Formalising Oblivious Transfer in the Semi-Honest
and Malicious Model in CryptHOL

Abstract—Large scale implementations of Multi-Party Com-
putation (MPC) protocols are becoming practical. Thus it is
important to have strong guarantees for the whole development
process, from the underlying cryptography to the implementa-
tion. Computer aided proofs are a way to provide such guar-
antees. CryptHOL provides a formal probabilistic programming
framework, embedded in the Isabelle/HOL proof assistant, for
reasoning about cryptographic proofs.

Oblivious Transfer is central to realising MPC. In this work,
we formalise protocols for 1-out-of-2 Oblivious Transfer (OTgl)
in both the semi-honest and malicious models. We then extend
our semi-honest formalisation to OT} which is a building block
for our proof of security for the GMW protocol.

Our semi-honest OT is constructed from Extended Trapdoor
Permutations (ETP), we first prove the general construction
secure and then instantiate for the RSA collection.

Index Terms—Multi-Party Computation, Oblivious Transfer,
Formal Verification, Isabelle/HOL, Malicious Security

I. INTRODUCTION

Multi-Party Computation (MPC) aims to provide protocols
for parties who wish to jointly compute functions over their
inputs while keeping their inputs private. Work on MPC can
be traced to Yao [22] where he posed and proposed the first
solution to the problem and shortly after Goldreich et al.
[11] where the GMW protocol was introduced. Initially MPC
was considered an intellectual curiosity among cryptographers
however advances in the last decade and improvements in effi-
ciency and increased demand due to data protection regulations
and industry needs mean it is now starting to be deployed in
the real world. For example it has been used for auctioning [5]
and private statistical computation, e.g., using Sharemind [4].

The potential large scale implementation of MPC means
it is of high importance to have guarantees of correctness
beyond the paper proofs which cryptographers have relied on
for many years. Despite the obvious value of paper proofs,
it is important to examine them under the lens of formal
verification in particular when modularisation and composition
is involved. It would be highly desirable to have ‘end-to-end’
machine checked verification of the entire process. We believe
the work required to achieve this can be partitioned into
two categories: 1) formally verifying the security properties
of the underlying cryptography, 2) formally verifying the
implementation of the protocols and algorithms. We consider
the first of these.

Oblivious Transfer (OT'), a two party protocol, is at the
heart of many MPC protocols. We consider 1-out-of-2 OT
(OT3) where the Receiver chooses to learn one of two pieces
of information held by the sender, and learns nothing of the
other piece, moreover the Sender does not learn the Receivers

choice. Our study of it here is motivated by its almost universal
use across MPC and its central role to Garbled Circuits
[23] and GMW. The GMW protocol allows for the secure
computation of any function that can be represented as a
boolean circuit. To achieve this OT} is required and thus
motivates our formalisation of OT} as a stepping stone to
GMW.

Security of MPC protocols is often proven in the simulation-
based paradigm, where one simulates the real world adver-
saries in an ideal world where security is guaranteed by
construction.

There are two definitions of security of differing strength.
First, the semi-honest model assumes the parties do not deviate
from the protocol description. This may appear to be a
weak definition, but it ensures there is no inadvertent data
leakage from the protocol and acts as an important baseline
of security. For example, if the server of one of the parties
was compromised and an adversary accessed the trace of
the protocol execution the adversary can learn nothing of the
party’s inputs beyond what can be learnt from the output. We
follow the exposition of Lindell [14] in the semi-honest setting.
The second, stronger, model is the malicious model where we
allow the adversary to fully control (corrupt) one of the parties.
Here we formalise the definitions of malicious security from
Goldreich [10] and Lindell and Hazay [13].

We formalise our proofs in the theorem prover Isabelle/HOL
using CryptHOL [3] which provides an embedding of a prob-
abilistic programming framework. We model the views (real
and ideal) of parties in protocols as probabilistic programs
and define semi-honest and malicious security with respect to
these programs. We then instantiate the views for the protocols
we consider and prove our definitions of security are satisfied.
An increasing number of proofs have been completed using
CryptHOL [6, 7, 18, 19].

A. Contributions

We split our contributions based on the security model they
relate to. The diagram in Fig. 1 shows how our formal theories
and contributions relate to each other.

a) Semi-honest model:

o We provide formal abstract simulation-based definitions
for the security of MPC. (Section III-A)

o We prove security of a OTj protocol [8] constructed
from a general Extended Trapdoor Permutation (ETP).
We instantiate this for the RSA collection. (Section IV)

o We show how OT} is constructed from OTj. (See the

formalisation)

o We prove security of AND and XOR gates in the GMW
protocol. (Section V)

b) Malicious model:

o We provide formal abstract definitions of security. (Sec-
tion VI)

o We prove security with respect to these definitions of a
protocol that realises OT} [13]. (Section VI)

Extending our work to maliciously secure OT} and GMW
is left as future work. From our experience of formalising
proofs in both semi-honest and malicious models we believe
a full formalisation of malicious GMW would require another
major proof effort. In particular one would need to expand [7]
to Zero Knowledge protocols and work in the n party setting
which is thus far not considered in CryptHOL.

All definitions and theorems presented in this paper have
been checked by the Isabelle/HOL proof assistant. In addition
all statements made in this paper are only slight adaptations
from the Isabelle statements, we only slightly modify their
syntax for ease of reading. We believe that if the reader can
parse the statements presented in the paper then they would be
able to parse the formal statements in our theory. Our complete
formalisation can be found at [2].

B. Related work

Semi-honest security has been considered in EasyCrypt in
[1] where the security of Garbled circuits is considered. The
authors give a formal definition of simulation-based security
using a game defined as a probabilistic program. As described
in Section III-A we prove their definitions are equivalent to
ours. The challenge faced in the formal verification is to
provide definitions that are equivalent to the paper definitions.
By showing our definitions are equivalent to the ones provided
in [1] we add confidence to this equivalence.

The malicious model we consider has been formally studied
in [12] where the authors prove security of Maurer’s protocol
[20]. This was the first work to consider malicious security
however their formalised definitions were not directly from
the literature. The authors proved a meta-theorem (proven
on paper) which showed their formalised definitions implied
the traditional definitions of malicious security. This is not
necessarily a weakness of the work as in proving the meta
theorem a new approach is proposed; nonetheless one would
prefer a completely formalised approach. Moreover, only
information theoretic security was considered whereas we
consider reduction based proofs. Also [12] does not consider
the asymptotic case unlike our work.

Work using the CryptHOL framework to date is limited
meaning this work provides a considerable contribution for
others to learn from. Originally CryptHOL was used for game-
based proofs [19] and has recently been used for constructive
cryptography [18] and commitment schemes and >-protocols
[7]. Butler et al. [6] used CryptHOL for MPC protocols in the
semi-honest model including a proof of the Noar-Pinkas OT3
protocol, this work builds on their definitions to make them
more abstract and reusable.

To the best of our knowledge none of the protocols consid-
ered in this paper have been formalised in any theorem prover.

We believe our work advances the state of the art in two
separate directions:

(i) We extend the work of Butler et al. [6] by giving more
modular proofs of oblivious transfer protocols in the semi-
honest setting, building OT} from OTy, and proving security
of the GMW protocol.

(ii)) Moreover we investigate the malicious security model
for MPC by proving the OT} of [13]. This complements the
work of Haagh et al. [12] in that the formalisation consider
the same security definitions. However our formal proof is for
the full simulation-based definition, rather than an intermedi-
ate non-interference based definition that was formalised in
EasyCrypt and thus we lack the need for any paper proofs.

C. Outline of Paper and Formalisation

An outline of the paper can be seen in Fig. 1. Here
dashed boxes represent abstract definitional theories — these
are mainly definitional however we also prove some general
lemmas that reduce the workload in the instantiated proofs.
Solid boxes represent proofs of security and arrows represent
imported theories. We provide formalisation for the whole of
Fig. 1.

The major advantage of providing and then instantiating
abstract definitional theories is a human checker only needs to
verify that these definitions correspond to the correct security
notions.

In our formalisation we first consider security in the con-
crete setting. Here we assume a constant security parameter
is implicit in all algorithms that parametrise the framework.
We prove all security notions in this setting first, by showing
a reduction for example, before utilising Isabelle’s module
system to prove security in the asymptotic setting — here we
reason about negligible functions in the security parameter.
More details about this part of our formalisation are given in
Section IV-E.

II. CRYPTHOL AND ISABELLE BACKGROUND

In this section we follow [7] and briefly introduce the
Isabelle notion we use throughout and then highlight and
discuss some important aspects of CryptHOL. For more detail
on CryptHOL see [3]. The full formalisation is available at
[16].

A. Isabelle notation

For function application we write f(z,y) in an uncurried
form for ease of reading instead of f x y as in the A-calculus.
To indicate that term t has type 7 we write t :: 7. Isabelle
uses the symbol = for the function type, so a = b is the
type of functions that takes an input of type a and outputs
an element of type b. The type ‘a denotes an abstract type.
The implication arrow — is used to separate assumptions
from conclusions inside a closed HOL statement. Sets, of type
o set are isomorphic to predicates, of type oo = bool via the
membership map €. We write ® to represent multiplication in
the group.

Semi-Honest Adversaries |

1 Secret Sharing defs !

...................

OT} defs o

Malicious Adversaries

(Section III-B) !

OT}{ from OTy

OT} from HCP [14]
(Section IV-B)

RSA [10]

(Section IV-D)

(formalisation)

OT? [13]
(Section VI-B)

GMW from OT}
(Section V)

Fig. 1. Outline of the formalisation for the paper.

B. CryptHOL

CryptHOL [3] is a framework for reasoning about cryp-
tography in the computational model that is embedded inside
the Isabelle/HOL theorem prover. It allows the prover to
write probabilistic programs and reason about them. The
computational model is based on probability theory and in
particular uses probabilistic programs to define security — this
can be seen for the construction of games in the game-based
setting or the real and ideal views in the simulation-based
setting.

To build the probabilistic programming framework
CryptHOL uses the existing probability theory formalised
inside Isabelle to define discrete probability distributions
called sub probability mass functions (of type spmf). These
can be thought of as probability mass functions with the
property they do not have to sum to one — we can lose some
probability mass. This allows us to model failure events and
assertions.

1) Writing probabilistic programs: CryptHOL provides
some, easy-to-read, Haskell-style do notation to write prob-
abilistic programs where do{z <+ p; f(x)} is the prob-
abilistic program that samples from the distribution p and
returns the spmf produced by f. The do notation desugars
to p > (Az. f(z)). We can also return an spmf using the
monad operation return. See Fig. 5 for an example.

Proofs of security are mainly completed by manipulating
the appropriate probabilistic programs. While the proofs that
each manipulation is valid are not always accessible to non-
experts, the effect of each manipulation can be easily seen and
recognised as they are explicitly written in the do notation.

2) Sampling: Sampling from sets is important in cryptog-
raphy. CryptHOL gives an operation uniform which returns a
uniform distribution over a finite set. We use two cases of this
function extensively: by wuniform(q), where ¢ is a natural,
we denote the uniform sampling from the set {.. < ¢}
and by coin we denote the uniform sampling from the set
{True, False} — a coin flip.

3) Probabilities: We must also be able to reason about the
probability of events occurring. So, P[Q = z] denotes the

subprobability mass the spmf) assigns to the event x.

4) Negligible functions: To reason about security in the
asymptotic case we must consider negligible functions. These
were formalised as a part of CryptHOL. A function, f
(nat = real) is said to be negligible if

(Ve > 0. f € o(Az.inverse(x®)))

where o is the little o notation. We discuss the use of such
functions in our proofs in Section I'V-E.

5) Module System: CryptHOL extensively uses the module
system available in Isabelle — called locales. Locales allow
the user to prove theorems abstractly, relative to given as-
sumptions. These theorems can be reused in situations where
the assumptions themselves are theorems. In our case locales
allow us to define properties of security relative to fixed
constants and then instantiate these definitions for explicit
protocols and prove the security properties as theorems.

III. SEMI-HONEST SECURITY FOR MPC

In this section we show how we formalise the definitions
of security in the semi-honest model and how we define
secret sharing schemes and their correctness. We follow the
definitions of security given by Lindell [15].

A. Two party protocol security

A functionality is a function that maps inputs to desired
outputs for a defined protocol problem. In this section we
show our formalisation for the case where the functionality is
deterministic (as OT is deterministic); for the case where the
functionality is non-deterministic we must extend the views
in the real and ideal world to also include the output of
the protocol — we provide these extended definitions in our
formalisation.

Intuitively we say a protocol is secure if whatever can be
computed by a party can also be simulated from only the input
and output of the party, that is the output of the real view and
the simulator are indistinguishable. This simulation of the real
running of the protocol means no information is leaked during
its execution.

locale semi_honest_det =
fixes funct :: ‘msg; = ‘msgs = (‘out; X ‘outg) spmf
and protocol :: ‘msg; = ‘msge = (‘out; X ‘outs) spmf

and R; :: ‘msg; = ‘msge = ‘view; spmf
and S; :: ‘msg; = ‘out; = ‘view; spmf
and Ry :: ‘msg; = ‘msge = ‘viewg spmf
and Sy :: ‘msge = ‘oute = ‘views spmf

Fig. 2. The locale constants for defining semi-honest security for deterministic
functionalities.

To define security we consider the real/ideal world
paradigm. Let 7 be a two party protocol with inputs (z,y)
and with security parameter n. The real view of the i*" party
(here i € {1,2}) is denoted by

view (z,y,n) = (w,r",m},...,m})

where w € {z,y} and is dependent on which view we are
considering, r* accumulates random values generated by the
party during the execution of the protocol, and the m; are the
messages received by the party.

A protocol 7 is said to securely compute f in the presence of
a semi-honest adversary if there exist probabilistic polynomial
time algorithms (simulators) Sp, .S such that,

{Sl(ln7x7f1(x’y))} é {viewf(x,y,n)} (1)

{S2(1",y, fo(,y)} = {view (z,y,n)} 2)

where = denotes computational indistinguishability. One

limitation of CryptHOL is the inability to reason about poly-
nomial run time, or in fact the feasibility of adversaries
at all, thus one must manually verify that the simulators
and any constructed adversaries run in the required time. In
[6] the authors defined computational indistinguishability in
Isabelle modulo run-time constraints, however here we follow
the approach of [17] and consider advantages. Advantages
can be thought of as analogous to indistinguishability as
they define the probability (the advantage) of a distinguisher
distinguishing two probability distributions — in our case the
real and simulated views.

We begin by fixing the required constants to make our
definitions, we do this using Isabelle’s module system (called
locales). Fig. 2 shows the locale semi-honest-det (for
semi-honest deterministic functionalities); it fixes funct and
protocol to represent the probabilistic programs defining the
output of the required functionality and the protocol respec-
tively and R;, Sy, Rs, S to represent the real and simulated
views of the parties.

A protocol is correct if it is functionally equivalent to the
functionality it implements.

Definition 1 (Correctness):

correct(my, mg) = (protocol(my, mg) = funct(my, mg))

Here m; and mo are the inputs to the protocol for Party 1
and 2. The constant protocol is a probabilistic program that
describes the execution of the protocol, returning each parties’

output for the protocol. The exact probabilistic program defin-
ing the protocol will depend on which protocol we are using
to realise a functionality.

In the case of OTy the functionality is defined as.

functop: ((mo,my),0) =

return(_, if o then my else mp). (3)

Later, in Protocol 1, we will see a protocol that realises this
functionality.

To formally prove security we are required to construct
a simulator for each party that receives as input the input
message of the party and the output of the party, as given by
the functionality. To construct the ideal view we must sample
from the functionality and use the binding operator (I>) to
hand it to the simulator as follows:

ideal; (my, mg) = funct(my, mg) > (A(out;, outs).
Si(my,outy)).

The right hand side of the statement can be read as: the
output distribution of the simulator (S;) on input m; and
the output for Party 1 (out;) that has been sampled from the
functionality. More explicitly, using the monadic do notation
this reads:

do {(outy, outg) < funct(my, mg);S;(my, outs)}.

Information theoretic security requires the real and simu-
lated views to be equal. We define this for Party 1 below:
Definition 2 (Information theoretic security, for Party 1):

inf _theoretic_P; (my, mg) =

(R] (m1 s mg) = idealz (m1 s mg))

We make the analogous definition for Party 2.

When information theoretic security cannot be proven we
show that the probability of distinguishing the real and sim-
ulated views is small. In the asymptotic setting we show this
probability is a negligible function in the security parameter.
We make the initial definitions in terms of the probability
(advantage) a distinguisher has of distinguishing the real and
simulated views. We define the advantage of a distinguisher,
D, for Party 1 as follows.

Definition 3:

adv_P;(my,mg, D) =
(IP[(R;(ms, mg) > D) = True]
—P[(idBGZJ (m1,m2) > D) = T’rue]‘)

The right hand side of the above definition is the for-
malised version of writing |Pr[D(Rq(mi,msa)) = 1] —
Pr[D(S1(m1, fi(m1,msa))) = 1]|, which is more commonly
seen in the literature. We also provide the analogous definition
for Party 2.

The definitions in this section have been extracted from [6]
and formalised in a modular way so they can be imported into
any theory.

In [1] Almeida et al. define semi-honest security using a
game where a bit is flipped to determine which view the
distinguisher is given. As well as the security definitions we
provide above, we also define in Isabelle the definitions from
[1] and prove the two are equivalent.

B. Secret sharing schemes

Secret sharing schemes [21] are at the core of MPC pro-
tocols. To formalise such schemes we provide two constants
share and reconstruct that define the sharing scheme and a
third, a set, evaluate which represents the set of functions we
wish to realise (in our instantiation of the GMW these are
AND and XOR). We give their types below.

share :: ‘a = (‘share x ‘share) spmf “4)
reconstruct :: (‘share X ‘share) = ‘a spmf Q)
evaluate = (‘a = ‘a = ‘a spmf) set (6)

The correctness property requires that reconstructing a
shared input returns the original input.
Definition 4 (Correctness on secret sharing):

correctshare (input) =
(share(input) > (A(s1, s2).reconstruct(sy, $z))

= return(input))

In the instantiations we define the set evaluate and prove
correctness for all its elements with respect to Definition 1.
The security properties of the protocols that use secret sharing
are proven with respect to the definitions in the previous
section.

We use the notation given here for the views and advantages
throughout the paper however we add subscripts to note which
protocol we are considering for clarity.

IV. 1-0UT-0OF-2 OT USING ENHANCED TRAPDOOR
PERMUTATIONS

In this section we present our formalisation of the protocol
realising OTy using a general Enhanced Trapdoor Permutation
(ETP) [8]. In the proof of security one must assume that such
ETPs and thus the associated Hard Core Predicates (HCPs)
exist.

A. ETPs and HCPs

We recap the paper based definitions of an ETP and refer
the reader to [15] (Section 4.3) and [10] (Appendix C.1) for
more details.

A collection of trapdoor permutations is a set of permuta-
tions (f,) along with four algorithms I,S,F and F 1, such
a collection can be thought of as a collection of one way
permutations with a trapdoor with which the inverse can be
obtained easily.

e I(n) samples an index « of a permutation, f,, as well

as a corresponding trapdoor 7 for the permutation,
(o, 7) « I(n).

o S(«) samples a uniform element in the domain of f,.
e F performs the mapping of f,, F(a,z) = fu(x).

o F~! computes the inverse of fo, F~(a,7,9) = £ 1 (y).

The definition of S provided in [15] and [10] gives values
of randomness as inputs meaning S is considered to be
deterministic. However, there is no need for such input in our
formalisation as we model S' (and I) as probabilistic programs
that toss their own random coins.

Associated with an ETP is an HCP, B. We assume such a
B exists and fix it in the locale,

B :: bitstring = ‘range = bool.

Informally, B is an HCP of f if, given f(«, x) for a uniformly
sampled z, an adversary cannot distinguish B(a,x) from a
random bit.

Our formalisation of ETPs fixes five constants: I, domain,
range, f and B and defines S as uniformly sampling from the
range. We make the following assumptions on the constants.

Assumption 1: Assumptions made on the fixed constants 7,
domain, range, f and B to form an ETP.

1) domain(a) = range()
2) finite(range(a))

3) range(a) # {}

4) bij_betw(f, domain(a), range(a))

Here « is always sampled from I and bij_betw(f, A, B)
denotes that f provides a bijection between the sets A and B
— as we have domain(a) = range(a) this implies f is a
permutation.

To formally define the security property of HCPs we require
we define the HCP advantage advycp which captures the
probability that A wins the HCP game. The aim of the
adversary A in the game is to guess the value of B.

Definition 5: To define advgcp we first define the HCP
game as follows,

HCPyome(A,0,bs,D) =do {
(o, 7) + I
x <+ S(a);
let b= B(a, F~Y(a, T, 1));
b + Ala,0,by,2,D);
return(b =b')}

We then define the HCP advantage as,
advgop(A,o,b,,D) =
|P[HCPyome (A, 0,by, D) = True] — §|
In the HCP game A receives « as input and o and b, on
its advice tape. In addition we must pass z to A also, this is

because we do not carry around the randomness given to S
however we must allow the adversary access to x.

B. Realising OTy using ETPs

We consider the OT21 protocol from [8] which is described
in Protocol 1.
Protocol 1: P has input (bg,b1) € {0,1}, P5 has input
o € {0,1} and n is the security parameter.
1) P; samples an index and trapdoor, (a,7) < I(n), and
sends the index, «, to Ps.
2) P, samples S twice, z, + S(a), y1-» < S(a) and
sets y, = F(a, z,).
3) P, sends yg and y; to P;.
4) P, computes g = F~Ya,7,y0), v1 = F~ (o, 7,91),
Bo = B(a, o) ® b and p1 = B(a,z1) & by.
5) Py sends Sy, By to Ps.
6) P, computes b, = B(a, z5) & By
Intuitively, Party 2 samples y,, 41—, Where it only knows
the pre-image of one. Party 1 then inverts both pre-images (as
it knows the trapdoor) and sends both its input messages to
Party 2 masked by the HCP of the inverted pre-images. Party
2 can obtain its chosen message as it knows the inverse of
the pre-image but learns nothing of the other message as it
cannot guess the HCP (with probability greater than %). Party
1 learns nothing of Party 2’s choice bit as it only receives
Yo, Y1—o Which share an equal distributional.
We formalise the execution of the protocol with the follow-
ing probabilistic program. Note the security parameter does
not appear as we instantiate it (as an input to [) later.

protocolOTg’ETp ((by,b1-5),0) =do {
(a,7) « I
Zo < S(a);
Yi—o < S(a);
let Yo = F((X7l‘0);
let v, = F~ Yo, 7,90);
let x1_o = Fﬁl(aa’ra yl—o');
let By = B(a,) @ by;
let ﬁlfo' = B(Oz,ZEl,U) @ b17<7§
return((), if o then B(a,z1—o) ® B1—0o
else B(a, 25) ® By)}

Using this definition and the functionality given in Eq. 3
we show correctness of Protocol 1.
Theorem 1:

protocolors pre((bo, b1),0) = functor:((bo, b1),0)

Proofs of correctness are proven by unfolding the relevant
definitions and providing Isabelle with some hints on how
to rewrite some terms. Depending on the protocol Isabelle
requires more or less help with the rewriting steps, more
help is needed when the steps require non trivial assumptions.
For example we had to prove certain constructed terms are
elements of the group when proving correctness of Protocol
4.

C. Proving security

To show the protocol is secure in the semi-honest model
we consider each party in turn and construct an appropriate

R2,OT21,ETP ((bo,b1),0) = do {
(a,7) « I
e +— S(a);
Y1-o < S(a);
let Yo = F((/V75L‘U)§
let o = F~Y(a, 7, ys);
let 115 = Fﬁl(aa’ra yl—a);
let By = B(a, 2,) ® (if o then by else by);
let f1—o = B(a,z1—5) @ (if o then by else by);
return(ma, (Bavﬁl—a))}

S2,OT2‘ ,ETP(07 by) = do {
(o, 7) < I
e — S(a);
Y1-o < S(a);
let x1_5 = F_l(a7 T, y1—0)§
let By = B(a,y) @ by;
let /81—0 = B((‘y’?xl—o) D bl—o;
return(o, o, (By, B1-0))}

Fig. 3. The real and simulated views for Party 2.

simulator. Here we will mainly focus on the proof of security
for Party 2 as it is more interesting from both a cryptographic
and formal methods point of view. We follow the proof method
from [14] (Section 4.3).

To show security for Party 2 we must show that
adv_Py or: prp is negligible. In the first instance we
show the advantage is less than or equal to 2.advycp.
When we instantiate the security parameter we show that
adv_P&OTzz, grp 1s negligible (as the HCP advantage is
negligible), we discuss this in more detail in Section IV-D.
The simulator, along with the real view, for Party 2 is given
in Fig. 3.

For the case where b;_, = False (formally this is
(if o then by else b;) = False) we have information theo-
retic security.

Lemma 1: Assume bi_, = False then we have

Ry or1,8mP((bo, b1),0) = idealy 011 prp((bo,b1),0)

This implies that adv_Ps o1y prp((bo,b1),0,D) = 0
when by;_, = Fualse. It is left to consider the case where
bi_, = True. We construct an adversary, Agcp (shown in
Fig. 4), that breaks the HCP assumption if D can distinguish
the real and simulated views — that is we show a reduction
to the HCP assumption. We show that the advantage this
adversary has against the HCP assumption is the same as
the advantage a distinguisher has in distinguishing the real
and simulated views. The analogous paper proof would look
for a contradiction by constructing the HCP adversary after
assuming a distinguisher can distinguish the views. We bound
the advantage of Party 2 as follows.

Lemma 2: Assume by_, = T'rue then we have

adv_Py ors grp((bo, b1),0,D) =
2 - advgcp(Amcp, 0, bs, D)

Where ‘> denotes multiplication of the real numbers.

Ancp(A,0,b,,D) = do {
B1_o < coin;
o < S(a);
let B, = B(a, x5) ® by;
d« D(U7O‘7/80'7/8170');
return(if d then B;_, else =B;_5)}

Fig. 4. The adversary used to break the HCP game when showing security
for Party 2.

The proof of Lemma 2 is technical and involved. We for-
mally defined a number of intermediate probabilistic programs
that bridge the gap between the two sides of the equality
incrementally. Our formal proof however still follows the
overall structure of the proof in [15]. One proof step was
formally more difficult to reason about than the others. This is
the first step of the proof in [15] (first equality of p14) where
we are required to split the probability of Agcp winning
the HCP game into two cases, dependent on the coin flip
Apgop makes (81_,). The formal proof is challenging as
B1—o 1s a bound variable inside the probabilistic program that
defines Ao p. Accessing and dealing with this requires some
underlying probability (in particular results on integration)
theory formalised in Isabelle. More precisely, we are required
to prove that extracting the sample from the probabilistic
program is legitimate so the cases can be reasoned about.

Using Lemmas 1 and 2 we bound the advantage for Party
2.

Theorem 2:

adv_Py ori grp((bo, b1),0,D) <
2~ad’UHCP(AHCP) g, bo’7 D) (7)

For Party 1 we are able to construct a simulator,
SLOT&’ETP, in the same manner as in [15] and show it is
equal to the real view.

Theorem 3: For Party 1 we have information theoretic
security.

inf_theoretic_P; ,OT} ,ETP ((bo,b1),0)

Together Theorems 2 and 3 show Protocol 1 is secure in
the concrete setting.

D. Instantiating for RSA

It is known that the RSA collection of functions provides an
ETP (see [9] Section 2.4.4.2 together with [10] Section C.1).
We formalise this RSA collection and instantiate it for Protocol
1. We fix as a constant a set of primes (prime_set :: nat set)
that we can sample the parameters for RSA from and define the
algorithms that make up the ETP for RSA. The permutation
here is,

f((N,e),z) = z¢ mod N 8)

for appropriately chosen N and e.

To show security we use the generality of our work from the
previous section and Isabelle’s module system. In particular to
realise the whole proof of security for the RSA instantiation

we only need to prove that Assumption 1 holds in the new
context. The most challenging of these assumptions to prove
is that the RSA function (Equation 8) is a permutation.

It is often the case when formalising paper proofs that
detailed proofs of obvious results are hard to find and while
this is a well known result we struggled to find a proof in
the literature with sufficient enough detail to be useful in the
formalisation.

The map’s domain and range are equal thus we must show
that for any x, y in the domain (or range), if f(z) = f(y) then
we have z = y. Formally we prove the following.

Lemma 3: Assume P and () are primes, P # @, e and
(P—1)-(Q—1) are coprime, z,y < P-Q and 2 mod(P-Q) =
y¢ mod(P - Q) then we have that © = y.

Corollary 1: Assume « is the index outputted by I, then
we have

bij_betw(f (a), domain(a), range(a)).

This is the main proof statement we require to import our
proof from the general case to the RSA instantiation. One
assumption we must carry over, of course, is the fact that
such a HCP (B) exists for the RSA collection. The security
results are as follows.

Theorem 4: For the ETP constructed from the RSA collec-
tion we have

inf_theoretic_P; o1 rsa((bo,b1),0)

and

adU_P2,OT21,RSA(((b07 b1>7 U)v D)
<2-advgcp(Aucp,0,bs, D)

This has shown that, assuming an HCP exists for RSA we
can securely compute OT,} in the semi-honest model using
the ETP obtained from the RSA function.

This proof highlights the strengths of Isabelle’s module
system. Initially we completed the proof in full from scratch.
Subsequent leveraging of the module system allowed us to
halve the proof effort (in lines of proof). Anyone wishing to
prove further instantiations only needs to define the ETP and
prove that the assumptions given in Assumption 1 are valid.
In fact no security results need to be proven at all in future
instantiations. This highlights a main advantage of working
with proof assistants such as Isabelle, future workload can be
significantly reduced using a modular approach.

E. The RSA instantiation in the asymptotic setting

In this section we outline how we prove security in the
asymptotic setting.

Reasoning over the security parameter in the asymptotic
setting allows a closer equivalence to the pen and paper
security properties. One area where this is realised is in the
ability to more accurately define hardness assumptions. For
example in Theorem 4 we could only bound the advantage
of Party 2 by the HCP advantage. While this implies security
we would like to explicitly make the assumption that the HCP

advantage is negligible and thus show the advantage for Party
2 is also negligible.

We provide proofs in the asymptotic setting for all protocols
we consider — here we present the instantiation of RSA by
way of example.

In this instance we introduce the security parameter as an
input to the set of primes we have fixed, specifically we change
the type of prime_set from nat set to nat = nat set. Thus
the set of primes is now parametrised by the security parameter
— anatural’. Intuitively the security parameter can be thought
of as selecting which set of primes the ETP is defined over.

After importing the concrete setting parametrically for all
n, we see that all algorithms now depend explicitly on the
security parameter. Moreover, due to Isabelle’s module struc-
ture we are able to use results proven in the concrete setting
in our newly constructed asymptotic setting. Results from the
concrete setting can only be used once it has been proven that
the import is valid, something the user is required to do when
importing a module. This is similar to importing the general
proof of OTy using HCPs to the RSA instantiation.

We now prove the security results in the asymptotic setting.
First we show correctness is still valid and then that security
holds.

Theorem 5: The RSA instantiation of Protocol 1 is correct.

protocolors rsa(n, (bo,b1),0) = functors ((bo, b1),0)

The security parameter only appears as inputs to functions
where it is used. Equation 3 shows that the security parameter
is never required to define functy ;- Security is shown by the
following Theorem.

Theorem 6: For Party 1 we have information theoretic
security, that is

inf _theoretic_P; o1 rsa(n, (bo,b1),0)

and for Party 2, assuming we have
negligible(\ n. advgop(n, Agcp, by, D)) then we show

negligible(A n. adv_Py o1 psa(n, (bo, b1),0,D).

Thus we have shown the security results in the asymptotic
setting.

V. FORMALISING THE GMW PROTOCOL

The GMW protocol provides a method to securely compute
any boolean circuit. It does so by providing a method for com-
puting gates in the circuit securely — AND and XOR gates are
sufficient. The protocol achieves secure gate computation by
using secret sharing among the parties. Intuitively each party
splits their input into two parts (shares); keeping one share and
sending the other to the other party. The parties work together
through the circuit they want to compute, gate by gate. After
each gate computation each party holds one share of the output
of the gate.

We formalise the security results for computing AND and
XOR gates — AND and XOR form a universal set from which
we can realise the whole of MPC.

IThe algorithm I samples from this set, thus it is dependent on the security
parameter.

reconstructs,y (a, b)
= return(a @ b)

shareqy (x) = do {
a < coin;
return(a,z ® a)}

Fig. 5. The sharing and reconstruction algorithms used in the GMW protocol

A. Secret sharing

The input from each party to a gate is a bit, thus the parties
need to share their input bit between them.

To share a bit x a party flips a coin to obtain a bit, a. The
bit a is kept by the party and = @ a is sent to the other party;
this is often called xor-sharing. To reconstruct the two parties
compute the xor of their shares. The formal algorithms for this
can be seen in Fig. 5.

To show correctness we show that reconstructing a shared
input results in the original input.

Theorem 7:

CO?"’I“@Ctshare(;MW (I) :

B. Securely computing AND and XOR gates

We show how to securely compute an XOR and AND gate
using the GMW protocol. Assume Party 1 has input = and
Party 2 has input y, after sharing and sending the other party
the appropriate share Party 1 holds the shares (aj,as), and
Party 2 holds the shares (b;,by) — that is z = a1 @ by and
Yy = az D b2.

The GMW protocol provides sub protocols to compute XOR
and AND gates on the shared inputs (that have already been
shared between the parties).

To achieve secure computation of an AND gate we require
OT}. We take the protocol that realises OT} from [10]
(Section 7.3.3, p640) and adapt it for the case of OT}. The
functionality for OT}} is defined as,

functor; ((bo,0,b0,1,b1,0,b1,1),(co,c1))
= return((), bc[),cz) (9)

As in paper proofs of protocols of this kind — where one
uses the underlying security of another protocol — we would
like to reuse previous security theorems rather than construct
every proof from scratch. In particular here we want to use
the security results from OT. To achieve this modularity we
make assumptions on the security of OT} in the locale. We
assume the security results of the Noar Pinkas OT) which
is used in practical implementations of GMW, that is we
assume: correctness, information theoretic security for Party 2
and bound the advantage of Party 1. Using these assumptions
we prove the following security theorems for the construction
of OT} from [10].

Theorem 8: Assume that

adv_P; opi((mo, my),0,D) < Pradvor;
then we have

adv_Py op1(M,C,D) <3 - Pradvor; -

Theorem 9: Assume that
inf _theoretic_Py op;((mo, m1),0)
then we have
inf_theoretic_PQ)OTz (M, C).

Where M and C represent the inputs of OT}.

The protocol for an XOR gate is as follows.

Protocol 2: [XOR gate] To compute an XOR gate the parties
can compute the XOR of their shares separately, that is Party
1 evaluates a; @ ae and Party 2 evaluates b; @ bs.

There is no need for any communication between the
parties thus security is achieved. Correctness comes from the
commutativity of the XOR operation.

Securely computing an AND gate is more involved. The
functionality we want to evaluate is

funCtAND<(a17 a2)a (bla b2)) =do {
O 4+ coin;
return(o,0 @ (a1 ® by) A (ag ® b2))}.

Sampling o in the functionality results in both outputs being
uniformly distributed, failure to do this would mean one party
(in this case Party 2) would learn the result of the computation.
To realise this functionality we require OT}.

Protocol 3: [AND gate]

1) Party 1 samples o < {0, 1} and constructs s; as follows:

by | ba (a1 D bl) A\ (ag D bg) S

0] 0 Qg So =0 D ap
0 1 aq s1=0P o
1 0 Qs S9 =0 D g
1 1 Qs S3 =0 D ag

2) The parties compute an OT} with input (sq, s1, S2, 53)
for Party 1 and (by, by) for Party 2.

3) Party 2 keeps its output of the OT} while Party 1 keeps
.

The protocol is correct as both parties hold a share of
the output such that when xored together give the desired
result. Intuitively, security comes from Party 1 constructing all
possible results of the computation (in Step 1) and masking
it with the random sample o. The parties then use OT} to
transfer over one and only one of the possible values, the
value that Party 2 can decrypt to form their share.

We define probabilistic ~ programs for these
protocols and their respective functionalities;
protocolyor, functyor, protocol,y,, funct,y, — these

take the shares held by the respective parties as inputs.

We define evaluate = {evaluatesor, evaluate,y,} as the set
of functions we wish to consider — these are defined over the
original inputs (e.g. evaluate,y,(z,y) = return(z A y)). We
prove Protocol 2 and 3 are correct with respect to the secret
sharing. For example for the AND gate construction we prove
Lemma 4, that is sharing the inputs, executing the protocol
and reconstructing gives the desired evaluated result.

Lemma 4:

(sharegyw (z) > (A(81, $2). shareg,, (y)r>
(A(s3,584). protocol,n,((s1,83), (82,54))>
(M(S1, S2). reconstructs,., (S, 52))))

= evaluate,hm ("B7 y)) .

We show security for both gates. There is no communication
between the parties when computing the XOR gate thus
security comes easily. Here we focus on the AND gates
security.

We have information theoretic security of OT} for Party 2
thus we show information theoretic security for Party 2 of the
AND gate. That is we construct S, 5, such that Theorem 10
holds.

Theorem 10: Assuming the security results on OT from
Section ?? we have,

inf_theoretic_P, .xp((az, az), (b1, b2)).

To show security for Party 1 we show a reduction to the
security of OT}.
Theorem 11: Assume that

adv_Py o1 (M, (co, ¢1), D) < Pradvor;
then we have
adv_PLAND((al, az), (b1,b2), D) < Plad'UOTj-

Our proof of Theorem 11 is similar in construction to the
reduction we show for Party 1 of the OT} protocol in Theorem
8.

Theorems 10 and 11 show security in the semi-honest model
for the AND gate construction.

VI. FORMALISING MALICIOUS SECURITY

We now consider the malicious setting. We first formally
define malicious security and then prove an OT, protocol
secure with respect our definitions.

A. Formalising the definitions

In the malicious security model an adversary fully corrupts
one of the parties (recall we work in the two party setting)
and sends all messages on its behalf. There are however
adversarial behaviours we cannot account for even in the
malicious setting:

1) A party refusing to take part in the protocol.

2) A party substituting their local input.

3) A party aborting the protocol early.

It is well known the malicious model has these weaknesses.
Of these behaviours the second is most interesting. In the
malicious setting it is unclear what constitutes a parties correct
input to a protocol, a corrupted party may enter the protocol
with an input that is not equal to its proper input. In particular
there is no way to tell what the correct local input is compared
to the input claimed by the party. For further discussion of
these limitations see [10] (Section 7.2.3 p 626).

A protocol is said to be secure if the adversary’s behaviour
is limited to the three actions given above. We consider the
malicious security definitions from [10] (Section 7.2.3) and
[13] (Section 2.3.1 p 24/25) where an ideal and real world are
considered.

The ideal model uses a trusted party that ensures security
by definition — we let = be the input of Party 1, y be the
input of Party 2 and z be the auxiliary input® available to the
adversary. The ideal model is constructed as follows ([13]):

o Send inputs to trusted party: The honest party sends
its received input to the trusted party. The input for the
corrupted party is outputted by the adversary and given to
the trusted party (it could be abort, the adversary chooses
the input based on the original input and 2).

o Early abort: If the trusted party receives abort from the
corrupted party it sends abort to both parties and the
execution is terminated.

o Trusted party computation: The trusted party computes
the functionality using the inputs provided by both parties
and sends the corrupted party its output.

o Adversary aborts or continues: The adversary, upon
receiving its output, instructs the trusted party to abort or
continue. If abort is sent the execution is terminated, if
continue is sent the trusted party sends the honest party
its output.

o Outputs: The honest party outputs the output it received
from the trusted party, the corrupted party outputs noth-
ing. The adversary outputs any arbitrary function of the
initial input, auxiliary input, and the output given to it by
the trusted party.

The output of the ideal model, when Party ¢ is corrupted, is
denoted as IDEALy 4(.),i(x,y). This is the output of both
parties in the ideal model. The output of the real model
(REAL; 4(»),i(z,y)) is the output of each party in a real
execution of the protocol where all messages for the corrupted
party, ¢, are sent by the adversary. Informally, a protocol 7
securely computes f with abort in the presence of malicious
adversaries if for all A in the real model there exists a
simulator S that interacts with the ideal world such that
the IDEALf g(.y,i(w,y) and REAL; 4(,)(z,y) are indis-
tinguishable.

Here we show our formalisation of the security definitions
for Party 2, the formalisation for Party 1 is analogous. The
definition of correctness is the same as in the semi-honest
model, we do not redefine it here.

To make the definitions we fix as constants in the locale;
the functionality funct, the real execution mal,c,,, and the
simulator S = (S, S2) — this is the simulator that interacts
in the ideal model. In a security proof we must explicitly define
these constants.

For clarity we define the trusted party as the functionality.

trusted_party(x,y) = funct(z,y) (10)

2This is a priori information.

ideal_modely (z,y, z, A) = do {
let (A1, Ag) = A;
(yla auwout) < -/41 (y7 Z);
(outq, outs) + trusted_party(x,y’);
outh < Aa(y', z, outa, GuT oyt);
return(outy, outy)}

Fig. 6. The formal definition of the ideal model for a corrupt Party 2

Our formalisation of the ideal model for Party 2 is defined
by the probabilistic program given in Fig. 6. We make two
remarks about this definition; the first concerns aborts and the
second the state of the adversary.

1) We do not explicitly model the abort procedures, this is
because they are covered by the type of spmf. When the
adversary provides output in the probabilistic program it
could also output None, this captures the abort process
as it terminates the probabilistic program with no output.

2) The first part of the adversary .A; outputs the input it
wishes to give to the trusted party (as in the description
of the ideal model) as well as some auxiliary output
(auzoye). This is not described explicitly in the ideal
model in the literature however is required for the
adversary to maintain state; we split one adversary into
two parts, thus we must allow the two parts to share
state.

Definition 6: We define the ideal view of Party 2 as follows,

malidealz (l‘, Y, z, (517 52)7 "4) =
ideal_models(x,y, z, (S1(A), S2(A))) (11)

Here A consists of a tuple of algorithms, one for each round
of the protocol.

As in the semi-honest case we either show information
theoretic security or show the views are indistinguishable —
in which case we refer to the advantage that a distinguisher
has of distinguishing them. For information theoretic security
we require equality between the views.

Definition 7 (Information theoretic security for Party 2):

malinf_thg (I, Y, z, 57 A) =
(malidwlg (I, Y, z, S, -A) - malrealg (Za Y, 2, A))

Here mal,cq1, describes the real view of Party 2. This is the
probabilistic program of the execution of the protocol where
all messages sent by Party 2 are sent by the adversary.

The advantage of a distinguisher to be is defined as follows.

Definition 8 (The advantage of a distinguisher for Party 2):

malgde, (2,9, 2,5, A, D) =

|Pl(malyear, (x,y, 2, A) > (Aview. D(view)) = True]—

Pl(maligeat, (x,y, 2, A) > (Aview. D(view))) = True]|

The work of Haagh et al. [12] formalises the same mali-
cious model (active security model) in EasyCrypt, however as

discussed in Section I-B a meta (paper) theorem was required
to link the formalisation to the paper definitions.

B. A protocol realising OT3 in the malicious setting

In this section we show the definitions we provide for
malicious security are satisfied by the OT.) protocol from
[13] (p190). This protocol is considered in the hybrid model
as it uses a call to a Zero Knowledge Proof of Knowledge
(ZKPOK) functionality for the DH relation (F2H). Specifi-
cally we have,

Fé)}?((h, a, b)? (((hlv alv b,)v T)) =

return(a = g" Ab=h" A(h,a,b)=(h,a',b),_). (12)

Here the output for Party 1 is a boolean dependent on whether
the relation is true, and Party 2 gets no output.

The protocol uses a cyclic group G (where it is assumed
the DDH assumption holds) of order ¢ with generator g and
is run as follows:

Protocol 4: Let Party 1 be the sender (S) and Party 2 be
the receiver (R).

1) S has input (mg, m;) € G* and R has input o € {0,1}.

2) R uniformly samples ag, 1,7 < {1,...,q} and com-

putes hy = g*°, hy = g“', a = g", bp = h - g° and
by =hY-g°.

3) S checks (ho, h1,a,bg,b1) € G®, otherwise it aborts.

4) Let h = ho/hy and b = by/b;. R proves to S that

(h,a,b) is a DH tuple, using ZKPOK. That is R proves
the relation

Rpu = {((h,a,b),r).a=g" ANb=h"}

5) If S accepts the proof it continues and uniformly sam-
ples ug, v, u1,v1 < {1,...,q}, and computes (e, e1)
and sends the tuple to R:

eo = (wo,z0) where wg = a“ - g0 and zp =
b+ hol - my.
er = (wy,z1) where wy = a“ - ¢g** and 2z =

(G -y -ma.

6) R outputs uffa and S outputs nothing.

Here ‘-* denotes multiplication in the group and 7 denotes
multiplication by the inverse of b in the group (in the case
where a,b € G).

Correctness of the protocol can be seen if one splits the
proof into the cases on the value of ¢. Intuitively security for
the receiver is upheld because o is sent only as an exponent of
the generator which is masked by random group element and
the receiver can learn at most one of the sender’s messages
due to the construction of the DDH tuple, which the sender is
satisfied with after the ZKPoK.

C. Proving OTy secure in the malicious setting

In this section we will discuss our formalisation of security
of Protocol 4. First we show correctness of the protocol.
Theorem 12: Assume mg, my € G then,

functOng ((mg,my),0) = pmtocolOng)mal((mO, my),o).

Here protocolor; mq is the probabilistic program that de-
fines the output of the protocol defined in Protocol 4. Isabelle
had to be helped more extensively in the rewriting of terms

here compared to other proofs of correctness. This was due to
the more complex constructions in the protocol.

To prove security of Protocol 4 we must first formalise a
variant of the DDH assumption and prove it is at least as hard
as the traditional DDH assumption. The security of the Sender
is reduced to this assumption.

1) DDH assumption: Traditionally the DDH assumption
states that the tuples (g%, g¥, ¢*) and (g%, ¥, g*¥) are hard to
distinguish (where z, y and z are random samples), the variant
states that (h,¢",h") and (h,g", h" - g) are hard to distinguish
(where h € G, and g is the generator of G). We formalise
this variant of the assumption and prove it is as hard as the
original DDH assumption in Lemma 5.

Lemma 5:

DDH _advye,(A) <
DDH_advyyiy(A) + DDH_advoniy(A'(A)) (13)

Where DDH _adv,yqg is the original DDH advantage (for-
malised in [19]), DDH _adv,,, is the definition we make of
the advantage of the variant on the DDH assumption and
A'(D,a,b,c) = D(a,b,c® g) is an adversary we construct
to interact with the DDH assumption. Lemma 5 shows the
variant is at least as hard as the original assumption.

We now show security of each party in turn.

2) Party 1: To show security for Party 1 we make a case
split on o. We construct S1 = (S1,p,,S2,p,) as given in
[13] and construct an adversary for each case (DDH_A,_1,
DDH_A,—o) that breaks the variant of the DDH assumption
and show:

Lemma 6: Assume o = 0 then we have,

maladm (<m07 my)7 g, 2z, SI 5 A7 D)) =
DDH_advye,(DDH_A,—o(A, D)).

Lemma 7: Assume o = 1 then we have,

maladv; ((m07 my)7 g,%, Sl) Aa D)) =
DDH _advye(DDH_A,—1(A, D)).
We note here we use 1 as an encoding for True and 0 as an
encoding for False. Using Lemma 5 we bound the malicious

advantages by the traditional DDH assumption advantage.
Lemma 8: Assume o = 0 then we have,

maladm (<m07 my)7 0,2z, SI) A7 D)) <
DDH_adveyig(DDH_Aqy—o(A, D))+
DDH_advyyig(A'(DDH_Aq,—o(A, D)))

Lemma 9: Assume o = 1 then we have,

ma'ladm ((m(?, my)7 0,2, Sl) 'A’ D)) <
DDH_advoriy(DDH_Ay—1 (A, D))+
DDH_advoyiy(A'(DDH_Aqy_1(A, D))

Due to the case split on ¢ the security result in the concrete
setting is quite convoluted and tricky to read, hence, here we

SJVPQ((.AJ ,./42,./43).,0', Z) = do {
(h(), hi,a,bg, bl) — Al((r);
_ < assertgpmy(ho, by, a,bg, by € G);
((in17i712, 777/3)7 7') «— Az(h,o, hq ,a, bo, b1);
let (hya,b) = (ﬁ—f, a, %)
(functP o _) < FZE ((h, a,b), ((ing, ing, ins),7));
_ < assertgpms (functgf({, out)s
let 1 = 22

L
hy

return((if | = 1 then False else True), (hg,hs,a,bp,bs))}

So.p, (A1, Az, As), 0", 2, Mo, auToyr) = do {
let (ho,hi,a,bp,bs) = auZout;
ug, vo, u1,v1 <+ uniform(|G|);
((in1,ing,ing),r) < As(ho, h1,a, bo, b1);
let wg = a"* ® g¥°;
let wy = a" ® g*';
let zg = by® ® he® ® if o' then 1 else my);
let 21 = (%)“1 ® hi* @ if o’ then m, else 1);

Az ((wo, 20), (w1, 21)}
Fig. 7. The simulators for Party 2

show the final result in the asymptotic setting. In particular in
the asymptotic setting we can make the assumptions on the
DDH advantage in full. We introduce the security parameter
as described in Section IV-E and show security for Party 1 as
follows.

Theorem 13: Assume that Vi € {0,1} we have
negligible(An.DDH_advyig(n, A/(DDH_A,=;(A, D))))
and negligible(An.DDH_advyyig(n, DDH_A,—;(A, D)))
then we have

negligible(An.malyqy, (n, (Mo, m1), 0, 2, 51(n), A, D)).

Theorem 13 shows the advantage of a distinguisher distin-
guishing the real and ideal views of Party 1 is negligible.

3) Party 2: To show security for Party 2 we construct two
simulators, S p,, S2, p, that interact with the ideal model such
that the output distributions of the real and ideal model are
equal. The simulators can be seen in Fig 7. In [13] (p191) the
simulator is defined using only one part, we split it in to two
as the definition of the ideal world ([13], p 23) requires.

To show equality between the real and ideal views we
consider the cases on [= Z—% (constructed by Sy p,): [=1,
l=g,1¢{1,g}. Such a case split is easy to reason about on
paper, however due to [being defined inside a probabilistic
program (the ideal view, mal;qeq,) We cannot easily access it
to perform the case split.

To make the case split easier we introduce a case separation
technique. This allows us to more easily prove a property on
a probabilistic program where the cases on a bound variable
need to be considered. We describe our method informally
here.

We isolate the case splitting variable by defining a new
program that replicates the original program from the point
the variable is introduced; the variable is now an input to
a probabilistic program. Case splitting on inputs is natural
so we prove the required property on the new program
noting that some contextual assumptions may be needed in

the statement. Using this statement we prove the required
property on the original probabilistic program by recombining
the newly defined program and the property proven about it
and the original program.

In our proof we define maligeq_end, that describes the end
of the ideal view’s probabilistic program, beginning at a point
where [can be taken as an input. We also define the analogous
end probabilistic program for the real view (malyeqi_end,) and
show the two programs are equal by case splitting on [.

Lemma 10: Assume that & = (hoyr

by hy
ho, hi,bg, b1, mg, m1 € G then we have

and

maligeal_end, (Mo, m1),1, (ho, h1, 9", bo, b1), A3)
= Malreai_end, ((Mo, m1), (ho, k1,9, bo, b1), A3)

The proof of Lemma 10 is involved however the case split
(on) can be made easily which allows for a natural structure
to the proof. The assumption on [is contextual information
from the first part of the ideal view. Using Lemma 10 we show
security for Party 2.

Theorem 14: Assume mg, my € G then we have

malinf_th2<(m07 m1),0, 2, (SLPWS?,Pz)v-A)'

To prove Theorem 14 we show the real and ideal views are
equal up to the point of [being introduced. This fact, together
with Lemma 10, is used to show equality between the views.
Thus we have shown security for Protocol 4.

We note Theorem 14 could be proven without Lemma 10 by
manipulating the probabilistic programs, however this would
have required more subtleties and low level reasoning. In fact
we proved Lemma 2 without our case separation technique
to provide a comparison of the methods. Our technique does
not necessarily reduce the size of the proof however it does
reduce the technicality of the proof.

VII. CONCLUSION

In this paper we have studied the semi-honest model: we
considered OT} and formalised a construction using ETPs
and HCPs, and instantiated it for the RSA collection. We
considered OT) as a building block for OT} and showed
how we use the modularity available in Isabelle to prove
the GMW protocol secure. In doing so we formalised secret
sharing schemes. Finally we provided the first fully formalised
definitions for security in the malicious setting and proved
secure an OT, protocol with respect to them.

This work has laid the foundations and made strong ad-
vances in the formalisation of both the semi-honest and
malicious settings. In the semi-honest setting others can use
our framework of definitions and multiple examples to con-
duct further formal proof. For example we have significantly
reduced the workload required to prove instantiations of the
OT3 using HCPs and have shown how modular proofs can be
considered. In the malicious setting we give definitions and
a substantial security proof, that we believe will lower the
bar for proving other protocols secure in the malicious model
inside CryptHOL.

A major advantage of using Isabelle/HOL compared to
other proof assistants for cryptography is the large amount of
formalised mathematics available. For example, in proving the
instantiated OT} using RSA we were able to prove a particular
variant of Fermat’s Little Theorem in a matter of lines (20 lines
of proof) rather than prove the result from scratch.

Achieving a proof of security for malicious GMW would
require a large proof effort. Significant extensions towards a
formalisation of Zero Knowledge would need to be made to [7]
as well as extending this work and [6] to the n party setting.
The latter would likely be achieved by first formalising more
basic n party protocols in the semi-honest model.

REFERENCES

[1] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe,
Frangois Dupressoir, Benjamin Grégoire, Vincent La-
porte, and Vitor Pereira. A fast and verified software
stack for secure function evaluation. In ACM Conference
on Computer and Communications Security, pages 1989—
2006. ACM, 2017.

[2] David Aspinall and David Butler. Multi-party computa-
tion. Archive of Formal Proofs, 2019, 2019.

[3] David A. Basin, Andreas Lochbihler, and S. Reza Se-

fidgar. CryptHOL: Game-based proofs in higher-order

logic. IACR Cryptology ePrint Archive, 2017:753, 2017.

Dan Bogdanov, Sven Laur, and Jan Willemson. Share-

mind: A framework for fast privacy-preserving compu-

tations. In ESORICS, volume 5283 of Lecture Notes in

Computer Science, pages 192-206. Springer, 2008.

Peter Bogetoft, Dan Lund Christensen, Ivan Damgard,

Martin Geisler, Thomas P. Jakobsen, Mikkel Krgigaard,

Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen,

Jakob Pagter, Michael 1. Schwartzbach, and Tomas Toft.

Secure multiparty computation goes live. In Financial

Cryptography, volume 5628 of Lecture Notes in Com-

puter Science, pages 325-343. Springer, 2009.

David Butler, David Aspinall, and Adria Gascén. How

to simulate it in Isabelle: Towards formal proof for

secure multi-party computation. In ITP, volume 10499

of Lecture Notes in Computer Science, pages 114—130.

Springer, 2017.

David Butler, David Aspinall, and Adria Gascén. On the

formalisation of 3 -protocols and commitment schemes.

In POST, volume 11426 of Lecture Notes in Computer

Science, pages 175-196. Springer, 2019.

Shimon Even, Oded Goldreich, and Abraham Lempel.

A randomized protocol for signing contracts. Commun.

ACM, 28(6):637-647, 1985.

Oded Goldreich. The Foundations of Cryptography -

Volume 1, Basic Techniques. Cambridge University Press,

2001.

Oded Goldreich. The Foundations of Cryptography -

Volume 2, Basic Applications. Cambridge University

Press, 2004.

[11] Oded Goldreich, Silvio Micali, and Avi Wigderson. How

to play any mental game or A completeness theorem for

(4]

(5]

(6]

(7]

(8]

(9]

[10]

protocols with honest majority. In STOC, pages 218-229.
ACM, 1987.

Helene Haagh, Aleksandr Karbyshev, Sabine Oechsner,
Bas Spitters, and Pierre-Yves Strub. Computer-aided
proofs for multiparty computation with active security.
In CSF, pages 119-131. IEEE Computer Society, 2018.
Carmit Hazay and Yehuda Lindell. Efficient Secure
Two-Party Protocols - Techniques and Constructions.
Information Security and Cryptography. Springer, 2010.
Yehuda Lindell. How to simulate it - A tutorial on
the simulation proof technique. IACR Cryptology ePrint
Archive, 2016:46, 2016.

Yehuda Lindell. How to simulate it - A tutorial on
the simulation proof technique. In Tutorials on the
Foundations of Cryptography, pages 277-346. Springer
International Publishing, 2017.

Andreas Lochbihler. CryptHOL. Archive of Formal
Proofs, 2017.

Andreas Lochbihler. Probabilistic functions and crypto-
graphic oracles in higher order logic. In ESOP, volume
9632 of Lecture Notes in Computer Science, pages 503—
531. Springer, 2016.

Andreas Lochbihler and S. Reza Sefidgar. Constructive
cryptography in HOL. Archive of Formal Proofs, 2018.
Andreas Lochbihler, S. Reza Sefidgar, and Bhargav
Bhatt. Game-based cryptography in HOL. Archive of
Formal Proofs, 2017.

Ueli M. Maurer. Secure multi-party computation made
simple. Discrete Applied Mathematics, 154(2):370-381,
2006.

Adi Shamir. How to share a secret.
22(11):612-613, 1979.

Andrew Chi-Chih Yao. Protocols for secure computa-
tions (extended abstract). In FOCS, pages 160-164. IEEE
Computer Society, 1982.

Andrew Chi-Chih Yao. How to generate and exchange
secrets (extended abstract). In FOCS, pages 162-167.
IEEE Computer Society, 1986.

Commun. ACM,

