CHAPTER 10

PROGRAM DESIGN BY DATA REFINEMENT

The case is made above for studying languages and their implementations.
There is, however, a large body of material on program development relat-
ing to other application areas. This material frequently uses specifica-
tion by pre-/post-conditions and abstract data types; the related design
techniques are Jjustified by rules about control constructs and data
refinement. This chapter exemplifies the relevant parts of VDM. Special
emphasis is put on the refinement of abstract data types to machine re-
presentations since this is the activity which is more relevant to the

early stages of program development.

In this chapter, modules are isolated and developed separately. This fo-
cusses on a different area of VDM from that considered in earlier parts.
So far attention has been on the order of actions as fixed by combina-
tors; here the concern is with the individual actions. Clearly, both
aspects wmust be considered in a development method.

The example considered is the access to data via keys. This is a problem
which is of great importance to many computer applications and which re-
lates to the topic of databases discussed later in this part of the book.
The material here is derived from [Fielding 80al]. Full details of the
"Rigorous Approach" to software developments are given in [Jones 80a] and
overviews are available in [Jones 81b, Stoy 8la]l. Another interesting ap-
plication of this material is given in a recent UK Department of Industry
survey of Program Design Methods in which VDM is applied to the defini-
tion of KAPSE (Kernel Ada Support FEnvironment) (see also [Clemmensen
82al).

323

324 VDM AND OTHER SYSTEMS

CONTENTS

10.1 Introduction..ﬁa.......,..g=...............Qn...,.a..n..ee....e°325
10.2 The Rigorous Method of Specification and Design.................32¢6
10.3 B-Tree Overview.................

I K

teesecaeass..,338
10.5 Second Representation..........,...................,o...........349

10.4 ¥First Representation.............................a

10.6 Further Development......................... teresencssesso35]

PROGRAM DESIGN BY DATA REFINEMENT 325

10.1 INTRODUCTION

Map data objects are used repeatedly in the specifications of systems.
The retrieval of information via a key is also a widespread data proces-
sing problem. There are a large number of established methods to imple-
ment such maps (e.g. hashing). In this chapter both binary and, so-
called, B-trees are developed as representations of abstract maps. These
designs are given as examples of the development method rather than in

an attempt to contribute new algorithms.

A binary tree can contain one key at each node (data may, optionally, be
stored also in the node). The simplest update algorithms do not result
in a balanced tree. A B-tree can contain different numbers of keys in
different nodes. The number must, however, lie between bounds m (the
"order" of the tree) and 2%*m. Furthermore, all "leaves" of a B-tree oc-
cur at the same depth. Algorithms exist for insertion and deletion which
ensure that the tree remains balanced. The particular type of tree con-
sidered here is known as a Bplus-tree. It has the additional property

that it can provide sequential access as well as random access via key.

The rigorous method of specification and development is described with
the aid of the simpler problem of representing abstract maps as binary
trees. This example enables the entire refinement process, from abstract

specification down to corresponding program code, to be illustrated.

The B-tree development starts with the same abstract specification of a
map from keys to data, with operations defined for finding, inserting and
deleting a key. Then, two levels of refinement follow, which represent
a map as a tree structure and have corresponding operations which model
the operations of the initial specification. The first of these levels
represents a tree as a set of nested sets, with the leaves of the tree
consisting of mappings from keys to data. The second level represents
the tree by using lists - each intermediate node consisting of an ordered

list of keys and a list of nodes.

Each stage of the refinement is related to the preceding stage by a re-
trieve function and is shown to be correct with respect to the preceding
stage in accordance with the conditions for the refinement of data types
and operations given in [Jones 80a] and summarized in Section 2. No code
is provided here for B-trees. A Pascal program is given in full detail
in [Fielding 80a].

326 VDM AND OTHER SYSTEMS

10.2 THE RIGOROUS METHOD OF SPECIFICATION AND DESIGN

In the "rigorous method", a specification is written as a constructive
specification of a data type. Development can then proceed either by
operation decomposition Oor by data refinement. What 1is described below
is the terminology and notation used 1in "constructive specification”

and development by "data refinement".

A program is considered to be an Operation {or Operations) on a "gtate™
of a particular class. An “operation” can change the values of the com-
ponents, that comprise a state, but cannot alter its structure. (The no-

tation for operations etc. has been changed from the original in order
to fit the current context.)

In order to specify a bProgram, a class of states must be defined. It
is best to design the Structure of the states by choosing a data type
which matches the problem as closely as possible. Such a data type 1is
one which probably cannot be implemented directly, and is known as an
"abstract data type" - it ig considered to be characterized by its oper-
ations. The notation used in defining states is "abstract syntax" (for a

description see Chapter 2). Aanp example of a state description igs

Mkd = Key =» Data

{In contrast, a data type could be defined "implicitly", by using axioms
to relate itg operations to each other. The "constructive" approach,
which is used here, specifies the effects of the Ooperations 1in terms
of the underlying abstract state.)

An operation is specified by three clauses, in the following format:

Y. 0oP: A1 x A2 X oo X AN => RI X R2 x ... X Rm

A class of states is associated with a group of operations. The types

of any arquments accepted and results produced are shown explicitly.

2. pre-0P: State x 47 x 42 X «.. X An -+ Bool

PROGRAM DESIGN BY DATA REFINEMENT 397

This is a predicate which specifies over what subset of the class of

states the operation should work.
3. post-0P: StatexAIxA2x...xAnxStatexR]I xR X...xRn - Bool

This is a predicate which defines the required relationship between the

initial and final states. Examples of operation specifications are:
FIND: Key => Data
pre-FIND(m,k) kedomm

A
post-FIND(m,k,m',d) A m'=m A d=m(k)

(This operation works on the states shown above (Mkd) and returns the

data item associated with the given key.)

INSERT: Key x Data =>

pre-INSERT (m,k,d) A -(kedomm)
post-INSERT(m,k,d,m") A m'=mulk =» d]

DELETE: Key =>
pre-DELETE (m,k) A kedomm
post=DELETE (m,k,m') A m'=m\{k}

Notice that the pre~conditions define these operations to be partial.
Subsequent uses of post-conditions show how they can be used to define a

range of valid results.

The state of a specification is chosen to be as abstract as possible pro-
viding it can be used to describe the required operations. The choice
of a map (Mkd) satisfies this criterion. Assuming that the implementa-
tion language does not support such maps, development must now proceed
by "data refinement". That 1is, a 1less abstract "representation" is
chosen and new operations are defined in terms of the more concrete ob-
jects. Precise criteria are laid down for the correctness of such steps.

Refinement may take place in several steps.

(The refinement process, like other "top-down" methods should be seen as
providing a structure for documentation rather than an order of thought.

One particular area where a designer may need to backtrack is in the
choice of "data type invariants".)

328 VDM AND OTHER SYSTEMS

One possible representation for Mkd is binary trees. If a tree is not
empty, it consists of a node which contains a key, the associated data

and two trees (either or both of which may be nil). Thus:

Bintree = [Binnode]

Binnode :: s-lt:Bintree s~k:Xey s-d:Data s-rt:Bintree
One criterion for a good specification is the minimization of extra well-
formedness conditions on the states. In [Jones 80a] these are referred to
as "data type invariants”. The definition of Mkd is ideal in that there
is no need for a data type invariant; it js typical of representations

that the invariants become increasingly complex. Here Bintree requires an
ordered keys are considered "valid":

invnd: Binnode + Bool
invnd(mk-Binnode(Zt,k,d,rt)) Iy
(vlkecollkeys(lt))(lk<k) A (kaecoZZkeys(rt))(k<rk)

collkeys: Bintree =+ Key-set
collkeys(i) A
if t=nil then {}

else collkeys(s-1t(t)) y ls-k(t)} u collkeys(s-rt(t))

The set Bintree is now considered to contain only objects all of whose
nodes are valid with respect to inwvnd.

The need to record a data type invariant arises because, although it may
be evident from the Operations, it is required explicitly in later devel-
opment correctness proofs and will also prevent errors in future altera-
tions to the specification. Each operation must be shown to preserve any

data type invarijiant which might exist. The correctness condition for

"preservation of validity" is:
(VseVaZids)(pre—OP(s)args) A post-0P(s,args,s',res) 8'eValids)

Since, in the specification mkd has no data type invariant, this is ob-
vious for the operations FIND, INSERT and DELETE.

A "retrieve function® relates a representation to its abstraction and is

PROGRAM DESIGN BY DATA REFINEMENT 399

R

the basis for data refinement proofs. Objects of a representation may
contain more information than those of the abstraction and so a retrieve
function operates on a state of the representation and retrieves the nec-

essary information for the corresponding state in the abstraction.
The retrieve function for binary trees is:

retr: Bintree - Mkd
retr(n) A if n=nil then []
else (let mk-Binnode(lt,k,d,rt) = n in

merge([k » dl,retr(lt),retr(rt)))

Having established the connection between the abstraction and the repre-
sentation, the correctness of the latter can be considered. It is re-
quired that the retrieve function be defined on all valid (representa-
tion) states. In the case of Bintree, invnd ensures that the maps to be
merged have disjoint domains and thus retr is total over valid binary
trees. A more formal proof is given in [Fielding 80a] by showing by

(structural) induction that:
dom retr(t) = collkeys(t)

The second correctness condition on the data type itself shows that
there exists at least one (valid) representation for each (valid) ab-

stract object; there may exist more than one. For the problem in hand

this becomes:

(VmeMkd) (IteBintree) (retr(t)=m)
A formal proof by induction on domm is given in [Fielding 80a].
Having checked the representation itself, the new operations which work
on the representation must be considered. The operation equivalent to
FIND is:

FINDBIN: Key => Data

pre~FINDBIN(t,k) kecollkeys(t)

A
post~FINDBIN(t,k,t',d) L t'=t A d=findb(t, k)

findb: Bintree x Key 3 Data
pre-findb(t,k) A kecollkeys(t)

330 VDM AND OTHER SYSTEMS

findb(mk—Binnode(Zt,mk,md,rt),k) A
if k=mk then md else if k<mk then findb(lt, %) else findb(rt, k)

"preservation of validity" can now be considered: in thisg case FINDBIW

is an identity on states 50 must preserve the invariant,

To establish that FINDBIN "models" (i.e. is correct with respect to)

FIND, two conditions must be established.

The first condition, the "domain condition®, shows that the pre-condi-

tion is sufficiently wide ang has the form, for the binary tree example:
(VteBintree)(pre-FIND(retr(t),k) 2 pre-FINDBIN(t,k))

Rewriting this using the definitions gives:
(vteBintree)(kegggnetr(t} > kecollkeys(t))

This can be proved by structural induction on Bintree - the details of

the proof are not given here, but can be found in [Fielding 80a].

The second condition is known as the "results condition" and requires
that given any state satisfying the pre-condition, and the result state
after being operated on by the Operation on the representation (i.e. 3
state satisfying the post-condition), this pair of states must satisfy
the post-condition of the operation on the abstraction when viewed
through the retrieve function. The form of this condition for this ex-
ample is:

(vteBintree)(pre—FIND(retr(t),k) A DOSE-FINDBIN(t,k,t',d) o
post-FIND(retr(t),k,retr(t’),d})

Expanding this gives:

(vteBintree)(kedomretr(t) A tl=t A d=findb(t,k) >
retr(t!)=retr(t) s d={(retr(t))(k))

only necessary to shows:

PROGRAM DESIGN BY DATA REFINEMENT 331
(VteBintree) (kedomretr(+) a d=findb(t, k) > d=(retr(t))(k))

This proof can again be done by structural induction and the details are

given in [Fielding 80a].

The version of the INSERT operation which is to work on the binary tree

representation is:

INSERTBIN: Key x Data =>
pre-INSERTBIN(t, k,d) A ~(kecollkeye(t))
post-INSERTBIN(t,k,d,t') A t'=insb(t,k,d)

ingb: Bintree x Key x Data 3 Bintree
pre-insb(t,k,d) A ~(kecollkeys(t))
ingb(t,k,d) A
if t=nil then mk—Binnode(giz,k,d,gig}
else (let mk-Binnode(lt,mk,md,rt) = ¢ in
if k<mk then mk—Binnode(insb(Zt,k,d),mk,md,rt)
else mk-Binnode(Zt,mk,md,insb(rt,k,d})

Since INSERTBIN actually changes the tree, it is necessary to show "pre-
servation of validity". This proof is given in detail to illustrate a
proof by structural induction. It is required to show that if ¢ is val-

id (i.e. is in Bintree) then:

~(kecollkeys(t)) a t'=insb(t,k,d) -
t'eBintree n collkeys(t')=collkeyes(t)u{k)

As a basis, assume that:

t=nil

then:
insb(t,k,d) A mk-Binnode(nil,k,d,nil)

The definition of invnd gives:
invnd(mk-Binnode(niZ,k,d,nil))

(Vikecollkeys(nil)) (lk<k) (Vrkecollkeys(nil)) (k<rk)
= true

I

and ¢

332 VDM AND OTHER SYSTEMS
collkeys(mk—Binnode(niZ,k,d)niZ)) = {k}

This base case is like the argument for zero in a proof by mathematical
induction on the natural numbers. In a mathematical induction proof,
the induction step is from n-1 to n; with structural induction the step
is from sub-trees to trees built from such sub-trees. As induction hy -
pothesis it is assumed that insb applied to either t1 or t2 preserves

validity and adds the given key. Then:
insb(mk—Binnode(tl,mk,md,tz),k,d) =
tf k<mk then mk—Binnode(insb(tl,k,d),mk,md,t2)
else mk—Binnode(tl,mk,md,insb(tz,k,d})
Consider the case:
k<mk
by induction hypothesis:

insb(tl,k,d)eBintree A collkeys(insb(tl,k,d))=collkeys(t1)u[k}

Thus:
(Vlkecollkeys(insb(tl,k,d)))(Zk<mk)

because of the assumption of validity on the starting tree and the case

assumption. Furthermore:

aollkeys(mk-Binnode(insb(tl,k,d),mk,md,tg))
= collkeys(insb(t1,k,d)) v {mk} v collkeys(t2)
= collkeye(t1) u {mk} v collkeys(t2) uv [k}
= coZZkeys(mk—Binnode(t],mk,md,tZ)) u {x}

as required. The other case (mk<k) is proved in the same way. Thus the

preservation of validity follows for all trees.

Establishing that INSERTBIN models INSERT requires that the domain and

result conditions be established. The domain condition requires:

(VteBintree)(pre~INSERT(retr(t)}k,d) 2 pre~-INSERTBIN(t,k,d))

PROGRAM DESIGN BY DATA REFINEMENT 333

which becomes:
(VteBintree)(-(kedomretr(t)) - ~(kecollkeys(t)))
which is proved exactly as for FINDBIN. The result rule becomes:

(VteBintree) (pre~INSERT (retr(t),k,d) a post-INSERTBIN (t,k,d,t') o

POst-INSERT (retr(t), k,d,retr(t’)))
which expands to:

(VteBintree)(ﬁ(keig@retr(t)) A t'=insb(t,k,d) o
retr(t')=retr(tjulk>d])

The reader can use this example to practice proof by structural induc-—

tion. The final operation to be provided on binary trees is:

DELETEBIN: Key =>
pre-DELETEBIN(t, k) A kecollkeys(t)
post-DELETEBIN(t,k,t") A t'=delb(t,k)

delb: Bintree x Key S Bintree
pre-delb(t,k) A k ¢ collkeys(t)
delb(mk-Binnode(Zt,mk,md,rt),k) A
if k<mk then mk-Binnode(delb(Zt,k),mk,md,rt)
else if mk<k then mk—Binnode(Zt,mk,md,delb(rt,k))
else if lt=nil A rt=nil then nil

else if lt=nil

then (let (rk,rd,rt') = bringlo(rt) in
mk-Binnode(lt,rk,rd, rt'))

else (let (lk,1d,1t') = bringhi(lt) in
mk-Binnode(lt',1k,1d,rt))

bringlo: Bintree S Key x Data x Bintree
pre-bringlo(t) A t¥nil
bringlo(mk-Binnode(1lt,k,d, rt)) A
if lt+nil then (let (1k,1d,1t') = bringlo(lt) in
(Zk,Zd,mk—Binnode(Zt',k,d,rt)))
elee if rt=nil then (k,d,nil)
else (let (rk,rd,rt') = bringlo(rt) in

(k,d,mk»Binnode(niZ,wk,rd,rt’)))

334 VDM AND OTHER SYSTEMS

(The bringhi function is similar to bringlo.) 1t is interesting to ob-
serve that, even in the simple case of binary trees, deletion is more
complex than insertion; thisg Oobservation will apply with more force in
the case of B-trees. The fact that DELETEBIN preserves validity can
again be proved by structural induction. The base case must be a tree
containing exactly the key to be deleted (i.e. mk—Binnode(@iﬁ,k,d,Qii))

and a subsidiary proof is required to show that:

bringlo(t)=(k,d,t") >
t'eBintree A collkeys(t)zcollkeys(t')U{k} A
d=retr(t)(k) a (Vk’ecollks(t’})(k<k')

The domain condition for DELETEBIN is similar to those above; the reader
should be able to produce the appropriate results condition. (Another
exercise for the interested reader is to design and justify a version
of DELETEBIN which identifies the special case where exactly one sub-~

node is 77l and avoid the "bring" operation.)

The operations FINDBIN, INSERTBIN and DELETEBIN show the main techniques
for manipulating binary trees. The Binarytree object, however, is not
directly realizable in Pascal. A further step of refinement is needed
to represent the tree~like structures using pointers and variables on
the heap. The Pascal "heap" can be thought of as a3 mapping from pointers
(Ptr) to node representations (Binnoderep); the root of the tree is an

(optionally ni1) pointer. Thus the state of the actual program is:

Bintreerep :: ROOT: [Ptr]
HEAP: (Ptr & Binnoderep)

Binnoderep :: lptr: [Ptr]
key : Key
data: Data

rptr: [Ptr]

This representation requires an invariant stating that all non-nil point-
ers are defined and that the pointers define a tree structure (there are
no joins or loops). The retrieve function (to Bintree) is obvious and is
not given here. It is the essence of the "rigorous approach" to use
formal definitions and proofs as appropriate. The knowledge of the
formal basis makes it possible to complete details 1if necessary. The

code corresponding to the above development is now given. The fact that

PROGRAM DESIGN BY DATA REFINEMENT 335

the tree is updated in-place, makes some of the code simpler than the

"functional programming” style used above. Code to trap situations where

operations are used outside their pre-conditions has also been included.

program bintree;

type Key
ptr

node

var root:

integer;

1 node;

record lptr:

key
data:
rptr:

end;

ptr;

ptr;
key;
char;

ptr

function find(p:ptr; k:key): char;

begin

if p=nil then writeln('error - not found')

else with pt do

end;

begin

if key=k then find := data
else if k<key then find := find(lptr, k)
else find := find(rptr,k)

end

procedure add(var p:ptr; k:key; d:char);

if p=nil
then begin
new(p)l;
with pt do
key
end
end

else with pt do

end;

begin

'= k; data := d; lptr := nil; rptr := nil

if k<key then add(lptr,k,d)
else 1f key<k then add(rptr,k,d)

else writeln('error - not inserted’, k)

end

336 VDM AND OTHER SYSTEMS

procedure delete(ﬂgﬁ p:ptr; k:key);
procedure bringlo(zgz p: ptr; var k:key; var d:char);
with pt do
if Lptr<>nil then bringlo(lptr,k,d)
else begin
k o= key; d := data;
if rptr = nil then dispose(p)
else bﬁinglo(rptr,key,data)
end
end;
procedure bringhi(ggz p:ptr; var k:key; var d:char);
with pt do
if rptr<>nil then bringhi(rptr,k,d)
else begin
ko := key; d := data;
if ilptr = nil then dispose(p)
else bringhi(lptw,key,data)

end
end;
begin

éf_p:gié then writeln(’error - key not found', k)
else with pt do

if k<key then delete(lptr, k)

else if key < k then delete(rptr, k)

else if (lptr=nil) (rptr=nil) then dispose(p)
else if rptr<>nil then bringlo(rptr,key,data)
else bringhi(lptr,key,data)
end
end { delete };

.

end.

The code given above is SO0 close to the design on abstract trees that
detailed proofs are not given. If, however, it were decided to avoid
the use of recursion and program the operations via loops, the rules of

operation decomposition of [Jones 80a] (using loop invariants etc.) could
be used.

PROGRAM DESIGN BY DATA REFINEMENT 337

10.3 B-~TREE OVERVIEW

B-trees provide a useful structure for storing maps from keys to data.
There is minimal space overhead for small indexes while very large ones
support fast information retrieval. As described in the preceding sec-
tion, binary trees can become unbalanced. Although there is much work
published on balancing binary trees, one of the attractions of B-trees
is the relative simplicity of update algorithms which preserve balance.
Perhaps the decisive reason for using B-trees is the ability to choose
the "order" of the tree so that node size approximates to the physical
block size of the storage medium on which the index is to be stored.

For descriptions of B-trees see [Comer 79%a, Knuth 75a, Wirth 76a].

If the degree of a node is defined to be the number of sons it has and
a leaf is a terminal node which has no sons, then a B-tree of order m

satisfies:

(a) The degree of a non-leaf node, other than the root, lies between

bounds m+I and 2m+71.

(b) The degree of the root is between bounds 2 and 2m+1, unless it is

a leaf.

(c) If the root is a leaf, it may contain from 0 to 2m keys. Other-
wise the number of keys contained in any node lies between bounds

m and 2m and a non-leaf node with k¥ sons will contain k-1 keys.
(d) All the leaves occur at the same depth (i.e. the tree is balanced) .

In a B-tree the data associated with a key occurs in the node containing
the Xkey. However a Bplus-tree is a special form of B-tree which has
all key-data pairs in the leaves and non-leaf nodes do not contain data.
The keys in non-leaf nodes serve as separators and are usually copies
of some of the keys which are the maximum keys of the leaf nodes. De -

letion may sometimes cause non-key values to be left as separators.

The leaves of a Bplus-tree may be 1linked which facilitates sequential

processing of the data by the "next" operation.

A description of the algorithms for performing the find, insert and

delete operations on the Bplus-tree is given in section 4 below.

338 VDM AND OTHER SYSTEMS

- index

B »] }leaves
(1] }data

Fig. 1

The Bplus-tree is, of couse, a representation of the mapping (Mkd); the

Operations whose development 1isg to be considered are already specified
as FIND, TNSERT and DELETE.

10.4 FIRST REPRESENTATION

An essential part of documenting a design is to decide on the order in
which design decisions are to be recorded. This representation embodies
the decision to use tree-like structuresg but does not consider issues of
order of keys within sub-nodes (the choice between nodes can be thought
of for now as being made by Searching ali sub-nodes!) The B-tree used
in this section pPoses the main problems of node splitting, merging etce,
but is sufficiently abstract to make these operations easier to compre -

hend ang justify. 1t ig interesting to note that proving preservation

The "order" of the tree (m) is useq in defining the size bounds on
nodes. Rather than having an extra argument to wmost functions, m is re-

ferred to freely below. The overall structure of the representation
considered in this section ig:

Btree = Node

tnvb(t) & telnode - 2Lstze(t) A (vgnet)(invlosize(sn))

Vode = Imode | Tnode

PROGRAM DESIGN BY DATA REFINEMENT 333

Thus the ¥ode at the root has rather looser lower bounds on size than

other nodes. All nodes, however, share the same upper bounds.

Tnode = Key @ Data

invt(tn) A invhisize(tn)

Inode = Node-set

invi(in) A invhisize(in) A balanced(in) a disjks(in)

size(n)

fie

if neTnode then card domn else cardn

invlosize(n) A size(n)>minisize(n) a
(neInode > (Venen)(invlosize(sn))
invhigize(n) A size(n)<maxisize(n)
minisize(n) A if neTnode then m else m+1
max}ize(n) A if neTnode then 2*m else 2%m+1 -

i
o e

A major aspect of the invariant for an Inode is that all (Tnode) leaves
are at the same depth:

balanced(in)

i

(HdeNat)(Vsnein)(deptkeq(sn,d))

deptheqg(n,d) A if neTnode then d=1 else (Venen)(deptheq(en,d-1))

Although this representation is not fixing the way in which keys are

split between nodes, it is necessary to ensure that keys are contained in
at most one sub-node: .

disgks(in) A (Vsnl,sn2ein)(enl=sn2 v

is—disj(collks(snz),collks(an)))

collks(n)

fle>

if neTnode then domn else uniton{collks(sn) | snen}

is~-diej(sl,s2) A -~(3e)(ecel A ecs2)

Whenever the sets (Btree, Node etc.) are referred to below, it is as-

sumed that only "valid" objects which satisfy these invariants are to be
considered.

340 VDM AND OTHER SYSTEMS

The relation between Béree and Mkd is expressed by the following retrieve

functions

retrnin) A éi neTnode then n else merge{retrn(sn) | enen)

The disjoint keys condition on Inodes ensures that petrn is defined for
all (valid) Btrees.

The adequacy condition requires that:
(VmeMkd)(BteBtree)(mzretrn(t))

This can be proved by induction on domm but notice that particular care

is required with the basis: it is to permit the representation of small

maps that <nvlosize is not applied to the root.

A useful function to aid readability of what follows iss

kof: Key x Node - Bool
kof(k,n) A kecollks(n)

An immediate lemma, which can be proved by structural induction, is:

domretrn(n) = {k | kof(k,n)}

Fig. 2

Suppose that key 67 is to be found. The search starts at the root and
3 possible paths may be taken. For keys < 50 the leftmost path would be

PROGRAM DESIGN BY DATA REFINEMENT 341

taken; for keys > 50 and < 93 the centre path is chosen and for keys > 93
the rightmost path is selected. This selection process is repeated at
each node until a leaf is reached. If a match is not found in the leaf,
then the key is not in the tree. The find must search all the way to a
leaf as all the keys reside in the leaves, and the key values in non-leaf
nodes simply serve as separators: these nodes do not contain data. (The
keys used in examples indicate how selection is achieved in the final

algorithm - in the current representation there are no keys in Inodes.)
Formally:
FINDB: Key => Data

pre~FINDB(t,k)
post-FINDB(t,k,t',d)

kof (k, i)

A
A t'=t A d=find(k,¢)

find: Key x Node % Data

pre~find(k,n) A kof(k,n)

find(k,n) A if neTnode then n(k) else find(k,sel(n,k))
sel: Inode x Key S Node

pre-sel(in,k) A kof(k,in)

post-sel(in,k,n) A nein A kof(k,n)

For valid nodes, a lemma relating find and retrn is:
kof(k,n) » find(k,n)=retrn(n) (k)

this can be proved by structural induction on the form of Node: for ele-
ments of Tnode the result is immediate; for elements of Inode the post-

condition of sel is required.

The Fact that FINDB preserves validity is immediate since it does not
c¢hange the state. The domain condition follows immediately from the
lemma on retrn and kof. The results condition follows immediately from

the lemma relating find and retrn.

The INSERTB operation can be thought of as working in two stages. First-
ly a find operation is carried out, which must progress all the way down
to the correct leaf for insertion. The insertion takes place in the leaf
and the balance of the tree is restored, if necessary, by a procedure
which works up from the leaf to the root. If the find stops at a leaf

Sy
kY

342 VDM AND OTHER SYSTEMS
that is not full, the new key and data are simply inserted. TIFf however,
the leaf is full (i.e. it contains 2m keys) it must be "split" into two
nodes. The smallest n keys and the associated data form one node; the
largest m keys and data form the second node; a copy of the middle key
is inserted into the keylist of the parent node to become a separator.
If the parent node is not full, the key can be added and the insertion
brocess completed. If the parent node is full, it must be split in a
similar manner, but instead of only a copy of the middle key being pro-
moted to the parent node, the actual key is promoted. TIf the splitting
process propagates all the way to the root, and it also has to be split,

then the tree increases one level in height: it grows from the root.

For example insertion in a tree of order 1. Consider insertion of the
key 56 into:

|54

yields:
\
(54 []
EINEN ESNEN
N\
L[_—LJ 50 | LE]SI? l_lfg 56| [100]]
Fig. 4

Formally:

INSERTB: Key x Data =»

PROGRAM DESIGN BY DATA REFINEMENT 343

pre~-INSERTB(t,k,d) A ~kof(k,n)
post-INSERTB(t, k,d,t") A let ne' = insn(t,k,d) in
t' = if cardns'=1 then el(ne') else ns!

inen: Node x Key x Data 3 Node-set
~kof(k,n)

pre~inen(n,k,d) A
insn(n,k,d) A if neTnode then (let n' = n y [kd] in

if invhisize(n') then {(n'}

else {(n'lke) | ksesplits(domn')})

else (let snen in
let sns’ = insn(sn,k,d) in
let n' = (n-{sn}) v sne' in

if invhsize(n') then {n'}

else splits(n')

el: X-get 3 ¥
pre-el(s) cards = 1

A
post-el(s,e) A {e} = &

splits: X-set =+ (X-set)-set
post-splits(s,p) A (381,82)(p=1{s1,82} A slvesz=s A is-diej(sl,82) a

(3ieNat0) (Vssep) (i<cardss<i+1)

Notice the non-deterministic aspects of this description: the node in
which new data is inserted is not determined nor is the rule for splitt-
ing keys between nodes. It is now necessary to show that INSERTB pre-
serves validity of Btree. Once again, structural induction is used -

but here it is desirable to separate the base case as three lemmas. For
each of these lemmas, assume:

tneTnode, ~kof(k,tn), ne'=insn(tn,k,d)

The first lemma ensures basic validity and defines the resulting keyset:

ne'elnode~set A 1<size(ns')<2 A

diejks(ns’) a collks(ns')=collks(tn)u{k}

the proof is as follows: let n' = tn y [k » d]

consider the case: invhisize(n')

ne'={n"}

344 VDM AND OTHER SYSTEMS

and all results are immediate, Alternatively:

~invhisize(n')

ne' = {(n'lks) | ksesplits(domn'))
from eplits and invhisizes

(Vsnm’ens’)(inuhisize(snm'))
disjke(ns')

eardns' = 2

collks(ns') = collks(n’)
collks(tn)y{k)

i

which concludes the proof.

The second lemma establishes preservation of inviosize:
invlosize(tn) » (Vnsmfens’)(invlosize(nsm'))

The third lemma is:
retrn(ne') = retrn(tn)ulk d]

The interested reader should find these proofs straightforward., The

corresponding three lemmas for (general) elements of Fode each assume:
nelNode, ~kof(k,n), ns'=insn(n,k,d)
The lemma on basic validity is:

ng'cNode-get I<size(ns’)<g A
(Vnsn'ens’)(deptheq(nsn',d):deptheq(n,d)) A
disjks(ns’) » collks(ns')=collkes(n)u{k)

The proof is by structural induction on ¥ode. The basis is an immediate
consequence of the corresponding lemma on Trnodes. For the induction

step (nelInode):

let sn ¢ n

e

let sne’ = insn(sn,k,d)

PROGRAM DESIGN BY DATA REFINEMENT 345
By induction hypothesis:

sne'elNode-set A 1<size(sns’)<2 A
(vgnsn'esns')(deptheq(snsn',d):deptheq(sn,d)) A
disjke(sns') a collks(sns')=collks(en)ulk)

let n' = (n - {sn}) u ens’

SO
n'eNode-set a stze(n)<size(n')<size(n)+1
(Vnsn'en’)(deptheq(nsn’,d)=deptheq(n;d+1)) A
disjks(n') a collks(n')=collks(n)u{k}

It is now only necesssary to consider cases defined by invhisize to con-

clude the proof.

The lemma on the lower bounds of size is:
invlosize(n) o (Venm'ens') (invliosize(nsm'))

and the final lemma on the result is:
retrn(ne') = retrn(n)ulk » d]

Both of these lemmas are proved by structural induction using the cor-

responding Tnode results for the basis.

The preservation of validity is an immediate consequence of the first
two of the general lemmas. The domain condition follows from the ori-
ginal lemma relating retrn and kof. The results condition follows from

the last lemma discussed.

The DELETEB operation is like insertion in that it occurs in two stages,
starting with a find to locate the leaf containing the key to be deleted.
After this key has been removed, if the leaf then has less than m keys,
balance the leaf in question; if greater than 2m, the keys of the two
nodes are evenly divided between the nodes and the original separator
key in the parent node is overwritten with a copy of the middle key of
the two nodes concerned ("redistribution"). If the sum of the keys 1is
less than 2m, the leaves are "merged" (the opposite of splitting) ang

the separator key in the parent node is discarded.

346 VDM AND OTHER SYSTEMS
Redistribution and merging are slightly different in non-leaf nodes.

If the redistribution of two non-leaf nodes occurs, the separator key

in the parent node is replaced by the middle key of the two nodes con-
cerned. If a llerge occurs in two non-leaf nodes, the separator key in

the parent node is pulled down and added to the combined node. TIf merg-

ing propagates all the way up to the root the height of the tree can de-
Crease by one level,

For example deletion in a B-tree of order 2.

(a) Redistribution in leaf nodes

\
ENRZEEEEER
V28I 1T 17

L1 T2 T 7] 1571937]

Fig. 5

Deleting key 72 produces:

\
(8o, [25[T [T T
EHNEE NN
L1 T5] T A

il

(b) Merging in leaf nodes:

Fig. 6

Now, deleting key 15 produces:

\
801 28 T[T T
[T IT T

L1 J19 (37]

ReRs

Fig. 7

FROGRAM DESIGN BY DATA REFINEMENT 347

(c) Redistribution in non-leaf nodes - starting withz:

\
[ob- 73] Juis[[]
T-A?//”’/”,,ﬁfﬂi:::ﬂ;/’ \\\\\\kq\\\xx\\\\\\\ﬂ~T
* NEENENEEEE NENEINEONIEE ‘
A / N
T21 T22 T23 T31 T32 T33 T34
Fig. 8

Merging of nodes T9s and Tyz causes redistribution:

\
10[) [75], [113[I]

T T
oIl T T }Llelyl%iil L T] "
o T2z T34 Tao Tag Taq
Tas
Fig. 9
(d) Merging in non-leaf nodes - a further merge of T33/T34 results in:

\
e O[T T 17

L A AR AN NGIN

T2 1 TZ 2 T3 1 T3 2 T3 3
Tas T

Fig. 10

348 VDM AND OTHER SYSTEMS
Formally:

DELETER: Key =>

pﬁ9~DELETEB(ﬁ,k} A kof(k,t)
4

let rn = deln(t,k) in

£ =

POSt-DELETEB(t,k,t"')

if rneTnode a size(rn)=1 then el(rn) else rn

deln: Node x Key 3 Node

pre-deln(n,k) A kof(k,n)
deln(n,k) A

if neTnode then n\{k}

else (let en = selin, k) in
let rn = del(en,k) in
if inviosize(rn) then

(n-{en})ulrn}

elese (let nnen-{en) in

let rest = n-{en,nn} in

iﬁ size(rn}+size(nn)<2*minsize(rn) then resty{rnunn}
else if en € Inode
then rest v {nsn

| nsnesplite(rnunn)}
else rest v {((rnunn)|ks) !

kseeplits(domrnudomnn)}))
As with the correctness of the B

—tree insert operation, the key to jus-~
tifying DELETEB is a series of lemmas. Two lemmas concern Tnodes and
assume:

tneTnode,

kof(k,tn), tn'=deln(tn,k)

The basic validity result is:

tn'eTnode a size(tn’)=size(tn)—1 A collks(tn’}zcollks(tn)—[k}

There is no guarantee about preserving the minimum size of a Tnode.
result is such that:

The

retrn(tn’) = retrn(tn)\{k}

Both of these lemmas are straightforward. Proofs by induction,
above results,

using the

can be given for three lemmas on general nodes - for each
assume:

PROGRAM DESIGN BY DATA REFINEMENT 349
neNode, kof(k,n), n'=deln(n,k)
The three lemmas are:

n'eNode a stae(n')<size(n) A

(deptheq(n',d)=deptheq(n,d)) neollks(n')=collks(n)-{k}
invlosize(n) a n'eInode o (Ven'en')(invliosize(sn'))

retrn(n') = petrn(n)\{k}

These lemmas make the proof both of preservation of validity and that
DELETEB models DELETE straight forward.

10.5 SECOND REPRESENTATION

Having solved the crucial problem of balancing the trees, this stage of
refinement can introduce the keys into Inodes. This makes it possible
to remove the arbitrary selection of sub-nodes for insertion and the
completely unrealistic specification of sel. The invariant of this re-
presentation can conveniently be split into those constraints already

considered and those (e.g. order of the key lists) which could not have

been stated earlier. (The authors of this paper are grateful to Lockwood
Morris for proposing this split.) This division significantly simplifies
the proof.

The definition of the new representation is:

Btreep = Nodep

invp(t) A invb(retrb(t))

Vodep = Tnodep | Inodep

Tnodep = Key g Data

invtp(tnp) A invt(retrn(tnp))

Inodep 1: s-keyl:Keyt s~treel:Nodep*t
tnvip(inp) A invilretrn(inp)) a

(let mk-Inodep(kl,+1) = inp in

Lenkl = lentl-1 4

(Vieinds kl)(setle(collksp(tl[i]),{kZ[i]}J A
setZ({kZ[i]},collksp(tZ[i+1]))))

350 VDM AND OTHER SYSTEMS

Notice, that it is a consequence of invip that the keylist should be or-

dered,

collksp(n) A if neTnode then dom n

else union{collksp(en) | sneelemss-treel(n)}
The relations between sets of keys are:
setle(ksl,ks2) A (VkIeksl,k2¢ks2) (k1 < k2)

setl{ksl,ks2)

>

(Vkleksl,k2e¢ks2) (k1 < kz)

The necessary retrieve function is:

retrb: Nodep -+ Node
retrb(np) A if npeTnodep then np

else {retrb(s-treel(np)riy) | teindss-treel (np)}

The development and justification of this stage is not pursued in de-
tail. It is, however, worth noticing an unusual feature of this step of
data refinement. Because of the freedom to place keys in any order in
a Btree, not all elements can be represented by a Btreep. Strictly speak-
ing, this violates the adequacy condition. There is an explanation in
[Jones B80a] as to how to deal with this general problem. Here, however,
it is easier to think of the algorithms at this level resolving non-de-
terminacy of the higher level: since the Biree algorithus were proven
without constraint, any algorithms which simply define the chojce to be
made are cocrect. The remaining part of the refinement (ji.e. the addi-

tion of keylists) fits the usual scheme for data refinement,

Only the find operation is considered on this representation (see [Field-

ing 80al for details of the others).

FINDP: Key => Data
pre-FINDP(tp,k) kofp(k,tp)

A
post-FINDP(tp,k,tp',d) A tp'=tp A d=findp(k,tp)

kofp(k,np)

Jfe>

kecolllksp(np)

findp: Key x Nodep 3 Dpata
pre-findp(k,np) A kofp(k,np)

PROGRAM DESIGN BY DATA REFINEMENT 351

findp(k,np)

fe>

vf npeTnodep then np(k)
else (let i = indexp(k,s-keyl(np)) in
findp(k,s-treel(np)[i]))

indexp: Key x Key* - yat
pre-indexp(k,kl) ig-ordered(kl)
k<hdkl n i=1 v kl(len k1)<k A i=lenkl+]

v kL[i-1]<k<k1[7]

A
post-indexp(k, k1,1 A

its-ordered: Key* > Bool

Although the indirect definition of part of the invariant (via retrb and
invb) simplifies the proof at this level, it would be necessary to "bring
down" the invariant before proceeding to the next stage. This would in-

volve defining functions such as invhisizep.

10.6 FURTHER DEVELOPMENT

The step of representing Btreep in, say, Pascal is very similar to the
task of representing binary trees considered in section 2 above. Code
for UCSD Pascal for all three operations is given 1in [Fielding 80a].
Possible further extensions include:

The implementation of the NEXT operation, for which provision has al-

ready been made in the record layout.

The implementation of Bplus-trees using disk files and disk file address-
es rather than storage and pointer variables and the extension of this
to provide a separate file access package for general use (the difficult-

ies of the strong typing of Pascal have to e overcome to achieve this
extension).

After the above two extensions the implementation of recovery procedures
becomes possible.

