CHAPTER 11

STEPWISE TRANSFORMATION OF SOFTWARE
ARCHITECTURES

This chapter provides a further example of the use of a formal specifica-
tion as the basis of architecture and design. The problem chosen is that
of a file-handler and is thus close to the topic of database systems. The
stepwise development given here starts with a simple specification; the
development considers a realization on disk storage. The techniques (e.q.
data type invariants, object transformation) of chapter 10 are jllus-—
trated. One new aspect of VDM which is illuminated here is the use of a

formal specification in evolving the architecture of a system.

Thus the techniques of object and operation transformation are employed
as a means of conquering architectual specification complexities, and the
techniques of data structure invariance and object abstraction functions
are employed as a means of studying the evolving architecture, as well
as a means for proving correctness of transformation. The transformation
stages can as well be seen as exemplifying realization stages of develop-

ment, such as proven correct in chapter 10.

(The present chapter is based on [Bjdrner 81a].)

353

354

11.0
11.1
11.2

11.3

11.4
11.5

VDM AND OTHER SYSTEMS
CONTENTS

Introduction........ S e e e e e et et C ettt e ee 355
Top~Level (File Handler) Architecture..........(Stage 163 357
Second~Level (File Handler) Architecture........... et e, 359
11.2.1 File Catalogue and Page Directories... (Stage 1)....... 359
11.2.2 DiskS.uuiuniounvunnunn. ... seereseensoo.(Stage 2).... 364
11.2.3 Storage and pisk......... tereeeeenas..(Stage 3), «..365
Third-Level (File Handler) Architecture....... feses eerean 368
11.3.1 Storage and Disk File Sub-Systems..... .(Stage 4)....... 369
11.3.2 "plat" Storage and Disk...... et (stage 5)....... 374
11.3.3 Storage and Disk Space Management......(stage 6) v, 374
Summary....,.........o...,.......,...........,.........,.....e.376
Bibliography.......,..,...........................,.°...°°..s°,377

STEPWISE TRANSFORMATION OF SOFTWARE ARCHITECTURES 355

11.0 INTRODUCTION

Background

Sometimes software systems contain unnecessarily many, seemingly inde-
pendent concepts. Occasionally a large number of such concepts are, how-
ever, necessary. Their presence being required in order to cope with a
variety of "more-or~-less" related concepts. (We think, here, of such
things as functionality, efficiency, reliability, adaptability and ex-
tensibility, etc..) In all cases it is rather hard to grasp all the con-
cepts, sort them out and interrelate then properly. In many cases this
ability to dissect a software architecture into its many constituent
notions is seriously hampered by opaque presentations of their inter-—

dependencies.

Proposed Remedies

Three possibilities for "solving" the apparent problem exist. Two ex-
tremes and a "middle road". Either, not to design such multi-concept sys-—
tems at all; or, go on designing them in the old "hacker" fashion. Some-
times we shall choose the first extreme, sometimes the "middleroad" ap-

proach outlined below, but never the second "compromise".

Stepwise Development

By stepwise development of a software architecture we shall understand
the following: first a model is established which exhibits, "as abstract-
ly as deemed reasonable", the intrinsic concepts and facilities for which
the software was intended in the first place. Then this model is sub-

jected to object and/or operation transformations. We shall only illus-

trate object transformations. A sequence of such may be needed. Each
step introduces further properties and/or details; none, some or all of
which are exploited in exposing them to an external world. The order of
the steps and their nature is dictated for example by technological and/

or product-strategic considerations.

Overview of Example

Our example is that of a file handler system.

356 VDM AND OTHER SYSTEMS

1. At the top level of architecture we focus our attention on files,
file names, Pages and page names as oObjects; and the ¢reation and
erasure of files, and writing, updating, reading, and deletion of

pages. At this level files are named and consist of named pages.

core"), or background (slow access, "disk™) storage. The decision,
which is hence recorded, of eventually implementing the storing of files
and pages on disk-like devices, then predicates a need to be able to
“look~-up", reasonably fast, where, on possibly several disks, files and

Pages are stored.

2'. At the second level we therefore introduce first the notions of cat-

alogues and directories, subsequently, as a further step of develop-
arogues Z-rfectories

ment, abstractions of the notions of main storage and disks.

Catalogues eventually record disk addresses of file directories, one per
file. Directories eventually record disk addresses of pages. Our file sy~
stem, at this level has one catalogue. We think, at the level of main
storage and disks, of the One catalogue as always residing in main stor-

age, whereas all directories Are normally only stored on disks. To speed

The intention to operate on a file is then indicated by its opening, an
act" which brings a disk directory Copy into main storage. The intention
to not operate further on a file is then indicateqd by its closing, an
"act" which reverts the above copying.

2" . Hence open and close operations are introduced.
Z open £108¢€

They are file-related concepts primarily brought upon us by efficiencz
considerations., These efficiency concerns are rooted in insufficient
technologies.

Neither at the top, nor at the second level of file handler architect-
ing did we bother about the issue of reliability. We here define the
reliability of our file handler as its ability to survive crashes. By a
"crash" we restrictively mean anything which renders main storage inform-
ation (catalogue and opened directories) useless. By total T"survival"
we mean the ability to continue (some time) after a "crash" as 1if no

"crash" had occurred. (By "partial survival" we mean the ability to con-

STEPWISE TRANSFORMATION OF SOFTWARE ARCHITECTURES 357

tinue with at least a nonvoid sub-set of the files after a "crash"

with the complement set of files being clearly identified.)
3. At the third level, building upon redundancies in catalogue-, direc-

tory and page recordings, we therefore introduce notions of check-

pointing files and automatic recovery from "crashes".

11.1 TOP-LEVEL (File Handler) ARCHITECTURE (Stage 0)

Semantic Domains

Based on the immediately following English wording of what the 'state'
Domain of our top-level file handler is we "derive" informally the form-

al Domain definitions.

The sole data structure of our file handler consists of a set of uniquely
named files. Fach file consists of a set of uniquely named pages. Let fn,
Pn and PG denote the further unspecified Domains of respectively file

hames, page names, pages. Then:

]

1. Fs Fn @ FILE
2. FILE = Pn g PG

We have completed our first task: that of specifying the most important
aspects first, namely the semantic Domains. No specific invariants need
be expressed, that is:

3. tnv-FS(fs) A true

Syntactic Domains

Five kinds of operations are applicable to our top-level file handler

data: creation of new and erasure of old files, the write/update of rew/

old-, and the reading and deletion of existing, pages. FEach of these
Ooperations can be thought of as being denoted by corresponding commands
(or interface calls):

4, cmd = Crea | Eras | Put | get | Del

To create an initially empty file (of no pages) we need specify a new,

358 VOM AND OTHER SYSTEMS

hitherto unused file pame. To erase an existing file we need specify
the name of a file already in the system. To put a page into a file we
need specify the names of the file and page, and the page itself. To get
a page from a file we need specify the names of the file and page. Final-

ly to delete a page we need specify the same:

5. Crea :: Fn

5. Eras :: Fn

7. Put :: Fn Pn pg
8. Get :: Fn Pn

9, Del :: Fn pPn

No well-formedness constraints need be specified for commands, that iss
Le-wf-Cmdf e] A true.

Semantic Functions

We believe the above informal syntactic outline plus the following form-
al semantics to be sufficiently self-explanatory not to warrant the kind
of detailed annotations that we would otherwise provide:

10. type Blab-Cmd: cmd ~ (rs S (ps | pg))
10.0 EZab—Cmd[c](fs)A

.1 cases c¢:

.2 (mk~Crea(f) »feu [fe [1],

.3 mk-Eras(f) - fs \{f},

.4 mk-Put(f,p,pg) -+ fe + [f r fe(f) + [p v pgll,
.5 mk-Get(f,p) + (fe(f))(p),

.6 mk~Del(f,p) > fe+ [f » (fe(f))\[p}])

10.7 pre: pre-Elab-Cmd[c](fs)

11.0 pre~EZab—Cmd[c](fs)g

.1 casesg c:

.2 (mk-Crea(f) + f -e dom fs,

.3 mk-Eras(f) =+ f € dom fs,

.4 mk-~Put(f,p,pg) - f « dom fs,

.5 mk-Get(f,p) > ((f ¢ dom fe) A (p « dom(fs(f)))),
.6 mk-Del(f,p) * ((f e dom fs) A (p « dom(fs(f)))))

The type of pre-Elab-Cmd follows from the type of Elab-cmd:

STEPWISE TRANSFORMATION OF SOFTWARE ARCHITECTURES 359

11. type: pre-Elab-Cmd: Cmd - (FS - BOOL)

Conclusion of Top-Level Definition

We have completely specified the basic, major functions of a simple
file handler system. The abstraction is just that: we have abstracted
from any concern with how actual input of commands, including input of
pages, and of how output of pages take place. We have also abstracted
"away" considerations of what kind of diagnostics to use in case of
erroneous input -- we have only defined, in pre-Int-Cmd what we mean by
erroneous input. We have abstracted from any representation of files,
and, in fact, the entire file system. Finally, we have not been, and

shall not, in this entire example, bhe concerned with what pages are.

11.2 SECOND-LEVEL (File Handler) ARCHITECTURE (Stages 1-2-3)

We divide this, the second level specification, into three stages. First
we introduce the object notions of catalogue and directories, then the
notion of disk, and finally the object notions of storage and disk. The
single aim of this level is to introduce the operation notions of open
and close.

11.2.1 File Catalogue and Page Directories (stage 1)

Semantic Domains

We subscript now our Domain names according to the number of stage of

development. The 0'th stage (which was the top~level) gave us:
1-2. FSy = Fn g (Pn z PG)

To each file we now associate a page directory. Each directory records
where pages are stored. Directories are named, and these names are re-

corded in a catalogue.

12. FS; :: CTLG; DIRS; PGS,
13. CTLG = Fn g Dn

14. DIRS; = Dn 4 DIRy

15. PGS; = Pa g PG

16. DIRq Pn f Pa

360 VDM AND OTHER SYSTEMS

You may (justifiably) think of directories "translating"” user-oriented
pPage names into system-oriented Page addresses, and PGSy to be a disk-

like space within which all Pages of all files are allocated, Let:

Lf1 7 011 & 911,019 » g551.
fg [pgz > geg 1,
f3 o 1]

be an abstract, £Sp, file system. Its counterpart in FSy is for example:

mk-FSZ([fZ > ody,fe & dg,fz - dz 1,
Cdy » Tpgg v azq,pgq o azgl,
dg = [Py1 » ayy1,
dz » 111,
La11 v 9115019 » gy9,a5; o g211)

Domain Invariant
ZLAdthinvariant

Domain definitions (12.-16.) define too much. wNot all combinations of
catalogues, directories and pages go together. We must require (17.1)
that there is a distinct directory in DIRS; for each file catalogued
in CTLG;; that (17.2) pages addressed in PGS; are actually recorded
in directories: and that (17.3) €évery page, understood as page-address,
is described in exactly one directory (that is belongs to exactly one
file):

17.0 inv—FSZ(mk-FSZ(c,ds,ps))g
.1 (rng ¢ = dom ds)
2 Aunton{rng d | 4 « rng de} = dom pe)
.3 AVa € dom ps)(3ld « dom ds)(a € rng ds(d))

The bijections of (13.), (14.) ang (16.) already express that no two
files have the same directory, that no two directories are identical,

and that no two Page names map to the same ("physical") rage (-- by its

address) ,

Abstraction: from FS; to Fs,

Given an FS; file system we can abstract a "corresponding" FSp from it,

Abstraction (here called "retrieval") is a function:

STEPWISE TRANSFORMATION OF SOFTWARE ARCHITECTURES 361
18. type: retr-rS,: FS1~ FSy
18.0 retr-FSg(mk-FSy(e,ds,pe))p
L LD fw Upops(tde(e(f)))ip)) | pedom ds(e(f)) 1 | fedom ¢]
We can only retrieve well-formed file systems:

18.2 pre: invoFSI(mk—FSJ(c,ds,ps))

We always assume our functions to apply only to well-formed objects, that is
(18.2) is superfluous.

Injection: from F$; to FSq

Given an abstract system we can inject it into any number of "correspond-~

ing systems”. Injection is a relation.

Adequacy

We must ensure that to each abstract system there corresponds a non-triv-

ial concrete which abstracts to it
19. (VsoeFSO)(HBJEFSZ)(inv~FSJ(slja(sozretr-FSO(SJ))}

Syntactic Domains

No change to existing Domains, that is no refinements or transformations

are necessary; and no new commands, that is no extension of the Command

Domain.

Semantic Functions

We rewrite the Elab-Cmdy of section 11.1. That is: for fixed syntactic

Domains but changed semantic Domains we need re-express the semantics,
now in terms of the new semantic Domains:

20. type: Elab-Cmdy: Ccmd - (Fs; 5 (FSy; 3 (FS; | PG)))

Instead of expressing Int-Cmd; as one ‘“monolithic" function we express

it in terms of 5 sub~-functions, one for each command category:

362 VDMAND OTHER SYSTEMS

21. type: Int-Crea;: C(rea - (FS71 3 FSy)
22. type: Int-Eras;: Eras - (FS; 3 FSy)
23, type: Int-Puty: Put -~ (FS; 5 FSq1)
24. type: Val-Gety: Get =+ (FSy 3 pg)
25. type: Int-Dely: Del =+ (FSy 3 FSy)

We choose to "merge" the pre-condition checking into each function:

21.0 Int—Creaz[mk~Crea(f)](mk-F52(c,ds,ps))é
.1 if fedom ¢

.2 then undefined
.3 else (let deDn - dom ds in
.4 mk—F31(cu[ﬁ+d],dsu[d¢[]],p3))

22, Int-Erasz[mk—Eras(f)](mk-FSZ(c,ds,ps))é
.1 if fedom e

) then mk—FSZ(c\{f},ds\{ct(f)},ps\fgg(ds(c(f))))
.3 else undefined
23.0 Int-Puty[mk-Put(f, Pspg)I(mk-FSqy(c,ds,ps) JA
.1 if fedom ¢
.2 then if pedom(ds(e(f)))
.3 then mk~FSy(e,ds,ps+ [(ds(c(f)))(p)Hpg])
.4 else (let a € Pq - dom ps in
.5 let de' = de+le(f)sdsle(f))upral,
.6 ps' = psu Larpgl in
.7 mk-FSq(c,de’,ps'))
.8 else undefined
24. VaZ—Getl[mk-Get(f,P)](mk—FSZ (c,ds,ps))p

then pelde(e(f)))(p))

0
.1 if (f e dom e)alp « dom(ds(c(f))))
2
3 else undefined

25.0 IntmDeZ[mk-DeZ(f,p)](mk~F52(c,ds,ps))g

‘1 if (f e dome) n (p e dom (dete(f))))
02 then mk-F31(c,ds+[c(f)W(ds{c(f)))\{p}J,
.3 pS\{(ds(c(f)))(p)})

.4 else undefined

STEPWISE TRANSFORMATION OF SOFTWARE ARCHITECTURES 363

And finallvy:

20.0 Elab-Cmd;lel(fsy) A

.1 (is-Create) - Int-Crealec](fs;),

.2 te~-FEras(e) - Int-Erasjleci(fsq),

.3 t8~Put(ec) Int-Putylel(fsq),

-4 is-Get(c) ~ Val-Getjlc](fsq),

.5 ts-Del(c) ~ Int-Dellc](fs;))
Correctness

Correctness of the above realization of EZab-CmdU in terms of Elab-Cmd
with respect to the realization of FSp in terms of FS; is expressed by

means of the abstraction function:

26. type: retr-RES;: (FS; | PG) = (FS; | Pg)
26.0 retr-RESy(r) A
.1 (18=FSy(7r) ~ retr-FS)(r),T-r)
and is:
27.0 thmy (Vee Cmd)
.1 (VfepeFSy)
<2

(Vfe; ¢ FSq)
(((inv-FS1(fs7)A retr-FSg(fe;)=Ffsg)
A pre-Elab-Cmd[e](fsy))

o

D W

(retr—RESI(EZab~Cmd2[c](f33)) = EZab—Cmdz[c](fSO)))

We do not prove that the above theorem holds for our first stage realiza-

tion.

Automatic Operation Transformation

In fact, we claim, without demonstrating it in this book, that given the
following "input": FS;, inv-FSi, Elab~0mdi, FSt41 inv-FSi+Z , retr-
-FS;, and thm; (see above), one can devise automatic means for transform-
ing semantic functions Flab-Cmd; into Elab-Cmd;,7. Since the trans-
formed result has to satisfy rather "narrow" constraints, there are not
very many choices of implementations left free,

364 VDM AND OTHER SYSTEMS

11.2.2 Disks (Stage 2)
Semantic Domainsg

We are given:

12. Fsy f2 CTLGy DIRS, PGS,
13. CTLG; = Fn # Dn

14, DIRS; = p»u it DIRy

15, PGS; = pqg w PG

16. DIRy = ppy g Pa

The object transformation of thisg stage involves the "gathering" of di-
rectories ang bages, that is of the above DIRS; and PGSy components of
FS; into one component, called DSK2 of FSq. DIRSI and PGS; are mod-
elled as maps, and DSKg will ‘thence be a "merged™ Domain of simiilar
maps. Where before Mmap domains were directory names, Tespectively page
addresses, the "merged" (or "gathered") Domain will only have addresses

in its map domain. We think of DSKy as modelling “"actual™ disks:

28. Fsy :: crpe, DSK

29. CTLGy = FPn g Adpe

30. DSKy = Adp g (DIRy | Pg)
31. DIRy = py ft Adr

Here addresses Adr (like file names, #n, and bage names, Pn, and pages,
PG) are further undefined,

Domain Invariant
——cin ihvariant

Again the Domain definitions (28.-31.) define too much. In addition to
the invariants ["carried over" from the very similar definitions of Fs5,1,
we must (first) make sure that directory addresses (listed in the cata-
logue) really denote directories on the disk, respectively that page ad-
dresses listed in directories really denote pPages on the disk. oOnce this
is established we can retrieve an FS; object from such a "tentatively

well~formed" FSg object, and this abstracted object must satisfy the
earlier stated constraint:

32.0 inv~F32(f32) A (wf~Aeren(fsz) A inv~FSz(retrmFSI(f32)))

STEPWISE TRANSFORMATION OF SOFTWARE ARCHITECTURES 365

33. type: wf-AdrDen: FS9 -+ BOOL
33.0 wf-AdrDen(mk-FSge(2,d)) &
.1 (Vaerng c)(is-DIRg(d(a)) A (va’' « rng(d(a)))(is-PG(d(a')))

Abstraction from FS9 to FSq

34.0 retr-FSy(mk-FSg(e,d)) A
.1 mk~FSy(e, U aw d(a) | a e rnge 1 ,d \ rng ¢)

Here we now have assumed Adr = Dn | Pa, that is that:

33.0 wf-AdrDen(mk-FSy(e,d)) A
.1 (Ya ¢ rng ¢)

.2 ((is-Dn(a) a is-DIRg(d(a))).

.3 A (Ya' e rng(d(a)))

.4 (ie-Pa(a') A is-PG(d(a'))))
and:

34.2 pre-retr-FS;(fey) A wf-AdrDen(fsy)

We leave to the reader the rather straightforward transcription of ade-

quacy, semantic functions and correctness theorem.

11.2.3 Storage and Disk (Stage 3)

We are given (28.-31.). We now face the reality of storages and disks.
By a storage we shall understand a memory medium access to whose inform-
ation is orders of magnitude faster than to information on what we shall
then call disks! As was evident from e.g. lines 23.3 and 24.2 access to
pages (on disk) goes via catalogue and directories, the latter also on
disk. Thus two disk accesses per page access. [In this discussion we
think of the catalogue as residing in storage.] To cut down on disk
accesses we therefore decide to copy into storage the directories of
those files whose pages we wish to access. In the resulting model all
pages will still be thought of as stored only on the disk.

Syntactic Domains

In order to advise the system of an intent to begin and end operations

on pages we introduce two new commands: open and close:

366 VDMAND OTHER SYSTEMS

35. Cmdg = cmdy | open | Close
36. Open :: Fn
37. Close :: Fn

(The informal semantics of those are basically to bring a directory copy
into storage, respectively to over-write the disk Copy with the storage

Copy, subsequently deleting this latter copy.)

Semantic Domains

Now both storage and disk have directories:

38. F;S'S e STGg DSK3
39. STGz »: CTLGy (Fn m DIRg)
40. DsKz = Dsk,

which together with (29.,30.,32.) completely specifies the 3rd stage (of
the 2nd development level), Observe our decision to let all, so-called
opened files be represented in storage by directories identified by file
names whereas directories on disk are identified by directory names,
such as listed in the catalogue, Now we access directories directly,
by-passing the catalogue. New directory entries (23.5) etc. are only

to be recorded in the opened, that is storage, directories —- hence the
copying-back upon closing!

Domain Invariants

As in the previous stage we express invariance in terms of an auxiliary
function and the invariance of the abstraction of this stage of concre-
tization retrieved back to the previous stage. The auxiliary function

guarantees that retrieval isg meaningful.
41.0 inv—FSs(f53) A (wf—SthskOUerlap(fsg) A inv-FSZ(retr~F32(f83)))

The wf-SthskOverZap checks that only catalogued files are opened (42.1)
and that identical pPage names of opened files of storage and disk direc-
tory copies map to identical addresses (42.3):

42.0 wf—SthskOverZap(mk-FSg(mk~STGg(c,ods),dsk)) A
.1 ((domodscdome)

«2 A(Vfedome) ((ods(Ff) | dom(dsk(e(f))) = dsk(e(f)) | dom(ods(f))))

STEPWISE TRANSFORMATION OF SOFTWARE ARCHITECTURES 367

where the last line expresses the mutual restriction of file directories

in storage (to the left) and on disk (to the right) to common domains.

Abstraction: from FSz to FSq:

43.0 retrmFSZ(mk—FS$(mk—STGS(c,ods),dsk)) A
.1 mk-FSg(c,dsk + [e(f) » ods(f) | f e ods 1)

Semantic Functions

In general:

44. type: Elab-Cmdg: Cmdz -+ (FSz 3 FSz)
and in specific:

45. type: Int-Open: Open - (FSz 3 FSz)
46. type: Int-Close: Close —» (FSz 3 FSz)

45.0 Int-Openglmk-Open(f)](mk-FSz(mk-STG3(c,ds),dsk)) 4
.1 if (f e dom ¢) A (f -~ ¢ dom ds)
) then mk~F63(mk—STG3(e,ds v [f » dsk(e(f))]),dsk)
.3 else undefined

46.0 Int-CZoseg[mk—Close(f)](mk-FSs(mk—STGg(c,ds),dsk)) A
.1 if (f € dom e¢) A (f € dom ds)
.2 then mk-FSg(mk-STGz(e,ds\{f}),dsk + [e(f) » de(f) 1)
.3 else undefined

47.0 Int—Creag[mk-Crea(f)](mk-FSS(mk~ST03(c,ds),dsk)) A
.1 if f e dom e
.2 then undefined
.3 else (let acAdr - dom dsk in
.4 mk-FSz(mk-STGz(c v [f » al,de),dsk v [a o £11))

Creating a file does not "automatically" open it. If it did then line
(47.4) should read: mk-FSz(mk-STGz(c v [f m L11),dsk v [a» [17)

48.0 Int-Erasg[mk~Crea(f)J(mk-F53(mk-STGg(c,de),dsk)) A
.1 if (f e dom ¢) A (f - ¢ dom ds)

.2 then mk-FSg(mk-STGz(c\(f},ds),dsk \ {e(f)} u rng(dsk(e(f))))
.3 elge undefined

368 VDM AND OTHER SYSTEMS

We are permitted only to erase closed files.

49,0 Int~Put3[mk-Put(f,g,pg)](mk—F83(mk~ST03(c,ds),dsk)) A
.1 tf (f ¢ dom e) » (f ¢ dom ds)

.2 then if p ¢ dom(de(f))

.3 then mk—F33(mk—STGgfc,ds),dsk+[{ds(f))(p) = pgl)
<4 else (let acAdr - dom dsk in

.5 let de' = ds+{f » ds(f) Ip » 811,

.6 dek' = dsk u Tqg pgll in

.7 mk—FS3(mk—STGg(c,ds’),dsk'))

.8 else undefined

50.0 VaZ—Get3[mk—Get(f,P)](mk~F33(mk-STGg(c,ds),dsk)) A
.1 If (f e dom ¢) A (f ¢ dom ds) A (p « dom (ds(f)))

.2 then dsk((de(f))(p))
.3 else undefined

51.0 Int-DeZS[mk-DeZ(f,P)](mk~F83(mk—STGg(c,ds),dsk}) Iy
.1 g’_(fegl_gln_c}A(feciq_rgds)/\(pe@ln_(ds(f}))

.2 then mk-FSs(mk-ST03(c,ds+[ﬁ+ds(f)\{p}J),dsk\{(ds(f))(p)})
.3 else undefined

Conclusion to Second-Level Definition

Only after 3 number of stages of development, in which an abstract, im-
plementation unbiased architecture has been gradually biased towards a
particular realization, did we introduce the (user) interface notions of
open and close. We see these more as concessions to current technologic-
al constraints than as representing user-meaningful intrinsic notions.
No decision has vet been made, by the models up to now, whether open
and close are user- or System-specified commands. It ig perfectly pos-
sible for a system to automatically issue the operations in response to
some analysis of user processes.

11.3 THIRD-LEVEIL (File-Handler) ARCHITECTURE (Stages 4-5-¢)

The major aim of this level is to render the file handler architecture
more robust to crashes, [Robustness 1is a measure of the reliability no-
tion introduced in section 11.0.] our solution to the problem of in-

creased recoverability is to introduce two means, that is two notions, of

STEPWISE TRANSFORMATION OF SOFTWARE ARCHITECTURES 369

accessing pages (on disk). One access ‘path' goes from the storage
catalogue via the storage directory -- as before -- to the disk pages.
Another, "redundant", access ‘path' is then introduced. It goes from a

disk’ copy of the storage catalogue via directories also residing on disk
to disk pages. Thus we shall "maintain" two kinds of file subsystems,
but, as a new idea, not necessarily each others images. At any one time
the two file sub-systems are to be well-formed, but not necessarily
retrievable to the same abstract file system. We shall generally permit
for example writes, updates and deletes only to be recorded in storage
directories. We shall furthermore require that updates are treated as
writes. Given now a situation where the storage and the disk file sub-
systems are "equivalent", a sequence of writes, updates and deletes will
then render the twd different —-- but with the ability that should a
crash occur, then the disk sub-system can be used to replace the storage
sub-system. Since we do not wish to backup too far into the past we
introduce an operation which applies to files and renders the coples of
directory and all pages for that file in storage and on disk the same,
that is "equivalent". It does so by copying the storage copies onto the

disk, overriding its information.

This level will consist of three stages (4-5-6) of transformation. Stage
4 introduces all the above-hinted and user-oriented notions. Stages 5
and 6 transform the model of stage 4 into successively more implemen-—

tation-oriented models.

11.3.1 Storage and Disk File Sub-Systems (stage 4)

Our departure point is (29.-31., 35.-51).

Semantic Domains

We repeat (29.-31., 38.-40.)

52. F3z r: STGz DSKy (38.)
53. 816z :: CTLGy (Fn % DIRy) (39.)
54. CTLGy = Fn g Adr (29.)
55. DIRy = Pn g Adr (31.)
56. DSKyg = Adr g (DIRy | PG) (40.,30.)

The "only" change (to the Domain equations) is in (56.)

370 VDM AND OTHER SYSTEMS

57. FS, s: STG3 DSk,
58. DSKy :: CTLG, DSK,

Domain Invariant

Storage directories may denote pages not denoted by disk directories.
Not all disk pages need be denoted. Deletion of pages are only record-
ed in storage directories, that is no deletion of disk bages take place.

There are two 'consistent' file sub-system notions:

59.0 inv-FS4(mk-FS,(s,d)) A
.1 (consistent-StgSS(s,d) a consistent-DskSS(d))

Storage sub-system 'consistency speaks of invariance of the file-system
"rooted" in storage catalogue and directories. Disk sub-system 'consist-
ency' speaks of invariance of the file-system "rooted” in disk catalogue
and disk directories. We express both in terms of the invariance of FSg
abstractions of the file-subsystems. We can only abstract the storage
sub-system if opened files are all catalogued (60.1).

60. type: consistent-Stgss: STGz DSK - BOOL
61. type: consistent-DskSS: DSK -~ BOOL

60.0 consistent—SthS(mk~STG3(c,d),mk—DSK4(,dsk)) A
.1 (dom d < dom e) A inv—FSg(mk—FSZ(e,SabsDSKg(c,d,dsk)))

We abstract to FSg file systems since all we are interested in is ac-
cess paths from catalogue via directories to pages irrespective of the
notions of opened/closed.

62. type: SabsDSKy: CTLGy (Fn g DIRy) DSKy S DSK,
62.0 SabsDSKXg(e,d,dsk) A

.1 (let asg = Saddre(e,d,dsk) in

-2 (dsk | asg + Le(f)nd(f)|fedom d})

63.0 Saddre(c,d,dsk) A

.1 (let das = rng e,

.2 opas = union{rng dirldirerng d},

.3 epas = gﬂigﬁ{zﬁg(dsk(a))|ae{c(f)|feéggc\éggd}}£ﬁ
.4 dasvopasuepas)

63. type: CTLGy (Fn 4y DIRy) DSKy 3 Addv-set

STEPWISE TRANSFORMATION OF SOFTWARE ARCHITECTURES 371

The idea of SabsDSK2 is to retrieve only those closed directories on
disk which are accessible from the storage catalogue, and only those
pages which are accessible via those closed directories and via the open-—
ed (storage) directories, and to extend the resulting DSK, object with
the opened storage directories. Where these before were denoted by file
names, they are now, on disk, denoted by the directory name recorded in
the storage catalogue. das stand for directory addresses of all storage-~
accessible opened and closed directories, opas (cpas) for addresses of
all most recently written and updated pages of all such opened (such
closed) files. Since we shall extract these addresses repeatedly we have

"invented" an auxiliary function, Saddre. for that purpose.

64.0 DabsDSKg(c,dsk) A
.1 (let asq = Daddre(e,dsk) in
.2 (dek | asg))

65.0 Daddre(e,dsk) A
.1 (let das = rng ¢ in
.2 let pas = unionlrng(dsk(a))laedas} in
.3 dasupas)

Abstraction: from FS; to FSg

Two kinds of abstractions are possible: one Ffrom the storage "rooted"
file sub-system, and another based on three disk "“rooted" file sub-

system:

66.0 retr~FSg(mk—FS4(mk-STGg(a,d),mk—DSK4(,dsk))) A
.1 mk-FSz(mk~STGz(c,d),dsk|Saddrs(ec,d,dsk))

67.0 retr—F53D(mk—FS4(,mk—DSK4(c,dsk))) A
.1 mk-FSg(mk-STG3(e,L]),dsk|paddr(ec,dsk))

Garbage Collection

As is evident from the informal and (subsequent) formal description of
write, update and delete commands we shall witness file systems with
both disk directories and pages which are denoted by no catalogue, re-
spectively no or only such inaccessible ("dead”) directories. Garbage-
collection then is an operation which removes all such "dead" directo-

ries and all such pages:

372 VDM AND OTHER SYSTEMS
68, type: Garb-Coll: FSy 5 FSy

68.0 Garb—CoZZ(mk-FS4(mk-STGg(sc,d),mk—DSK4(dc,dsk})) A

. (let asg = Saddrs(sc,d,dsk),
o2 asq = Daddre(de,dsk) in

«3 mk~FS4(mk-STGg(sc,d),mk—DSK4(da,dskl(asguasd))))

Syntactic Domains == and Informal Semantics

When a crash occurs one needs, in order to recover, to "roll-back" to a
not too far distant past consistent state -- namely the disk sub-system
current at the time of the crash. To avoid the "distance" between the
time of the crash and the previous time when the subsystems retreived
to the same abstract FSz system being "too big", one needs, "now and
then", to bring the disk sub-system to reflect the state of the storage
sub-system. For that purpose a so-called check-point command is intro-
duced. It applies to individual, Oopened, file and bring the storage and
disk catalogue entries for that file to both denote the same disk direc-
tory which is to be that of the Opened file. A crash can be thought of
as a command (issued by some Demon nice enough only to issue it properly
in-between the "execution" of Other commands). Ttg first effect is to
"blank-out" all storage information. Its second effect is then to restore
the storage sub-system to that of the disk sub-system.

69. (md, = Cmdz | Check | crash
70. Cheek :: pyn
7. Crash ;. {)

Semantic Functions

72. type: Elab-Cmdy: Cmdg > (£S4 3 (Psy | Pg))

73.0 Int~0rea4[mk-0rea(f)](mk-FS4(mk-STG3(sc,d),mk-DSK4(dc,dsk))) y

.1 tf f ¢ dom se
.2 then undefined

3 else (let ac4dr - dom dsk in
.4 mk-FS4(mk-STGg(scu[f > a],d},mknDSK4(dc,dsku[> [11)))

74.0 Int—Eras[mk-Eras(f)](mk—FS4(mk~STG3(sc,d),dsk4)} Iy
.1 tf (fedom gc) A (f-edom d)
.2 then mk-Fs4(mk~5T03(sc\{f},d),dsk4)

.3 else undefined

STEPWISE TRANSFORMATION OF SOFTWARE ARCHITECTURES

75.0 Int—Open4[mk~Open(f)](mk—FS4(mk«STGS(sa,d),mk-DSK4(dc,dsk})) A
.1 if (fedom sc) (f-edom d)
) Eﬁgg.mk~FS4(mk-STGs(sc,du[ﬁ»dsk(sc(f))]),
.3 mk~DSK 4(de,dsk))
.4 else undefined

76.0 Int—CZose[mk—CZose(f)](mk~FS4(mk~STGg(sc,d),mk_DSK4(da,dsk))) A
.1 if (fedom gc) a (fedom d)

.2 then (let acAdr - dom dek in

.3 mk-FS 4 (mk-STG3(sc+[firal,d\{(f}),
.4 mk-DSKy(de,dskula>d(f)])))
.5 else undefined

77.0 Int-Put4[mk—Put(f,P,Pg)](mk—FS4(mk—STGg(sc,d),mk~DSK4(dc,dsk))) s
.1 if (fedom sc) A (fedom d)
.2 then (let aeddr - dom dsk in
.3 mk—FS4(mk-STG$(sc,d+[ﬁ4d(f)+[p+a]]),
.4 mk~DSK4 (de,dskularpgl)))
.5 else undefined

78.0 Int-Del4[mk~DeZ(f,p)](mkmFS4(mk~STG3(3c,d),dsk4)) A
.1 if fedom sc a fedom d n pedom(d(f))
.2 then mk-FS g (mk~STGz(sc,d+[fird(fI\{p}1),dsky)
.3 else undefined

79.0 Int-Check4[mk—Check(f)](mk~FS4(mk—STGg(sc,d),mk-DSX4(dc,dsk))) A
.1 if (fedom sec) a (fedom d)

.2 then (let aecddr - dom dsk in

.3 mk-FSy(mk-STGz(se+firal,d),

.4 mk~DSK g4 (de+{firal, dskulard(£f)1)))
.5 else undefined

80.0 Int—Crash4[mk—Crash()](mk-FS4(,mk—DSK4(dc,dsk))) A
.1 mk-FSg(mk-STGz(de,U]),mk-DSKy(de,dsk))

If necessary one can garbage collect after crashes:

81.0 Int-Crash'ylcrash](fsy) A
.1 Garb-CoZZ(Int-Crash4[crash](fs4))

374 VDM AND OTHER SYSTEMS

11.3.2 "Flat" Storage and Disk (Stage 5)

Semantic Domains

Usually there is no "cell-space" distinction in storage between the ca-
talogue and the collection of opened directories; and similarly: there
is usually no "sector-space" distinction on disk(s) between the disk ca-
talogue, on one hand, and disk directories and pages, on the other hand
—— such as seemingly implied by Domain equations (53.), respectively
(58.). We assume storage to be addressed say in “chunks" comparable to
catalogues and directories; and disks addressed in "chunks™ comparable
to catalogues, directories and pages. We let the address space, REF,
of storage have MASTER as a distinguished element, and address space,
REF, of disk have COPY as a distinguished element. MASTER denotes the
former CTLGy component of STGz and COPY the former CTLGo component of
DSK4. The storage catalogue record disk and storage addresses of opened
files directories, but only disk addresses of closed files directories.
The disk catalogue "copy" record only disk addresses of file directories.

The storage catalogue records the disk address of its counterpart, the
disk catalogue.

82. REF = MASTER | Ref

83. 4DR = COPY | adr

84. FS; f: STGs DSKs

85. STGs = (MASTER @ SCTLGs) u (Ref @ DIRgs)

86. DSKs = (COPY & DCTLG) u (4dr ¢ DIRs | Pg))
87. SCTLGs = (MASTER 4 COPY) U (Fn & Dadr)

88. DCTLG; = (CTLG ¢ (MASTER]|COPY)) U (Fn & Adr)

89. Dpadr = (ddr [TRef])

Etcetera

We leave it to the reader to complete this stages' invariant, abstraction
and semantic functions.

11.3.3 Storage and Disk Space Management (stage 6)

Semantic Domains

Usually both storage and disk(s) represent 1imited resources in the sense

of not permitting an infinite, but only a finite, amount of "space" for

STEPWISE TRANSFORMATION OF SOFTWARE ARCHITECTURES 375

keeping catalogues, directories and pages. Our (map-based) models so far
have assumed indefinitely sized such spaces. The aim of this last stage
of object transformation is to introduce the notion of storage and disk

gpace management. We assume therefore a limited amount of space both
in storage and on disk(s). Instead of always being able to fetch new
disk addresses (see for example (73.3), (76.2) and (77.2)) so-called free

lists of allocatable sub-spaces is maintained, both for storage and for
disk(s). We also assume that each such subspace is adequate and reason-
ably sized for both directories and pages —-- these are the only quanti-
ties to be allocated and freed. The free lists are therefore modelled
as sets of storage references respectively disk addresses not allocated,

The quotation FREE denotes these lists:

90. FSg :: STGs DSKg
91. STGg = STGs y (FREE g Ref-set)
92. DSKg = DSKg u (FREE ¢ Adr-set)

Domain Invariant

93.0 inv—FSG(mk~F36(stg,disk)) A
.1 (FREE ¢ dom stg) a (stg(FREE) n dom stg

) AFREE ¢ dom dsk) a (dsk (FREE) n dom dsk

3 A Inv-FSg(mk-FSg(stqg\{FREE}, dsk\ {FREE}))

{1)
y

If

I

Semantic Functions

One illustration is sufficient to illuminate the idea:

94.90 Int—Creag[mk—Crea(f)](mk—F56(stg,dsk}) A
.1 1f f ¢ dom(stg(MASTER))

.2 then undefined

.3 else if dek(FREE) = {}

.4 then undefined

.5 else (let a ¢ dsk (FREE) in

.6 mk-FSg(stg+T MASTER > Stg(MASTER)+Lf = (a,ni1)]],
.7 dskula > [JJ+[FREE » dsk (FREE)\{a}]))

Conclusion to Third-Level Definition

It turned out, perhaps somewhat surprisingly, that it was not too cumber-

some to enrich our architecture to first embody the user-oriented aspects

376 VDM AND OTHER SYSTEMS

of reliability, recoverability, checkpointing and garbage collection;
and then to turn it, some would think, radically, in the direction of
a rather straightforward implementation.

11.4 SUMMARY

There remains to implement the resulting architecture. But since those
(many) stages are not the concern of this chapter we shall leave it out!
The concern, instead, of this chapter was to advocate, and show through
a reasonably realistic example, the idea, respectively feasibility, of
stepwise transformation of software architectures. We remind the reader
of our remarks of the first three subsections of section 11.0. The con-

clusions we draw from the example are the following:

(1) It is desirable to study the architecture of what one is about to
implement. Once implemented the product, whatever it is, will have
great impact on users and/or systems. Considering the enormity of
most such impacts, the intellectual, human and economic expend-
itures to be distributed over the "life-time" of the product, it is

quite reasonable to spend far more time on studying the archi-
tecture.

(2) We say that ‘"we study the architecture", By that we mean that the
techniques of writing down, or formulating, Domain invariants and
Domain abstractions (retrievals), besides being required in correct-
ness proofs, also play an indispensable r&le in clarifying and

adjusting the architecture proposal.

(3) We can demonstrate that spending increased resources on "paper-
work", that is on architecture proposals formulated as exemplified
is more advantageous than binding oneself to prototype implementa-
tions being disturbed by realization aspects, most often of the
kind: "How do I program my way around ‘this or that' host system
peculiarity which I know will not be present in the actual system"”,
We are all too often rushing into implementation before having
properly understood our objectives.

(4) It is possible, as demonstrated, to conquer complexity through de-
composition. But it is a developmental decowposition represented

by "approximation". First we approximate what we consider most

STEPWISE TRANSFORMATION OF SOFTWARE ARCHITECTURES 377

important. In other examples than the one shown, reliability could
be considered most important, and probably should have lead to a
rather different sequence of architecture transformations. What we
have shown is the kind of techniques used in stepwise architecture

transformation.

11.5 BIBLIOGRAPHY

The incentive to provide a formal model of specifically the file handler
illustrated in this chapter came from J.R.Abrial [Abrial 80*(4)]. aAbrial
acknowledges C.A.R.Hoare. The system modelled ig believed to be that of
086 [Stoy 72ab]. The model in [abrial 80%*(4)] introduces almost all

notions in a first stage.

