CHAPTER 1

MAIN APPROACHES TO FORMAL SPECIFICATIONS

The work on the formal definition of programming languages spans some
twenty vears. This chapter sets the historical context of the VDM work.,
It does not, however, purport to be a complete history of the subject
{more detail of the Vienna work in particular can be found in [Lucas
8lal). The three main approaches to the definition of programming langua-
ges are described. The so-called "Vienna Definition Language" (VDL) is
probably the first to be used in the definition of large languages: it

is based on the "operational approach". Although coming later in time,

"mathematical" or "denotational semantics" has become the most widely

accepted approach to formal definition. Because of its position as a
refarence point mathematical semantics is here described before the other
two approaches. In order to prove that programs in a language satisfy
some specification, it is normal to use rules of deduction about the
language. It is possible to regard such rules as axioms and to treat them

as a definition of the language: such "axiomatic semantics" is also de-

scribed. In addition the concept of, and the reasons for the use of, "ab-

stract syntax" are explained. A final section considers some of the open

research problems relating to formal specifications.

(This chapter is a revised version of TLucas 78a17)

= e
.
N

w

FORMAL SPECIFICATION META-LANGUAGE

CONTENTS

The Need for Formal SpPeCificationS.eeseeeeeeeneconnsnn.
Historical Background...u.e.eeeseneenenn....
Basic Methodological APPTOAChES .ttt reennsononeens
1.3.1 Abstract = e B
1.3.2 Mathematical Semantics....... ceeeeas e enssceans Gesens P
1.3.3 Operational Semantics......................,.....,..s......15
1.3.4 Axiomatic AppProach......eeeeeee...

Challenges. v iiinnnneeennoennnenn,

S r e et ottt cssscencnooenenss20

MAIN APPROACHES TO FORMAL SPECIFICATIONS 5

1.1 THE NEED FOR FORMAL SPECIFICATIONS

Computer systems can be viewed as machines capable of interpreting lan-
guages; they accept and understand declarative sentences, obey imperative
sentences and answer questions, all within the framework of those lan-
guages for which the systems were built. A computer system accomplishes
its tasks on the basis of a prescription of these tasks, that is on the

basis of a program expressed in some programming language.

There is no inherent disparity between human languages (including natural
language and the artificial languages of science) and languages used to
talk to computers. Thus there is no need to apologize for "anthropomorph-
isms" in the above point of view; in fact, our only way to talk scien-
tifically about the relation of humans to their natural languages is in

terms of computer notions (or so it seems to me) .

By viewing computers as language interpreting machines it becomes quite
apparent that the analysis of programming (and human) languages is bound

to be a central theme ofFSbmputer science.

Part of the fascination of the subject is of course related to its inti-

mate connection to human language, that is the mechanisms we study mirror

in some way at least part of our own internal mechanisms.

Although there is no inherent disparity between human language and com-
puter language, there is at present a huge gap between what we can a-
chieve by human conversation and our communication with machines. A 1it-

tle further analysis will indicate the nature of the gap.

First we consider the structural aspect of language, that is how phrases
are composed of words and sentences are built from phrases, commonly
called "syntax". There are efficient and precise methods to define the
syntax of a language and algorithms to compose and decompose sentences
according to such definitions. The problem is more or less solved. Yet,
computer languages usually have a simpler and more reqular syntax than
natural languages (and even some scientific notations) and there are
technical problems yet to be solved. Moreover, it seems to me, there is

not much of a gap.

Second, there is the aspect of meaning, or "semantics" as it is usually

called. Now we get into more subtle problems. Let me restrict the dis-

o

o

6 FORMAL SPECIFICATION META-LANGUAGE

cussion, for the time being, to the objects we can talk about in the var-
ious languages (rather than counsidering what we can say about them). Pro-
gramming languages in the strict sense talk invariably about rather ab-
stract objects such as numbers, truth-values, character strings and the
like. Certainly, the major programming languages in use do not 1let us
talk about tables, chairs or people, nor even about physical dimensions
of numbers such as: hours, pounds, or feet. The commercial languages do
not know about the distinction of dollars and francs, and scientific lan-
guages do not know about time angd space. There have been some attempts
to include those notions or a device that makes it possible to define
these notions within a language (e.qg. the class concept in SIMULA and
Péégé; and the investigations around abstract data types). If we extend
the notion of programming language to include query languages and data-
base languages, we may observe a tendency in the indicated direction.
Yet, there is a gap. Artificial Intelligence has experimented for some
time with languages that can be used to talk about objects other than

numbers and we should probably try to learn from these experiments,

Definition methods concerning semantic, and even more so, mechanical
ways to use semantic definitions are much less understood than in the

case of the syntactic aspect.

Thirdly, there is the aspect of language understanding; I hesitate to
call this "pragmatics" since the latter term has been used for too many

things.

Suppose I ride on a train with a friend. The friend observes: "The win-
dows are wet" (*). The statement is presumably structured according to
the English grammar and has a certain meaning. However, I would probably
not just analyze the sentence and determine its meaning. Most likely I
would react Dby looking at a window, observe that there are drops, con-
clude that it is raining, pbrepare my umbrella so that I don't get wet
when I get off the train.

(*) It would not make any difference to the following argument if my
friend had wused META-IV and passed a note saying: "wet(windows)".
That is to say, I do not discuss the distinction between natural
language and standard (formal) notation, but the distinction of the

human and computer use of the statement irrespective of the form.

MAIN APPROACHES TO FORMAL SPECIFICATIONS 7

To draw all these conclusions and act accordingly I need to use a lot of
knowledge about the physical world in general and about my specific envi-
ronment. It is in this area of language understanding, where I see the
bigger gap between our interaction with the computer as opposed to humans.
What is lacking in the machine are models of the external world and gener-
al mechanisms to draw conclusions and trigger actions. Again artificial
intelligence and natural languages research have been concerned with the
problem. But, this has not as yet had any practical influence on for ex-
ample commercial applications. With the increase in computer power it

might very well be worth seeking such influence.

With the preceding paragraphs I wanted to put the present subject into a
much larger context than is usual. Thank God, there is more to program-
ming languages than procedures, assignment and goto's (or no goto's). The
rest of this chapter is a lot less ambitious and remains more or less
within the traditional concepts of programning languages. It presents my
subjective perceptions of the various origins of the methods of semantic

definitions.

1.2 HISTORICAL BACKGROUND

The theory of programming languages and the related formal definition
techniques, have roots in, and are related to, several other disciplines
such as linguistics, formal logic, and certain mathematical disciplines.
In fact, the terms "syntax" and "semantics" and the distinction between
the respective aspects of language, have been introduced by the American
philosopher Charles Morris [Morris 3Ba, Zemanek 66al. He developed a
science of signs which he called semiotics. Semiotics, according to
Morris, is subdivided into three distinct fields: syntax, semantics, and

pragmatics. In his book [Morris 55a] Morris defines:

Pragmatics deals with the origin, uses and effects of signs within

the behavior in which they occur;

Semantics deals with the signification of signs in all modes of sig-

nifying;

Syntax deals with the combination of signs without regard for their

specific significations or their relation to the behavior in which
they occur.

8 FORMAL SPECIFICATION META-LANGUAGE

The clear distinction between syntax and semantics was first applied to a
programming language in the ALGOL 60 report [Naur 63al. The resulting in-
sight has turned out to be tremendously useful. There have been several
not so successful attempts to carry the notion of pragmatics into the
theory of programming languages (see e.q. San Dimas Conference [ACM
66al). We may start the history of formal definition methods Ffor program-
ming languages with the year 1959 when J. Backus proposed a scheme for
the syntactic definition of ALGOL 60 [Backus 60al. This scheme (a gener-
ative grammar) was then actually used in the ALGOL 60 report:; the related
notation is known as BNF (for Backus Normal Form or Backus Naur Form).
BNF, or variations thereof, have been used in many instances: it has
stimulated theoretical research as well as practical schemes for compiler
production (both automatic and non-automatic). Roughly speaking, BNF
grammars coincide with the class of context free grammars in [Chomsky
59a]; it is worth mentioning that Chomsky defined his grammatical formal-
isms in an attempt to obtain a basis for the syntax of the English lan-
guage. Much research has been devoted to the study of subtypes and ex-
tended types of BNF grammars. The latter in support of the desire to
capture more syntactic properties of the language to be defined; the
former, that is the study of subtypes is usually motivated by the wish
to find properties which permit fast syntax recognition and analysis
algorithms. The subject of formal syntax definition, and the related
computational problems and methods, have found their way into textbooks
and computer science curricula; in fact, the larger part of compiler

writing courses is usually spent on syntax problems.

After the ALGOL 60 report, the lack of rigorous definition methods for
the semantics of programming languages has become widely recognized.
Furthermore, the success of formal syntax definitions invited similar
attempts for the semantic aspects of programming languages. The problem
turned out to be of an obstinate nature. To date, there is no solution

that enjoys the consensus of the whole computing community.

The instructions of machine languages are defined by the behaviour of
the respective machine upon execution of these instructions. The asso-
ciated manuals usually describe first what constitutes the state of the
specific machine (e.g. content of main storage, content of registers,
etc.) and then for each instruction and any given state the successor
state after execution of the instruction to be defined. Hence, for a
programmer, the most direct way to define a programming language is in

terms of an interpreting machine; however, for higher 1level languages,

MAIN APPROACHES TO FORMAL SPECIFICATIONS 9

we must abstract from particularities of hardware machines and implement~
ation details and use a suitable hypothetical machine instead. F.W.Dijk~—
stra formulated the situation in 1962 [nNijkstra 62b] as follows: *A ma-
chine defines (by its wvery structure) a language, viz. its input tan-
guage; conversely, the semantic definition of a language specifies a

machine that understands it" (*).

The classic paper that has led to much research is by McCarthy TMcCarthy
62al. The paper outlines a basis for a theory of computation:; more im-~
portant for our subject, it establishes the main goals and motivation:
methods to achieve correctness of programs in general and of compilers
in particular; rigorous language definitions constitute an intermediate
problem. The schema for language definitions proposed by McCarthy con-
tains a number of novel subjects. Firstly, a complete separation of no-
tational issues, that is the representation of phrases by linear charac-
ter strings, from the definition of the essential syntactic structure
of a language. The latter definition is called "Abstract Syntax". It
is, at least for complicated languages, much more concise than the con-
crete syntax. Thus, a semantic definition on the basis of an abstract
syntax becomes independent of notational details and is also more con-
cise. Secondly, state vectors are introduced as the basis of the seman-
tic definitions proper, that is the meaning of an instruction or state-
ment is defined as a state transition. The paper shows in principle the
task of proving compilers correct. The basic scheme of language defini-
tions has been elaborated in many instances during the past decade,
e.g. by the earlier work of the Vienna Laboratory on PL/I [Lucas 69%a]
and the ECMA-ANSI standard [ANSI 76al.

Another successful direction of research was initiated by P. Landin
[Landin 64a, 65al], using the lambda-calculus [Church 41a] as the funda-
mental basis. He revealed that certain concepts of ALGOL 60 (and simi-
lar languages) can be viewed as syntactic variations (syntactic "sugar")
of the lambda-calculus. The inherently imperative concepts, assignment
and transfer of control, were captured by introducing new primitives

into the lambda-calculus; the extended base is defined by the so-called

(*) It would be unfair to include this quotation and not say that E.W.
Dijkstra would probably no longer defend this position, and rather

tend to be a proponent of the direction described under "Axiomatic

Approach"” in this chapter.

10 FORMAL SPECIFICATION META-LANGUAGE

SECD machine, a hypothetical machine whose state consists of four compo-
nents: Storage, FEnvironment, Control and Dump. The machine state has
more structure than the state vectors of McCarthy, because the machine
had to reflect more complicated concepts (blocks, 1local names) than

McCarthy's original simple exanmnple was intended to.

In 1964 C.Strachey [Strachey 66a] argued that, with the introduction of
a few basic concepts, it was possible to describe even the imperative
parts of a programming language in terms of the lambda~-calculus. C.
Strachey initiated a development that led to an explication of program-
ming languages known as "mathematical" or "denotational semantics".,
The fundamental mathematical basis for this development was contributed
by D.Scott in 1970 [Scott 70al. The joint paper, by D.Scott & C.Strachey
[Scott 71a] offers a description method and its application to essential

language concepts based upon the indicated research.

Research on axiom systems and proof theory suitable as a base for cor-
rectness proofs of programs was injitiated by R.Floyd [Floyd 67al], with
a simple flow~diagram language. C.A.R.Hoare [Hoare 69%a,71la], extended
and refined the results to apply to constructs of higher level languages.’
Less formalized, but similar thoughts were expressed in [Naur 66bJ. The
area has Dbeen the most actively pursued, including experiments in auto-

matic program verification.

There are several pioneering research efforts, which do not so evident-
ly fall into the categories introduced above. Among the very early re-
sults published on semantics is A. van Wijngaarden's "Generalized ALCOL"
[van Wijngaarden 62]. J. de Bakker [de Bakker 69a] discovered that the
schema proposed by A.van Wijngaarden can be viewed as a dJgeneralized
Markov Algorithm. A.Carraciolo [Forino 66al] also used Markov Algorithms

as the starting point for the formalization of programming language
semantics.

For anyone familiar with syntax directed compilers it jis tempting to ap-
pPly similar ideas to the definition of semantics. A definition method on
this basis is due to D. Knuth [Knuth 68al. In some way or another, a
formal definition of the semantics of a language invariably specifies
a relation between any phrase of the language and some mathematical ob-
ject called the denotation of the phrase. D, Knuth provides a convenjent
schema that permits the specification of functions over the phrases of a

language (assuming that the phrase structure of the language is given by

MAIN APPROACHES TO FORMAL SPECIFICATIONS i1

a production system). Most research so far has been devoted to the def-
inition and analysis of existing languages (or concepts found in exist-
ing languages). Yet, formal semantics could be a most valuable intellect-
ual tool for the design of novel programming concepts (or new programming

language constructs). There are rare instances of such applications of

formal semantics awe~found==th [Dijkstra 74a, Dijkstra 75a, Dennis 75a,

Henderson 75al).

1.3 BASIC METHODOLOGICAL APPROACHES

1.3.1 Abstract Syntax

The notion of abstract syntax is of considerable value for practical def-
initions of notationally complex languages. There exist several methodo-
logical variations, which all achieve the same objective: to abstract
from semantically irrelevant notational details and reduce the syntax to

define the essence of the linguistic forms only.

For illustration consider the following examples. Let v be the category
of variables and e be the category of expressions. Several notational

variants are in use to denote assignment statements €.G.:

The semantically essential structure common to these notations is that
there is a syntactic category called assignment statement, and that an

assignment statement has two components, a variable and an expression.

An abstract syntax may define an expression to be either an elementary
expression (variable, constant, etc.) or a binary operation consisting
of an operator, a first operand, and a second operand (the definition
of expressions may have several other alternatives); operands are also
expressions. As a concrete syntax, meant to define character strings,
such a definition would be hopelessly insufficient and ambiguous, for

example we would not know whether to parse x+yxz into:

N\ I\
A A

iz FORMAL SPECIFICATION META-LANGUAGE

Thus the concrete syntax has to introduce punctuation marks such as pa-
rentheses, and, in the example of expressions, precedence rules of oper-
ators to avoid ambiguities. However, the definition of expressions given
above is perfectly usable as an abstract syntax definition. It can be
regarded as a definition of parsing trees, hence the ambiguity problem
is completely avoided. Thus there are advantages gained even in the case
where only one language is considered: representational details are sup-

pressed and each phrase is given a kind of normal form.

For practical cases, such as PL/I, the number of rules necessary to def-
ine an abstract syntax is much smaller than for the corresponding con-
crete syntax; hence we have obtained a more concise basis for the seman-
tic definition. The price we pay is an additional part for the formaliza-
tion of a language, which establishes the relation between the concrete

and the abstract syntax.

1.3.2 Mathematieal Semantics

The semantics of a given language is formalized by associating a suit-
able mathematical object (set, function, etc.) with each phrase of the
language; the phrase is said to denote the associated object: the object
is called the denotation of the phrase. Furthermore, to gain a "referen-
tially transparent" view of the language to be defined, denotations of
composite phrases are defined solely in terms of the denotations of sub-
phrases. The major problem in establishing the mathematical semantics
for a given language is to find suitable mathematical objects, that can
serve as the denotations. We will write M[p] for the denotation of a
phrase p (*). To indicate the various phrases to be discussed, we will
use an ALGOL-like notation, for example M[x:=z-1] 1is the denotation of
the assignment statement z:=z-7. Further elaboration of the subject con-
siders a series of programming language concepts in increasing order of
complexity. Take first a simple language with a fixed set of wvariables
(id), expressions (e) without side effects, assiguments (id:=e) and com-~
pound statements (81;82). If we were to construct a definitional inter-

preter, we would certainly introduce’ a state vector (& la McCarthy).

(*) For small languages it is possible to use concrete syntax and basic
function notation. In order to be clear, definitions of larger lan-

guages must use abstract syntax and combinators.

MAIN APPROACHES TO FORMAL SPECIFICATIONS 13

Although we do not wish to specify particular ways to compute the effect
of executing programs and their parts, we still have to characterize the
overall effect of this execution. Therefore we introduce state vectors g,
which are (usually) partial functions from variable names ID into the set
of values, VAL, that is:

o: ID g VAL.

Let & be the set of all possible states. The kinds of denotations that

occur in the example language can now be chosen as follows:

I

Mfe] LD
M{st]: %

VAL
z

R

that is the denotations of expressions are functions from states into
values and the denotations of statements are functions from states to

states.

Assuming that M[e] has been defined elsewhere, the definition of assign-
ment and compound statements according to the philosophy of mathematical

semantics read:

M{id:=e](c) = assign(o,id,M[e](c)) { val for z = id
where: assign(o,id,val) = o', o'(z) = {

{ o(z) for z + id
Mlel;s2] = M[s2]°M[s81] where ° denotes functional composition

Note that denotations of composite phrases are given in terms of denota-
tions of immediate subphrases and that we have avoided introducing a
statement counter. For each additional language feature we may have to
revise the definition of states, introduce new ways to compose denota-

tions or even define new kinds of mathematical objects.

As a first complication we introduce a loop statement of the form: while
e do s. We assume that e returns a truth value and intuitively expect

that the denotation of the loop statement can be defined as:

{ M[while e do s](M[s](c)) if M[el(a)
Mlwhile e do sl(o) = {
{

o if -M[e]l(c)

14 FORMAL SPECIFICATION META-LANGUAGE

The definition is of the form f=F(f), with f = Mlwhile e do s8] that is: f
is defined as a fixed point of F. Before this definition can be accepted
as meaningful, one has to ask whether such a fixed point always exists
and whether it is unique. The existence can be asserted under appropriate
mathematical restrictions (introducing concepts of monotonicity and con-
tinuity); there will in general be more than one fixed point satisfying
the equation. Thus an additional rtule has to be introduced which makes
the defined object unique (the "smallest" Ffixed point under a suitably
defined ordering relation). This is not the place to elaborate the issue

at length. Chapter 3 discusses this issue in depth.

However, it should by now be evident that we are led into deep mathemat-
ical issues, and this at a stage where, from a programming language point
of view, we have only introduced the most primitive language constructs.
At this point, it seems that we have to consider the potential uses of
a semantic definition. One should distinguish between the foundation
of the subject matter and more practical problems like the description
of real-life programming languages for compiler writers. Like the founda-
tions of mathematics on the one hand and applied mathematics on the
other, these two fields are not unrelated but are distinct. If we accept
the program of mathematical semantics, the steps we have tried to indi-
cate follow, and the difficulties observed above are inevitable. However,
it seems unrealistic and in fact unnecessary to require that each com-
piler writer be fluent in modern algebra. Rather, one would expect that
the foundations are used to justify, once and for all, useful practical

methods which in turn can be applied directly by the practitioner,

A further important concept in most programming languages is that of lo-
cal names, that is names which are declared for a specific textual scope

of a program. The syntactic category is called block and takes the form:
begin del 1id; st end.

Since the same name may now be used in different blocks for different
purposes we have to introduce some device in the definition which enables
us to distinguish the different uses of a name. One usually introduces an
auxiliary object called environment, env, which is a function from names
(variable names in the present example) to so called locations; the state
then maps location into values. Thus a state ¢ is now a function of type
LOC @ VAL, where L[0C is a set of primitive obijects called locations;

the auxiliary object env is of type ID g LOC.

MAIN APPROACHES TO FORMAL SPECIFICATIONS 15

In order to interpret a given phrase we always have to have an environ-
ment which associates the names occurring in the phrase with locations.
The mathematical types of the denotations have to be revised so that
M[st] when applied to an environment, yields a function which transforms
a state. The types of denotations of the other constructs are designed

similarly.

The last features to be discussed in this section are procedure declara-
tions and parameter passing. What should the denotation of a procedure
(in the sense of ALGOL or PL/I) be? According to the philosophy of
mathematical semantics this must be an object which yields a state trans-
formation (X%31%) when applied to the denotations of the arguments to the
procedure. It is important that the procedure denotation is built in the
environment where the procedure is declared. In some higher level pro-
gramming languages, procedures can be passed as arguments. In particular,
a procedure might be passed as an argument to itself. This concept pre-
sents certain mathematical problems and the establishment of a suitable

domain of denotations is a major achievement [Scott 70al - cf. chapter 3.

There are some language constructs whose treatment is not yet so widely
accepted in the framework of mathematical semantics. In particular, par-
allel and quasi-parallel execution give rise to the use of rather com-
plicated mathematical objects (see [Plotkin 76a, Smyth 76al on "power

domains").

Condition handling in PL/I; labels and goto's have been formulated,
but, the models do not closely correspond to the intuitive concept of the

construct, cf. chapter 5.

There are sizable language definitions in the denotational style (e.g. a
definition of ALGOL 60 [Mosses 74al, and a definition of a subset of
Pr/1 [Bekié¢ 74al). There is an excellent introductory book on the sub-
ject by J.Stoy [Stoy 77a].

1.3.3 Operational Semantics

The semantics of a programming language can be defined via a hypothetical
machine which interprets the programs of that language; such methods have
been called "operational”, or "constructive". The latter term is, how-

ever, misleading, because the specification of hypothetical machines

16 FORMAL SPECIFICATION META-LANGUAGE

may contain non-constructive elements, such as quantifiers, implicit def-
initions and infinite objects. The term "definitional interpreter" is

sometimes used instead of "hypothetical machine”.

By machine we understand a structure consisting of a set of states, two
subsets thereof: the initial states and the end states, a state trans-
ition function and a function which maps programs and their input data
into initial states; also usually not given explicitly, there should be

a function which takes end states as arguments and yieldsg

program ——————3 (~>step

tO’tZ""’ti’ti‘l‘]’.."tn
input data ———s

to .++ initial state t, «+» end state

step ... state transition function tpseee,ty ... computation

an end state which is the result of the program. Since most higher level
languages are such that the program remains constant, that is is not mod-
ified, during its interpretation, one could also keep the program sepa-
rate and only include a statement counter to the currently executed
statement within the state itself. The definition of the step function,
if properly done, will reflect the syntactic structure of the language,
such that we cannot only relate an entire program to a computation, but
also sub~phrases of the program to sections of the computation, that is
we may ask what a specific subphrase in a given context means. In lan-
guages, like PL/I, where the order of Ooperations is not entirely
fixed, the defining hypothetical machine is non-deterministic, that is
the step function will, in general, yield a set of possible successor

states and a program will thus be related to a set of computations.

For simple languages, mathematical and operational definitions of lan-
guages are very similar. In fact, if the latter are carefully con-
structed, there is a direct correspondence between such definitions. The
strength and danger of the Operational approach comes from its machine-
like behaviour. For example, the VDL definitions showed that a language
could be non-deterministic by building a control tree of possible next
actions. The early operational definitions tended, however, to put rather
too much in the state. For example, it is tempting to put the environment
which was discussed above in the state: since environments change and

have to be restored, ohe ends up with a stack of environments. This, the

MAIN APPROACHES TO FORMAL SPECIFICATIONS 17

"grand state"” approach causes considerable difficulties in deducing prop-
erties about language definitions. Tt is possible to construct "small
state” operational definitions (e.qg. [Allen 72a, Plotkin 8lal) which
offer many of the advantages of mathematical semantics but which avoid

deep mathematical issues.

In the literature there exist various examples relating language defini-
tion to implementations (e.g. [McCarthy 67al). A comprehensive elabora-
tion of this subject would complement the existing material on the sub-
ject of syntax definition and parsing. The step from the syntax defini-
tion to the respective parser can be automatic. There are current efforts
to master the semantics part of the problem, e.g. [Mosses 76a]. The

subject is further elaborated in chapters 8 and 9.

The method has been applied to several large languages; in fact the pro-
posed ECMA-ANSI PL/I standard [ANSI 76a] has been formulated using an
operational definition. The method is the only one presently known which
is capable of covering the currently existing language constructs. There
is an introduction to the subject by A.0llongren [Ollongren 75al, and
several summaries, e.g. [Lucas 6%9a] on VDL and an in depth evaluation by
J.Reynolds [Reynolds 72a]. '

1.3.4 Axiomatic Approach

Each of the two approaches so far described provide models for the lan-
guages to be defined. In contrast, the axiomatic approach implicitly def-
ines the semantics of a programming language by a collection of axioms
and rules of inference, which permit the proof of properties of programs,
in particular that a given program is correct, that is realizes a specif-
ied input/output relation. Of course, one can prove assertions about pro-
grams using either a mathematical or operational definition and ordinary
mathematical reasoning. In fact, the axioms and rules of inference can

be regarded as theorems within the framework of mathematical semantics,

However, the objective of the axiomatic method is a formal system which
permits the establishment of proofs using only the uninterpreted program
text (that is without referring to denotations of the program oOr program
parts). Whenever we talk about denotations in this section, this is for

explanatory purposes and is not part of the axiomatic system.

18 FORMAL SPECIFICATION META-LANGUAGE

The problem of correctness proofs of programs is usually split into two
subproblems: the first is conditional correctness (that is correctness
under the assumption that the execution of the program terminates); the
second is the proof that the program terminates. Until further notice

this section deals with conditional correctness.

To illustrate the approach we will refer to the simplest language level
of section 1.3.2 above, that is a fixed set of variables, assignment and
compound statements. The notation and particular axioms of the example
are due to C.A.R. Hoare [Hoare 69al. The basic new piece of notation

are propositions of the form:
pi{stlp2

where pl and p2 are propositions referring to variables of the program,
and st is a statement. The intuitive meaning of the form is: if pl is
true before the execution of gt and the execution of gt terminates, then
P2 is true after the execution of gt. pl is called pre-condition, p2 1is

the so-called post-condition or consequence.

The axiom (more precisely the axiom schema) for the assignment statement

reads:

pﬁ{x::e}p pi means: replace all free occurrences of z in p by e
In fact, pZ is the weakest possible precondition given p. Conversely,
given pz as the precondition, p is the strongest possible consequence.
That is the schema captures all there is to know about the assignment
statement. A specific instance of the schema would be:

O<x+1 {x:=x2+1} 0<z

Note that in order to use the schema it is not necessary to refer to the

denotation of zr=x+1.

The definition of the compound statement takes the form of a rule of in-

ference and reads:

IF p1lstylp2 AND palstyips

THEN pl{st;;stslp3

MAIN APPROACHES TO FORMAL SPECIFICATIONS 19

For a full language definition there will usually be an axiom per primi-
tive statement and a rule of inference per composite statement:; in ad-
dition, there are some general rules which have not been exemplified in

this section.

The structure of the proofs reflects the syntactic structure of the pro-

gram text, as one would hope.

There is a simple relation between the discussed axiomatic approach and
a corresponding definition using mathematical semantics. As already men-
tioned the axioms and rules of inference can be interpreted as theorems
within mathematical semantics. In particular we interpret the new pro-
positional form pi{et}p? as follows. Assume for the moment that pl and p2
are expressions that are also valid expressions in the programming lan-

guage, denoting truth values.
plistip2 = Mlp11(o) > Mlp2(Mletl(c))
for all o for which M[st] is defined, that is s+ terminates.

The various axioms and rules of inference may now be rewritten according
to the above interpretation and proven with respect to the definitions

of mathematical semantics (see [Manna 72al).

Neither the generation of the proof nor solving the termination problem
can be completely mechanical, since both are in general undecidable. How-
ever, there is hope that, for frequently occurring program structures,
the problems can be solved effectively by algorithms. Proposals to solve
the termination problem frequently rely on an indirect proof (in partic-
ular on finding a quantity which decreases as the computation proceeds,

but cannot decrease indefinitely).

The subject of axiomatic definitions and program verification has stimu-
lated widespread research activities due to the intellectually pleasing
content and its potential economic value. The belief in the value is
based on the vision that program testing can ultimately be replaced by

systematic program design and verification and possibly to some extent

automated.

There are many examples of correctness proofs of specific programs (see

[London 70al) and several automated verification aids (e.g. TKing 75a,

20 FORMAL SPECIFICATION META-LANGUAGE

Boyer 79%a, Good 78a, SVG 7%a, Lee 8l1a]). The existing examples are most-
ly small programs for complicated mathematical problems, Some of the
algorithms published in the respective section of the CACM are certified
by proofs. An attempt to axiomatize a full language, Pascal, has been
undertaken by Hoare and Wirth [Hoare 734] resulting in the definition

of a large subset (see also [TLondon 78a] on Euelid).

Intimately connected to axiom systems for programming languages is the
issue of programming style and development methodology. The essence
of structured programming 1is the recommendation to use only language
constructs which have simple axioms (this excludes, for example, the
general form of goto statements, although restricted forms may well
lead to simple correctness arguments). As it turns out, the process of
developing a program is intimately connected to the generation of the
corresponding correctness proof. Thus we obtain guidance on how to
develop programs rather than merely learn how to prove ready made pro-

grams correct.

There is, at present, an enormous gap between, on the one hand, current
programming practice and the complexity of the software being produced
and, on the other hand, the vision and capabilities of the systematic
techniques described. The proper discussion of the dilemma needs a
larger context than has been given in this section and will therefore

be deferred to the next section.

1.4 CHALLENGES

The scope of this section excludes topics considered to belong to the
theory of computation. With this restriction in mind we may certainly
say that the definition of programming language semantics is not an end
in itself; consequently, the discussion of research challenges cannot
be isolated from the intended applications of semantic definitions (that
is precise definition of real 1ife languages, compiler development, pro-

gram development and language design).
There are two topics that should be clearly separated to avoid confusion:
firstly, the semantic analysis and formal definition of existing program-

ming languages:; secondly, the design of novel, useful language constructs.

Current programming languages are a compromise between the desire to pro-

MAIN APPROACHES TO FORMAL SPECIFICATIONS 21

provide the most comfortable and elegant language for the human user and
the aim to construct efficient implementations on given systems with
known compiler technology. Furthermore, the more intensely used lan-
guages undergo an evolution over the years to support new system func-
tions. It is now important to design languages with the aim to make
formal correctness proofs easy or to fit into the framework of mathema-
tical semantics. However, it would be a mistake to conclude that existing
languages are no longer worth the attention of computer science. In view
of the heavy investment by users as well as manufacturers it is not
likely that the current programming languages will change radically in
the near future. Thus the carriers of new programming style will be, at
least for some time, current languages. The initial motivation of formal
semantics, precise definition to achieve portability, is still valid:
there is a need for semantic analysis of C0B0OL (the most widely used pro-
gramming language). A comparative language study on the semantics level
would be quite valuable [Strachey 73al. ¥inally, there should be a com-
prehensive representation of the existing implementation techniques re-

lated to formalized semantic concepts.

Whereas BNF, or variations thereof, are widely accepted as a means to
define a concrete syntax, there is no such widespread consensus for any
of the semantic description schemes. Finding such an agreed semantic

meta-language should be treated as an urgent problem.

Next I wish to offer a top down argument to justify the major long range
goals of the present subject. Firstly, we can observe that over the past
two decades the speed and storage capacity of computers have been in-
creased roughly at a rate of about 40 percent a year. This trend has been
balanced by a similar decrease of cost per operation and per storage
unit. Similarly the size of system~code (operating system, compilers,
etc.) has increased exponentially as well. However, in this case no
balancing trend of decreasing cost per line~of-code can be observed.
Furthermore, we will not only have to master greater quantity but larger
complexity as well. We conclude that software production 1is or soon
will be the Dbottleneck for the use of computers unless some progress

is made on three general research directions promising to improve the

situation:

1. Advance Automatic Programming
2. Remove Testing in Favor of Correctness Proofs

3. Advance Modular Programming

22 FORMAL SPECIFICATION META-LANGUAGE

By the first research area we mean to extrapolate the development of
"very high level languages” by introducing more abstract data-types (e.q.
sets) and their associated operations; relax restrictions in current lan-
guages and introduce more powerful control structures. The intent is, of
course, to automate part of the production process: in short, to follow
the trends suggested under the term "very high level language”. Topics
one and two are intimately connected. As J.Schwartz [Schwartz 75al ob-
serves, it is much easier to prove the correctness on an abstract level
rather than on the level of detailed representations. If the abstract
program can be compiled, the task of the programmer is completed, pro-
vided the compiler has been proven as well. Thus the step from the ab-
stract algorithm to its ultimate representation in machine form is proven
once and for all by a compiler proof. The author believes that research
in correctness proofs must therefore be investigated hand in hand with
the development of very high level languages. ®ven under the assumption
that the level of programming languages can be raised, correctness
proofs will remain sufficiently complicated to warrant machine assistance
in the form of proof generators and checkers. Although study of the lat-
ter subject has advanced over the last decade, it has not yet reached

the stage of applicability in practical programming.

Various subgoals may be envisaged, e.g. conversational systems like EFFI-
¢Y TKing 75a] which offer a combination of generalized testing by symbol-
ic execution and some assistance for generating proofs. A notorious pro-
blem in designing large pieces of software is modularity. It is rarely
the case that existing modules can he used to build new systems without
major trimming. As J. Dennis [Dennis 75a] observes, the success of modu-
lar modular programming not only depends on how modules are written, bhut
also on the characteristics of the linguistic level at which these mo-
dules are expressed. Dennis supports this observation by a detailed anal-
ysis of some high level languages. Modules are usually expressed by pro-
cedures, subroutines or programs (depending on the specific languages
used). In short, we have to look for constructs other than procedures
and the related traditional ways to compose procedures into larger units,

in order to achieve the desired modularity,

In conclusion we ask what is the relevance of formal semantics to these
issues? Firstly, axiomatic semantics provides the proof theory for pro-
gram correctness proofs, and thus is also the basis for the mechanical
aids in this area. It is difficult to propose useful axioms and rules

of inference without having an interpreted system (such as provided by a

MAIN APPROACHES TO FORMAL SPECIFICATIONS 23

mathematical or operational system).

In search for new language constructs (such as a useful notion of mo-
dule), formal semantics ought to provide the framework for formulating
the problem and for stating and justifying solutions [Strachey 73a].
So far, most research in formal semantics has been concerned with con-
structs as found in traditional languages. ("Here is a piece of language,
what does it mean?") In order to tackle new applications we should start
from the other end: construct novel dJdenotations and associate a name

after we are satisfied with their properties.

