))

which we annotate: to file names correspond, as in the semantic "view",
sets of records; and to arrow names correspond two things: (syntactical-
ly) the pair of from/to identification, and (semantically) the map from
'from' records to sets of 'to' records.

Combining the two constraints: (3.) and (5.) we get:

11.0 inv-DSD(mk-DSD(fm,sm)) A

.1 (Ve ¢ dom sm)

.2 (let ((f,t),m) = sm(s) in

.3 ({f,t} < dom fm)

.4 A ((dom m < fm(f) A (union rng m < fm(t))))

Given the holding of these constraints we can express the following re-
lations between DSD, on one side, and Dspsyn and DSDggme On the other

side:

12.0 retr—DSDsyn(mk-DSD(fm,sm)) A

.1 mk-DSDgyn(Qgﬂ fm,Ue m» (f,¢) | sedom sm A ((f,t),)=sm(s)])
12. type: DSD DSDgyy

13.0 retr-DSDgop(mk-DSD(fm,sm)) A

.1 mk-DSDgom(fm,Le v m | sedom sm (,m)=sm(s)])
13. type: DSD 3 DSDg,y,

14.0 inj—DSD(mk-DSDsyn(fs,ss),mk—DSDsem(fm,sm')) A

.1 mk-DSD(fm,Le ~ (ss(s),sm’)) | sedom ssl)

) pre: (fs = dom fm) a (dom ss = dom sm')

-3 A invaSDsyn(mkmDSDsyn(fs,ss))

.4 A (Ve ¢ dom sg)(let (f,t) = ss(s) in

.5 (dom sm'(s) < fm(f))

.6 Alunion rng sm'(s) < fm(t)))

14. type: DSDgyy x DSDgpym - DSD

434 VDM AND OTHER SYSTEMS

where:

15.0 (vdsdeDSD)(inv-DSD(dsd) >
.1 (inj—DSD(retr~DSD8yn(dsd),retr—DSDSem(dsd))zdsd))

Restrictions and Extensions to the Data Aggre ate Model
T = ZXlensions to the =2ta \ggregate 224er

First we deal with a restriction. Historically the following constraint
had been imposed: under any arrow denoted map, two distinct records of
its domain map into disjoint sets of records. ywe express this (further)

constraint by joining an additional 1line (11.5) +to formula (11.);
.5 (¥ry,ry ¢ dom ml((r; & ry) o (m(ry) n m(ry) = {}))

One (logical) reason for thig restriction is that it allows a network
database user +to model (tree—like) hierarchies. We shall attempt in

chapter 13, section 2 to give another (physical) Teason for this re-

striction.

Then we turn to generalizations on the theme of variations on the syn-
tax of arrows and correspondingly denoted meanings. Up tp now we have
dealt with arrows (i) emanating from exactly one box and being incident
upon exactly one box. We now formalize the syntax andg semantics of
arrows which (ii ang iii) emanate from one but are incident upon more
than one box, or (iv, v ang vi) emanate from several and are incident

upon exactly one, respectively more than one box:

Fig. 13 Fig. 14
mk—FTii(f, {fl,fg, ~-°,fm}) mk-FTiv({fZ’fZ’ ""fn}’f)
mk—FTiii(f,{fz,fg,v--,fm})

Fig. 15

mk_FTU/U‘{:({fS‘]’fSQS °9°3fgn},v {ftmﬁ °°°ft23f“f;7 })

FORMALIZATION OF DATA MODELS 435

In DSDgyy LDSD] we mapped $id into (Fid Fid) [((Fid Fid) (R s R-set))]

we now map Sid into FT (SET). The Domain FT has the six forms:

16. PT = FTyp L FPTyyg | Fryye 1 Py | PTym; | PTyyx
where:

17. FT; = FTyq 2 Fid Fid

18. FTi¢ = FTiyg $: Fid Fid-set

19. FTiii = FTiyg :: Fid Fid-set

20. FTiy = FTyg 2: Fid-set Fid

21. FT, = FTyyp :: Fid-set Fid-set

22. FTyi = Flyyx :: Fid-set Fid-set

The associated meaning of arrows are given next. Basically their meaning
is a map from records of the source box(es) to sets of records of the
target box(es). [Having already disposed of (i) we "start" with (ii ang
ii1)Y.] Either of two meanings can be attached to the arrow which forks
out to many boxes. One associates with a record of F, the set of records
denoted by f, a non-empty set of records of some F;: the other associates

with a record of F, for each target box (fiie), F;. a set of its records:

23.0 SET = SETy; | S8Tiyg | SETyy | SETy; | SETyy; | SETyyy
24. SETyq 2 (Fid x Fid) (R @ R-set)
25, SETim1 @ Fid (R @ (Fid x R-set))
26. SETiyr :: Fid (R @ (Fid % R-set))

Turning next to arrows which fork inwards (iv). To each record of each

source box there corresponds a set of records of the same target box:
27. SETyy :: ((Fid x R) g R-set) x Fid

Finally consider the multiple—source/multiple—target arrows. Again two
meanings are possible —- corresponding, for each record of some source

box, to the situations (i1 and iii).

28. SETyyy ¢ (FPid x R) g (Fid x R-set)
29. SETymg ¢: (Fid x R) m (Fid i R-set)

For each of these ‘new’ arrows (ii-vi) we must exXpress suitable con-
straints:

436 VDM AND OTHER SYSTEMS

30.0 inv~DSD(mk~DSD(fm,sm)) A

.1 (Vs ¢ dom sm}(inv-SET(sm(s))(fm))
31. inU—SE’TJMJ (mk—SETJMJ (f,m)}(fm) A

0
1 ((f ¢ dom fm)

.2 A (VP e dom m)((r ¢ fm(f))
3 A (let (t,rs) = m(n) in (t ¢ dom fm)

4

A (re < fm(t)))))
32.0 inv—SETJMK(mk—SETZMK(f,M))(fm) A
1 ((f e dom fm)
2 A (¥r € dom m)((r « fm(f))
.3 A flet m' = m(pr) in
4 (Vt € dom m'")((t « dom fm)
5 Am'(t) < fm(t))))))

33.0 inv-SETNJ(mk-SETNI(m,t))(fm) A
.1 ((t ¢ dom fm)
.2 AA(Y(F,r) € dom m)((f ¢ dom fm)
.3 A lroe fm(F))
.4 AAmifar) < fm(t))))
34.0 inv—SETNMJ(mk~SETNMJ(m))(fm) A
.1 (v(f,r) « dom m)((f « dom fm)
.2 Adr e fmir))
.3 A (let (t,rs) = m(f,r) in
.4 ((tegfﬂfm)
.5 A (rs < fm(t)))))
350 Inv-SETyyx (mk=~SETypy (m)) (fm) A
.1 (V(f,r) € dom m)((f « dom fm)
.2 A (r e fm(f))
.3 A (let m' = m(f,r) in
.4 (Vted‘o_rgm')((ted_o_rgfm)
.5 AN(mi(t) < Fm(t)))))

[Reviewing formulae (24.-29.) we observe how one could "almost" derive
formulae by simple syntactic manipulations, or by manipulations, of an
algebraic nature, which ascribe particular Domain operations (x, #e |,

-8et, ..., including grouping ()).]

FORMALIZATION OF DATA MODELS 437

12.3.2 The Operations

We shall illustrate operations only on the simplest form of data aggre-
gates, that is involving only simple arrow relations (SET11) as defined
by (10.).

Three kinds of operations will be investigated: operations on files,

relations and entire data structure diagrams. To the Ffirst group, be-

long the operations of writing [, updating, reading] and deleting re-

cords; to the second, those of connecting and disconnecting records to,
respectively from relations; and to the third group, the retrieve opera-
tion of finding desired records. We shall illustrate variations of the

non-bracketed {({...]) operations.

File Operations

36. FCmd = Write | Delete
37. Write 2 Fid R
38. Delete :: Fid R

Writing a record to a file does not interfere with relations involving
that file ("insertion manual®):

39. type: Write: DSD S pSp

39.0 Int-Wnite[mk—Write(f,r)](mk—DSD(fm,sm}) A
.1 tf (f € dom fm) A (r - fm(f))
.2 then mk-DSD(fm + [f » fm(f) v {r}7],em)
.3 else undefined

At least two kinds of semantics can be ascribed to the delete operation,
Either we can only delete records which are not in any relation involving
the file:

40. type: Delete: DSD 3 psSp

40.0 Int—DeZete[mk—DeZete(f,r)](mk-DSD(fm,sm)) A

.1 if ((f « dom fm) A (r « fm(f))

o2 AYO(F,),m) ¢ rng sm)(r - ¢ dom m)

.3 AV) m) € rng sm) (v - e union rng m))
.4 then mk-DSD(fm + [f mr Fm(fIN{r}1, 8m)

.5 else undefined

438 VDM AND OTHER SYSTEMS

Or deletion Propagates to ali such relations, that is "triggers"
sponding “"disconnect™ operations:

CoOrre-

41.0 Int-DeZete[mk-DeZete(f,r)](mk—DSD(fm,sm)) A

.1 (let fm' = fm + Lr > fm(fIN\{r}],

.2 sm' = Tg s ftr

3 [5 ¢ dom sm

4 A ftw:(zgz ((fr,to),rel) = sm(f) in

.5 felfr,to}

.6 > Afr,t0), TP o pg | r'edom rel\{r}

.7 A rs=rel(r')\[nr}]),
8 T »em(f))] in

.9 mk-DSD(fm’,sm'})

Lines (41.6-7.) express the disconnection of r from the domain (41.6)
and range (41.7) of all those relations (rel) which involve the file f
either as source (f = fr) or target (f = to), that is either as owner or

member. All other relations are una ffecteqd (41.8). Lines (41.6-7.)

ex -
press disconnectjion rather "generously" in that no question is askeqd
whether p actually isg involved in rell
'Set!’ Operations
42, Conneet :: g5id (R x R-get)
43. DisConn :: sid (R X R-set)
The Connect operation mk—Connect(s,(r,rs)) intuitively inserts the 're-

lation': [y rs] as part of the denotation of 8:

44.0 Int—Connect[mk-Connect(s,(r,rs))](mk—DSD(fm,sm)) 4

.1 if s -¢ donm sm

.2 Eﬁiﬁ undefined

.3 else (let ((f,t),rel) = em(s) in

.4 if r -e fm(f) A psg =< fm(t)

.5 then undeféggi

.6 else (let rel' = if roe dom rel

.7 then rel + [y s rel(r) u rsg]
-8 else rel y [p o rel in

.9 let sm!' = gm 4 [s ((Ff.t),rel] in

.10 mk-DSD(fm,sm')))

44, type: Connect - (DSD 3 psp)

FORMALIZATION OF DATA MODELS 438

No check is made for records of rg already in the denotation of s under ».

The Disconnect operation "undoes™ what the connect operation is doing:

45.0 Int—Dionnn[mk-DisConn(s,(ﬁ,rs))](mk~DSD(fm,sm)) A

.1 if & -e dom sm
-2 then undefined
.3 else (let ((f,t),rel) = sm(s) in
.4 if v =€ fm(f) A rs ~c fm(t)
.5 A v ~e dom rel A re -c pel(r)
.6 then undefined
<7 else (let rel' = if rs = rel(r)
.8 then rel \ {r}
.9 else rel + [r = rel(r)\rsl in
.10 let sm' = sm + [g » ((fyt),rel')] in
.11 mk-DSD(fm,sm')))
45. type: DisConn - (DSD % DSD)

Data Structure Diagram "Navigations™

-- Paths
A sequence, <8;,8p,...,8,>, of arrow ('set' or relation) names may deter-

mine a 'path' through a data structure diagram mk-DSD(fm,sm), as follows:
2ach s;, if actually the name of some arrow in sm, determines a triple:
sm(si)=((fi,ti),reli}, thus the arrow name sequence above determines a
sequence of from-to file names: <(f1,t1),(f2,t2),..‘,(fi_l,ti_l),(fi,ti),
(fi+1:ti+1)"--:(fn’tn)>- If for all appropriate 7 we have: t;.7=f; then
we say that 815895 +.:,8,> is forwardwell-formed. If for all appropriate
1, either t;=t;,; (that is fi=fi+1) or t;_;=f;, then we say that it is un-
directed well-formed. a forward-well-formed path is an odinary path in
the directed graph determined by any data structure diagram. A well-
formed path is a path in the corresponding un-directed grapn. Well-formed

paths may thus embed arrows in Oopposing directions.

fi_q f; fj+1 fj+2

Si» S; Sis

tios t 4 t; t

i+1

kig. 16 Forward well-formed Path

440 VDM AND OTHER SYSTEMS

fj_1 tj fjH

ti -1 fi t
Fig. 17 Undirected well-formed Path

i+1

—— Images and Inverse Images

We are given an arrow, s, and a set of records, rg, of either the from
f or the to ¢t file of the arrow, and are asked to compute the image,

respectively the inverse image, of pg “under the arrow". A figure and
a formula for each of the two situations should suffice:

rel

Fig. 18

which, in »rd, map into set of records properly overlapping with rg:

r rel ' rs

iirs = {p | redom rel A (rel(r)nre + {1)}

Fig. 19

FORMALIZATION OF DATA MODELS 441

-— Navigational Retrieval

Given a starting file, f, a set of records, rs, and a well-formed path
SZ=<81,82,...,8n> we wish to find the set of records rs' which is the

combined image/inverse—image of rs under sil:

image inv. image etc.
rs - \\\ rs’
s, S, s S,
It S P © 0o sees ° o

Fig. 20

To effect the retrieval of rs’ we specify a command, its syntax and

semanticsg:
46. Find :: Fid Sid* R-set

47.0 VaZ-Find[mk-Find(f,sZ,rs)](mk-DSD(fm,sm)) A

.1 V(f,el,re)(sm)
47, tage.‘ Find + #psp 3 DSD)

48.0 Vif,el,rs](sm) A

.1 7_,_f_ 8l=<>
o2 then res
.3 else (let ((fr,to),rel) = sm(hd el) in
-4 cases f:
.5 (fr - Vito,tl slyunton{rel(r) | r rs}J(sm),
.6 to » Vifr,tl si,{r | redom reZAreZ(r)nrst{}}](sm),
.7 T = undefined))
48. type: Fid x Sid* x R-get - ((Sid 7 SET717) 4 R-get))

Other forms of navigational retrieval can be defined. One immediate vari-

ant on the above is to include, for each arrow specification, a predicate
function which "filters" only such records in the image, or inverse image,

which satisfy some propertys

49, peP = R + Bool
50. Find pr Fid (5id x p)+ R-set

442 VDM AND OTHER SYSTEMS

51.0 V[f,spl,rs]l(sm) A
o1 if spl= <>

. 2 the rs
.3 else (let (s,p) = hd spl in
.4 if sedom sm
-5 then (let ((fr,to),rel) = sm(s) in
.6 cases f:
.7 (fr = (let rs" = union{rel(r) | rers} in
.8 let rs’ = {r | re" A p(r)} in
.9 Vi to,tl spl,rs'](sm)),
.10 to » (let rs” = {rlredom relarel(r)nrs+{}} in
.11 let rs' = {r | rers” A p(r)} in
.12 VLfr,tl spl,rs'J(sm)),
.13 I -+ undefined))
.14 else undefined)
51. type: Fid x (Sid x P)* x R-set - ((Sid p SET77) + R-set)

This last definition, incidentally, checked Ffor existence of arrows
before checking for undirected path well-formedness -- something the

previous definition assumed, but did not check!

