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Abstract—Attestation protocols use digital signatures and other
cryptographic values to convey evidence of hardware state,
program code, and associated keys. They require hardware
support such as Trusted Execution Environments or Trusted
Platform Modules. Conclusions about attestations thus require
reasoning jointly about protocols, relevant hardware services,
and possible behaviors of programs.

This paper presents a mechanized approach to modeling
these properties. Cryptographic Protocol Shapes Analyzer CPSA
now combines protocol analysis with axioms or rules, allowing
formalizing hardware and software conclusions.

We use CPSA to model aspects of Intel’s SGX mechanism. We
model underlying manufacturer-provided protocols, and build
modular layers of attestation above this basis. User-level protocols
can make trust decisions based on the results of attestation.

I. INTRODUCTION

Cryptographic protocols are often designed for use with
particular software and hardware. How can we craft the
mechanisms so that they jointly achieve certain overall security
goals? In achieving their goals, the protocols may rely on
specific assumptions about the remaining components’ be-
haviors. These assumptions or axioms yield security-relevant
specifications for the remaining components. They focus the
design and validation processes for the components, and allow
us to decide whether to use existing components.

This codesign process for protocols and other mechanisms
requires protocol analysis to explore the executions that satisfy
the axioms for the other components’ expected behaviors. In
this paper, we use the CPSA protocol analysis tool [38], which
the developers have enriched with the ability to apply axioms
or, as they are also called, rules [37]. The axioms it allows
are implications, or more specifically universally quantified
implications. They formalize the behavioral assumptions on
the software and hardware context. CPSA then infers conse-
quences about what can happen in different scenarios; these
consequences are instances of axiom conclusions for which
the hypotheses are satisfied.

CPSA implements enrich-by-need protocol analysis. The
analyst selects a scenario of interest—perhaps, that one par-
ticipant has had a successful local run, a couple of keys are
uncompromised, and a nonce has been successfully chosen
to be fresh—after which CPSA displays all of the minimal,
essentially different executions compatible with it [24], [33].
CPSA can also “read off” a strongest security goal (e.g. authen-
tication or confidentiality) that holds for that scenario [40].

The CPSA authors enriched CPSA to apply axioms in addi-
tion to the protocol-driven steps of the old CPSA, which we
will call OLD CPSA. CPSA with axioms checks if a protocol

is using its context correctly. The analysis codifies what
matters about this context, focusing attention on whether the
components satisfy the axioms for further formal or empirical
investigations.

Other rigorous protocol analysis tools (e.g. Tamarin [42],
[34] and ProVerif [6], [7]) can doubtless support variants of
our method, which seems to us to increase its value. Adapting
the method requires expressing the axioms so that the new
tool can incorporate their protocol-relevant consequences into
its reasoning.

Attesting to Trusted Execution Environments. We illus-
trate how to design protocols in system context by examining
attestation for trusted execution environments or TEEs. A
trusted execution environment is a software entity—either a
thread with some memory or a virtual machine—that the
processor promises to protect. Specifically, the processor will
encrypt the TEE’s memory before evicting it, and decrypt it
only to return it to the same TEE.

An attestation for a TEE is a digital signature or Message
Authentication Code that asserts that a TEE E is under the
control of particular code C, and may associate other data D
with E and C. Attestations, also called quotes, require support
from the processor that must guarantee the TEE.

As we use TEEs, the other data D always includes a
public key K, either a signature verification key or a public
encryption key. The corresponding signing key or private
decryption key K−1 should be under the control of the TEE,
which inserts K into D. Thus, any remote entity that obtains
an attestation for E,C,K, . . . can use K to create secure
channels to E. Messages over these channels are entrusted
to the code C. It may then follow that E uses K only in
accordance with a protocol, if it is faithfully implemented in
the code C.

TEEs are available as threads with protected memory within
user-level processes on recent Intel processors. These so-called
enclaves use the instruction set extension Software Guard Ex-
tensions (SGX) [28]. TEEs, as virtual machines, are available
on AMD processors (Secure Encrypted Virtualization [30]).
Other manufacturers may offer TEEs; academic work such as
Sancus [36], for embedded systems, also provides TEEs. Our
methods are applicable well beyond SGX, which currently has
weaknesses [12], [10], [46].

Case study. Our case study illustrates building substantial
mechanisms in layers that use protocol analysis and assump-
tions about hardware and software.



At the lowest level, we represent the mechanisms for SGX
attestation, in which Intel has imposed some obstacles, such as
online interaction with an Intel attestation server.1 We identify
three axioms that jointly characterize what the hardware is
intended to ensure, and how the provisioning of a signature
key to the processor provides a supply-chain guarantee.

On top of the lowest layer, we identify a protocol and
axioms that allow an enterprise to root subsequent attestations
in its own key management architecture, after benefiting from
a first supply-chain confirmation from Intel. Two axioms
characterize the trust requirements on the key management
architecture. Two others specify behavioral requirements on
enclave code that implements this protocol, which we call the
crowbar.

Finally, we illustrate how to use the attestations from the
crowbar layer to draw conclusions about a user-layer protocol.

Contributions. We demonstrate how to combine axiomatic
specifications and protocol analysis to design protocols tar-
geted to hardware and software contexts. A benefit of the
method is that it provides simple descriptions of what the
protocol requires from these contexts.

The axioms we use fall into simple patterns that appear to
be reusable for many attestation mechanisms.
Hardware axioms codify the relevant behavioral conse-

quences of the manufacturer’s claims about the processor.
Trust axioms formalize the decisions and practices of an

organization about creating certificates and using the keys
certified in them.

Attestation axioms apply only when a TEE is executing
known code C; they express a behavioral specification for
that code C, such as how it will handle its private keys.
Static analysis and empirical testing, such as for side
channels, can justify these axioms, or refute them [35]. A
benefit of our approach is that it furnishes precise goals
to prove or refute in these ways.

While other sorts of axioms also fit our formalism, these three
types were central in applying the formalism to attestation and
TEEs. They mechanize some of the reasoning in previous work
on attestation for secure systems design, e.g. [15].

The axiomatic inferences fit smoothly into CPSA’s existing
structure. Indeed, CPSA is an excellent interactive tool for
determining the relevant axioms. We derived the ones in
this paper by observing what CPSA could not establish. We
then introduced successive axioms that would provide it with
information it needs, respecting the apparent intentions of the
hardware and system designers.

Our work is a descendent of authentication logics [31],
[1], which were special-purpose logics for system designers
to determine trust relations. Subsequent work showed how to
use standard logics (Datalog in the case of [32]), and how to
connect them with protocols [47], [27], [26], [22]. We add a
clear axiomatic structure for the combined analysis.

1Intel has recently released an alternative to the attestation server infras-
tructure [29]. We will examine it with our methods subsequently.

A non-contribution of this paper is any evidence that the
axioms are true. Instead, we identify simple, relevant axioms
that—if true—suffice to ensure that the application will meet
its goals. To determine whether they are true in a particular
instantiation calls for other—largely independent—methods,
tuned to the claims of the hardware, trust, and attestation
axioms. Our job is to focus attention on strong enough goals
for the different components.

Structure of this paper. Section II presents our model
of the SGX protocols for local (MAC-based) quotes, remote
quotes using the EPID signature scheme, and online validation.
Section III presents our crowbar for attestations based on stan-
dard digital signatures. Section A shows how an application
level protocol can use SGX and the crowbar reliably.

More specifically, Sections II-A, III-A, and A describe the
protocol actions at the SGX, crowbar, and application protocol
levels. Sections II-B, III-B, and B enumerate the axioms
at each successive level. A summary of CPSA appears in
Section II-C. Sections II-D, III-C, and C present the analysis
at successive layers, determining what the protocols can do
subject to the axioms.

Overall patterns in these axioms are discussed in Section IV,
with related work and conclusions in Sections V–V.

The new CPSA is available [37]. Input and output files
for our work are available at URL https://web.cs.wpi.edu/
∼guttman/pubs/understanding attestation example/.

Notation. We write:
#(m) for the result of a hash function applied to m; and
mac(m,K ) for a keyed hash or Message Authentication

Code in which K is the key and m is the value being
authenticated;

pmk for the MAC key on a processor, regarding pmk as
naming the processor.

{|m|}K for an encryption of m with K, either a symmetric
or an asymmetric encryption, depending on the type of
K.

[[m ]]K is a digital signature prepared using K;
[[m ]]eK is a digital signature using Intel’s EPID algorithm.
tag m0 is the contents m tagged with the distinctive bit-

string tag.
(K,K−1) is a keypair for an asymmetric algorithm, with

(K−1)−1 = K.
sk(A) is the principal A’s private signing key, and
vk(A) is the public verification key other principals use to

check them.
pk(A) is a public encryption key to prepare messages for
A, and

dk(A) is the corresponding private decryption key.
Thus, sk(A)−1 = vk(A) and dk(A)−1 = pk(A).

Non-compromised keys. We do not build into our notation
that K = sk(A) or dk(A) is really uncompromised, which we
instead express by writing Non(K).

The content of Non(K) has two parts. The first is that no
entity other than the intended one(s) possesses and can use

2

https://web.cs.wpi.edu/~guttman/pubs/understanding_attestation_example/
https://web.cs.wpi.edu/~guttman/pubs/understanding_attestation_example/


the key K. This requires hardware and software to cooperate
so a malicious adversary does not obtain its value.

The second part is that the intended entity uses it only
in the ways that the protocol dictates. It is not used to
sign/MAC/decrypt messages in any other situation. Thus,
when the intended entity is an enclave E under the control
of code C, then Non(K) induces a software requirement,
namely to ensure that the code C uses the key only to prepare
messages that the protocol dictates should be sent, and only
subject to the control flow the protocol dictates.

This second aspect of Non justifies protocol analysis in
taking cases based on the protocol definition when a key is
known or assumed to be non-compromised.

A brief introduction to strands. A strand is a finite
sequence of message transmission and reception events, which
we call nodes. Some strands, called regular strands, represent
the compliant behavior of a single principal in a single
local protocol session. Other strands represent actions of an
adversary, who may control the network and may carry out
cryptographic operations using keys that are public or have
become compromised. An execution (or bundle) involves any
number of regular strands and adversary strands, with the
proviso that any message that is received must previously have
been sent.

A protocol Π is a finite set of strands called the roles of
the protocol, together with additional assumptions we discuss
later. The roles ρ ∈ Π contain parameters, and the instances
of ρ are the strands that result from ρ by plugging in values for
the parameters. The sort of a parameter restricts the values that
may be inserted in place of it. This set of instances—obtained
from Π’s roles by plugging in values for parameters—defines
the regular strands of Π.

Figures 1, 3, and 5 show examples of roles. We write roles
and other strands either vertically or horizontally with double
arrows • ⇒ • connecting successive nodes. Single arrows • →
m and • ← m indicate that message m is being transmitted
or received at the node (resp.).

In an execution, some strands might contain only an initial
segment of the nodes of a role. For instance, at a particular
time, the reception in a local run of the local-quote role (Fig. 1)
may have occurred, but with as yet no response. Then we say
that this strand has height 1, rather than the height 2 it would
have if the next step had occurred. For more information on
strands as a basis for protocol analysis, see [24].

II. ATTESTATION IN SGX

Intel’s SGX attestation mechanism involves four elements.
First, a local quote about a subject enclave σ can be verified

by a target enclave τ resident on the same processor. The
local quote is a Message Authentication Code (MAC) prepared
with a secret f(pmk , τ) depending on τ plus a unique secret
pmk permanently protected within each processor (the Master
Derivation Key, in SGX-speak). This MAC covers the Enclave
Record (ER) for the subject enclave σ on this processor. The
ER includes a hash of some code controlling the enclave’s

behavior together with other components. The subject enclave
σ creates a local quote by the EREPORT instruction.

The target enclave τ checks a local quote using the instruc-
tion EGETKEY to obtain the MAC key f(pmk , τ), after which
it recomputes the MAC value itself. The target enclave τ must
be resident on the same processor, because pmk is an argument
in computing the key f(pmk , τ). Since τ is an argument, a
misbehaving τ cannot use this to forge local quotes targeted
at a compliant τ ′. The enclave τ ′ will always be given a
key f(pmk , τ ′), which with overwhelming probability will not
validate a forged MAC made with f(pmk , τ).

Second, to obtain attestations for entities on other devices,
a remote quote is required. Remote quotes are created by a
particular enclave, the quoting enclave τq . It receives a claimed
ER and a local quote. It checks the local quote against the
claimed ER, using EGETKEY. On success, it generates a digital
signature on ER using the group signature scheme EPID [11].

Third, Intel’s attestation server validates remote quotes. A
client connects via TLS, provides a claimed digital signature
and ER, and receives an answer within the TLS connection.
The attestation server vouches that some signing key provi-
sioned by Intel created the digital signature on ER. The EPID
group signature scheme prevents Intel from knowing which
processor it was; the quoting enclaves they provision generates
valid, but indistinguishable, EPID signatures.

Fourth, the attestation client queries the server over TLS.
We eliminate TLS’s complexities, replacing it with a simple

confirmation via public key encryption. This does not affect
anything that matters to attestation. Any version of TLS that
ensures integrity will lead to the same conclusions.

A. The Core SGX Protocol
The four roles of the manufacturer’s mechanisms are shown

in Fig. 1. The local-quote role does not run on every value
er, but only on values that are in fact the enclave record of
some enclave executing on the processor with secret pmk .
In the EPID-quote role, the quoting enclave makes sure that
its initial input has the form shown by executing EGETKEY
on pmk . In the attestation-server role, the server receives a
message encrypted with its public encryption key. Inside that
message is a nonce N , which it will release just in case
the remaining components er, [[ rq er ]]eek form a valid digital
signature on er, formed using an EPID key ek generated in a
protocol with the manufacturer as processors are prepared [11].
It thus provides a supply chain guarantee that the processor is
genuine.

The attestation client’s role corresponds, except that the
client cannot directly determine that its input is of the form
er, [[ rq er ]]eek; it needs the attestation server precisely for
this. Since the client cannot verify an EPID quote [[ rq er ]]eek,
the client may possibly submit any message m. If the strand
successfully receives N , then in fact m = [[ rq er ]]eek for some
EPID key ek. The attestation client chooses N randomly.

B. Rules for the SGX Protocol: Attestation and Trust
The analysis of the manufacturer’s protocol relies on three

rules. Each one codifies what follows when a role in Fig. 1
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{|N,er,m|}pk(AS)//

•

τ,er,mac(er,#(pmk ,τ))mmmmmmmm
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•
er, [[ rq er ]]eek// • •Noo

Fig. 1. SGX core roles

occurs. To express our rules, we need predicates that say when
a strand is an instance of these rules, and to at least what height
(number of steps). When a strand z engages in at least the first
i transmissions and receptions of a role ρ, we write:
LocQt(z, i) if ρ is the local-quote role;
EpidQt(z, i) if ρ is the epid-quote role; and
AttServ(z, i) if ρ is the attestation server role;
To refer to the values selected for role parameters, we write:
LocQtER(z, er) if er is the enclave record value for local-

quote instance z;
LocQtPr(z, pmk) if pmk is the processor secret;
EpidQtKey(z,Kepid) if Kepid is the signing EPID key of

epid-quote instance z;
EpidQtProc(z, pmk) if z runs on the processor with secret

pmk ; and
ASQtKey(z,Kepid) if attestation server run z validates a

quote signed with Kepid.
We use the special-purpose predicates EnclCodeKey(. . .) and
ManMadeEpid(. . .). Although we give English-language de-
scriptions for them, they are (formally) uninterpreted predicate
symbols. Their significance comes from how the rules allow
us to infer them, or infer further consequences from them.

Content of the rules. Starting with the local-quote role,
when it executes on a valid SGX processor, what we can
infer is that there is an SGX-protected enclave with the
given enclave record. We will regard an enclave record as
a sequence that starts with the enclave id number, the hash
of its controlling code, and a public key, and may contain
other entries subsequently. Writing :: for the list-construction
operation, we thus have

er = eid :: ch :: k :: rest.

We refer to a processor by its processor secret pmk ; even
though no one knows this value, we can reason about whether
pmk = pmk ′, etc. Thus, a run of the local-quote role on a
processor with non-compromised pmk implies that that there
is an enclave characterized by the parameters eid, ch, k, pmk ,
which we will write EnclCodeKey(eid, ch, k, pmk). Thus:
Rule 1: Quote guarantees enclave

∀z : STRD, eid, ch, rest : MESG, k : AKEY, pmk : SKEY .
LocQt(z, 2) ∧ LocQtER(z, eid :: ch ::k :: rest) ∧
LocQtPr(z, pmk) ∧ Non(pmk)
=⇒ EnclCodeKey(eid, ch, k, pmk).

This straightforwardly states what a compliant processor’s
local quoting is supposed to tell us: It accurately reports an
enclave running on that processor.

Second, when the Attestation Server completes a run, what
must hold? It has ascertained that the purported EPID sig-
nature was in fact genuine, and was produced using a key
Kepid generated interactively with the manufacturer’s EPID
master secret. It can also vouch that the enclave mechanism
can preserve the secrecy of Kepid within the EPID quoting
enclave.2 Hence:
Rule 2: AS says EPID key is manufacturer-made and non-
compromised
∀z : STRD, Kepid : AKEY .

AttServ(z, 2) ∧ ASQtKey(z,Kepid)
=⇒ ManMadeEpid(Kepid) ∧ Non(Kepid).

The conclusion Non(Kepid) feeds back into the proto-
col analysis, since a non-compromised key often requires
compliant local sessions to have occurred. The conclusion
ManMadeEpid(Kepid) will also be used as a premise in the
next rule.

The third rule offers us a conclusion when the epid-quote
role executes a complete strand z with a valid EPID key.
This is a supply chain property. It ensures that the processor
is in fact an Intel-manufactured processor, which also gen-
erated an uncompromised processor secret pmk . Moreover,
the processor is capable of preserving the secrecy of pmk and
ensuring that it is used only in accordance with the roles shown
in Fig. 1. Thus, the conclusion is simply Non(pmk), stating
that pmk is non-compromised, which again enables further
protocol analysis conclusions.
Rule 3: Manufacturer-made EPID on non-compromised pro-
cessor
∀z : STRD, Kepid : AKEY, pmk : SKEY . EpidQt(z, 2) ∧

EpidQtKey(z,Kepid) ∧ EpidQtProc(z, pmk)∧
ManMadeEpid(Kepid)
=⇒ Non(pmk).

The manufacturer-made EPID key can be found only on a
genuine processor, hence with a non-compromised processor
secret (modulo [10], [12], [46]).

C. Protocol analysis with CPSA
Suppose that an attestation client has a run, following its

role defined in the lower right of Fig. 1. We assume that it

2Since an out-of-order execution attack falsifies this claim [12], the current
SGX does not satisfy our axioms. Cf. [10], [46].
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queries an attestation server AS with Non(dk(AS)), and uses
a fresh, unguessable nonce N . We also assume the purported
enclave record to be of the form er = eid ::ch ::k ::rest. What
else must then have happened, given the protocol of Fig. 1?

What CPSA does. A CPSA analysis starts with a scenario,
such as we have just mentioned, in which some protocol
activity is assumed to have occurred, which in this case is
a regular attestation client strand. Moreover, additional facts
may be included, which in our example are Non(dk(AS)) and
Unique(N). The latter asserts that N was freshly generated
and unguessable (“uniquely originating”).

CPSA’s job is then to find all minimal, essentially different
executions that enrich the initial scenario; see [24] for much
more detail. To find them, CPSA takes a succession of steps,
exploring progressively more detailed scenarios—often with
additional regular strands—until it finds some that are suffi-
ciently rich. “Sufficiently rich” means:

1. Whenever a regular strand receives a message, the adver-
sary can supply that message, possibly using messages
transmitted previously by regular strands. The adversary
has the usual, Dolev-Yao derivations [19], starting with
initial values not ruled out by assumptions such as
Non(dk(AS)) and Unique(N).

2. R is a rule, and η instantiates its variables to values,
making the hypothesis of R true. Then η yields a true
instantiation of the conclusion of R.

The original OLD CPSA uses the authentication test idea [18]
to find a small set of possible enrichments that are relevant in
any case when a message reception does not satisfy Clause 1.
To explain these receptions, OLD CPSA considers how to
add new regular strands, and how to add new hypotheses
about compromised keys. There may be different possible
explanations to consider, causing branching in our search. We
have left this functionality unchanged.

When Clause 2 is not satisfied for an R and an instantiation
η, we want to add information to make that instance of
the conclusion true. When the conclusion is an equation
s = t, this means identifying the values associated with
η(s) and η(t). When the conclusion is a conjunction of facts
Pi(t1, . . . , tk), then we will add their corresponding instances
Pi(η(t1), . . . , η(tk)) to our scenario.

Although these are the only conclusions we use in this
paper, the approach accommodates additional types. For ex-
istentially quantified conclusions ∃x . φ, we consider both the
existing values as well as a new value as the witness for the
quantified variable x. When the conclusion is a disjunction
(i.e. a logical or), we consider each branch separately in our
search.

The hypothesis of each rule R is always an atomic formula
or conjunction of atomic formulas. The resulting rules are thus
geometric sequents, i.e. universally quantified implications in
which the hypotheses are conjunctions of atomic formulas, and
the conclusions are built from atomic formulas by conjunction,
disjunction, and existential quantification, ∧, ∨, ∃. These are

precisely the syntactic forms of formulas that are preserved
by all homomorphisms [25].

Correctness for this procedure means that it must yield, on
termination, scenarios that cover all possible executions that
enrich the initial scenario. For the original OLD CPSA, see [24];
for enrichment with geometric sequents, see [41], [20], [37].

CPSA’s input and output. For a given protocol and rules,
CPSA’s input is a scenario consisting of some assumed strands
of regular participants, together with some assumptions such
as Non(dk(AS)) and Unique(N) or other facts (closed atomic
formulas). The starting scenario and similar structures are
called skeletons. CPSA performs its search by fixing counterex-
amples to clauses 1–2 above, or in the case of OLD CPSA, just
clause 1.

If its search terminates, CPSA returns a set of skeletons
representing all minimal, essentially different executions that
enrich the initial skeleton. This may be the empty set, when the
initial skeleton cannot occur; e.g. it hypothesizes some security
disclosure that CPSA shows cannot occur. Very often, this set
is very small, containing only one or a few possibilities.

CPSA presents its results by diagrams, such as those in
Figs. 2, 4, etc. Each diagram shows some strands, presented as
vertical columns of transmissions and receptions, together with
arrows summarizing ordering information among the events.
Each skeleton also shows the parameter values of the different
strands, and the other facts that hold in this skeleton.

D. Applying CPSA to the SGX protocols

In our case study, an attestation client has a run, following
its role defined in Fig. 1. We assume it queries an attestation
server AS such that Non(dk(AS)), and uses a fresh, unguess-
able nonce N . We also assume the purported enclave record
to have the form er = eid :: ch :: k :: rest. What else must
have happened, given the remainder of the protocol contained
in Fig. 1?

We ask CPSA this question, subject to Rules 1–3. CPSA
answers by computing the result shown in Fig. 2. The assumed
attestation client run is shown as the leftmost column in Fig. 2.
The keys Kepid and pmk are new, implicitly existentially
quantified values. The client does not find out what they are,
but knows they exist. CPSA computes this in three steps.

1. The first step introduces the attestation server run shown
immediately to the right. CPSA infers this as a consequence
of the protocol definition. Only an attestation server run can
extract the nonce N from the encryption inside which the
client transmits it. Rule 2 now applies to the new strand,
introducing the facts ManMadeEpid(Kepid) and Non(Kepid).

2. Since CPSA now knows that the client run started by
receiving a valid EPID-signed remote quote, CPSA explains it
by a matching run of the epid-quote role. Its pmk parameter
was previously unknown. By Rule 3, we infer Non(pmk).

3. How was the local quote mac(er,#(pmk , τ)) generated?
CPSA infers it can come only from a run of the local-quote role
with matching parameters. Applying Rule 1, it adds the fact
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attest-client attest-server epid-quote local-quote
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Facts: ManMadeEpid(Kepid), EnclCodeKey(eid, ch, k, pmk)
Non keys: Non(pmk), Non(Kepid), Non(dk(AS))

Fig. 2. Consequences of an attestation client success

that the enclave record describes an enclave running on pmk .
This fact is expressed by EnclCodeKey(eid, ch, k, pmk).

The analysis is now complete.

Omitting rules. Omitting Rule 1 does not change the
diagram, but the fact EnclCodeKey(eid, ch, k, pmk) is lost.
We no longer know that there is an enclave controlled by the
code with hash ch and public key k running on processor pmk .

Omitting Rule 3 omits this fact, as well as the (rightmost)
local-quote strand. The key pmk is no longer known to be
Non. Finally, omitting Rule 2 means that only the attest-
server strand is available. Thus, each rule has a definite and
predictable effect on how much of the analysis goes through.

Attestation consequence. We have now identified the exact
consequences that follow from a successful attestation client
run in favorable circumstances: A processor with confirmed
supply chain generated a local quote for the enclave record
er. On that same processor, a remote quote was created from
the local quote. Finally, on that processor there is an enclave
under control of the known code ch with associated key k.

By favorable circumstances, we mean first that N was
freshly chosen, and that dk(AS) is used only in accordance
with the protocol. More important, the favorable circumstances
depend on the rules: The SGX hardware should ensure that
a local quote on a processor with non-compromised pmk
ensures a corresponding enclave (Rule 1); the attestation server
succeeds only when the remote quote was generated with a
properly provisioned, non-compromised EPID key (Rule 2);
and the EPID key provisioning should ensure that a proces-
sor with an acceptable EPID key can keep its pmk non-
compromised (Rule 3).

Making the three rules hold requires challenging—not
yet fully achieved—processor engineering and cryptographic
design and implementation [10], [12], [46]. However, the
rules summarize the intended consequences of those tasks
succinctly, transparently, and usefully for mechanized analysis.

III. MECHANICAL ADVANTAGE FOR TRUST

We now show how to build a new attestation protocol on
top of the mechanisms that the manufacturer provided. Partly,

we do so to show how our analysis for the lowest layer of the
composite protocol extends smoothly upward.

The other reason is practical. The manufacturer’s protocol
(Fig. 1) binds the processor at the end of a supply chain back
to a device that generated an EPID key at the manufacturer’s
facility at the start of the supply chain. However, it verifies
remote attestations via a public network, forcing disclosure to
the manufacturer that an attestation is occurring.

This is often unacceptable. Devices may need to verify a
remote attestation before connecting to a network, e.g. to deter-
mine if the network servers are trustworthy. Private networks
may be shielded from the public internet, for instance at banks,
and in industrial control systems and critical infrastructure.
Other privacy and availability concerns may also apply.

A. The Fulcrum and the Crowbar

In Fig. 3 we offer a protocol to provide “mechanical
advantage for trust.” It allows attestations to be generated and
verified privately, after a supply chain guarantee rooted in a
single interaction with the manufacturer’s attestation server.
The fulcrum is public and online, and interacts with the
attestation server once per processor. It digitally signs an
attestation about a long-term crowbar enclave.

The fulcrum F ’s signing key sk(F ) uses a standard sig-
nature algorithm, e.g. the Eliptic Curve Digital Signature
Algorithm (ECDSA). An organization standing up a fulcrum
F also provides a certificate for its verification key vk(F ),
stating that signatures verified with vk(F ) came from a valid
fulcrum operated by this organization. F may be implemented
within an SGX enclave to protect sk(F ), but our protocols do
not use attestations about this enclave.

When F receives a message m and an enclave record
er, it queries an attestation server with {|N, er, m|}pk(AS).
Receiving N signals an affirmative result, validating m =
[[ rq er ]]esk(b) for some b. It then issues a tagged fulcrum report
[[ fm er ]]sk(F ), where “fm” distinguishes fulcrum reports from
other signatures.

A valid fulcrum F is trusted to choose a peer AS whose
private decryption key matching pk(AS) is uncompromised
and used only for the attestation server role. It is also trusted
to choose fresh challenge nonces N .
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Fig. 3. The fulcrum, crowbar, and CA roles

The crowbar runs on a processor pmk that may be in-
accessible from the public internet. It will digitally signing
remote quotes for numerous enclaves running on pmk . Like
the fulcrum, the crowbar uses a standard digital signature,
which can be verified without further interaction.We call these
crowbar reports.

When given a purported local quote targeted to it, a crowbar
enclave uses EGETKEY to check it is a MAC generated using
pmk . If so, it generates the crowbar report [[ cb er ]]sk(C)

tagged with cb as attestation.
When a processor pmk is set up, the fulcrum receives a

remote quote about the crowbar—generated by the manufac-
turer’s EPID quoting enclave on pmk—perhaps via carrier
pigeon. If the fulcrum confirms this remote quote, it issues
a fulcrum report, which will return to the private network in
a similar way.

An application level client can use this fulcrum report
and a crowbar report to justify a trust decision about the
targets of the crowbar report. The client also relies on a
digital certificate from its organization’s Certifying Authority
to confirm a signing key for the fulcrum.
A certifying authority CA provides digital certificates for any
trustworthy fulcrums. The organization’s certificate for K =
vk(F ) is intended to assert that the organization believes that
the matching signature key sk(F ) is uncompromised, and will
be used only for the fulcrum role.

B. Rules for the crowbar

The trust and attestation assumptions that govern the ful-
crum and crowbar consist of four rules.
Rule 4 states that the CA behaves like a standard trust anchor,

and vouches that its target’s private key will be used only
as permitted by the protocol.

Rule 5 asserts that a fulcrum run chooses a non-compromised
attestation server (run by the manufacturer) as its peer. It
also asserts that the fulcrum chooses its challenge nonce
freshly.

Rule 6 asserts that any crowbar that runs acceptable code
in an enclave successfully protects a non-compromised
signing key.

Rule 7 states that the crowbar never migrates its signing
key, i.e. that if there was ever an enclave such that
EnclCodeKey(eid, ch, k, pmk) with acceptable crowbar
code ch, then there is never a run of the crowbar role

using the same signing key on any different processor
pmk ′ 6= pmk .

To express them, we will use predicates stating that a strand
is an instance of a new role, with at least a given height, and
that a strand has a particular instance for a parameter. When
a strand z engages in the first i transmissions and receptions
of a role ρ, we write:
Fulc(z, i) if ρ is the fulcrum role;
CrBar(z, i) if ρ is the crowbar role; and
Certifier(z, i) if ρ is the CA role.
To refer to the values selected for role parameters, we write:
CertID(z, f) if f is the name of the fulcrum certified in

strand z, and
CertKey(z,K) if K is the target fulcrum verification key;
FulcPeer(z, as) if as is the peer attestation server chosen in

strand z, and
FulcNonce(z, n) if n is the challenge nonce;
CrBarPubK(z, k) if K is the signing key used in crowbar

strand z, and
CrBarPr(z, pmk) if pmk is the processor executing z.
We will use a formally uninterpreted predicate CbCode(ch).
Informally, we use this to express the idea that the code C
with hash ch is acceptable crowbar code, and uses signing
key K only in accordance with the crowbar role. We write
Unique(v) for the assertion that the message value v is freshly
chosen (“uniquely originating”). In particular, v is chosen only
once by a compliant principal, and will not be guessed by an
adversary. CPSA interprets this in its protocol analysis.

Trust rules. Rules 4–5 are trust rules: One who accepts
them does so out of trust that the organization behaves
correctly. It should have audited the fulcrum code to ensure
that it will protect its private signature key (Rule 4) and that it
uses the PKI and random number generator correctly (Rule 5).
This is merely procedural, as the party deciding to extend its
trust receives no evidence through our protocols.

First, we regard the trust anchor as asserting that a signing
key is non-compromised if it matches a certified verification
key.
Rule 4: (CA trust anchor)
∀z : STRD, f : NAME, K : AKEY . Certifier(z, 1) ∧

CertID(z, f) ∧ CertKey(z,K) ∧K = vk(f)
=⇒ Non(K−1).
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The hypothesis K = vk(f) restricts the applicability of the
rule slightly. CPSA uses the notation vk(A), pk(A) to associate
the name A with its public signature verification and public
encryption keys. K = vk(f) asserts that this notational
convention is compatible with the CA’s actions. In effect, we
draw a conclusion about vk(A) only when the CA has actually
issues a certificate for it.

This is a trust rule. Any principal that accepts the certificate
is transferring some of its trust in the trust anchor CA to the
certified fulcrum f .

The second rule requires a fulcrum to select a compliant
attestation server. This means in effect selecting an attestation
server with a non-compromised private decryption key dk(as).
The fulcrum must also select a fresh nonce to send as a
challenge. These two conditions are required to make the
fulcrum useful; together, they assure that the analysis will
discover a run of a compliant authentication server responding
to the fulcrum’s query.
Rule 5: (Fulcrum finds attestation server)
∀z : STRD, as : NAME, n : TEXT .

Fulc(z, 4) ∧ FulcPeer(z, as) ∧ FulcNonce(z, n)
=⇒ Non(dk(as)) ∧ Unique(n).

Before the CA certifies f and its key vk(f), someone needs to
inspect the code in control of sk(f), to ensure that it is using
the manufacturer’s PKI properly to ensure that it reaches a
valid as using pk(as). This rule expresses the trust that the
organization has done so successfully.

The Unique(n) conclusion says that the nonce n is cho-
sen freshly, or uniquely originating. Again, someone must
ascertain this before the certificate is issued, by examining the
fulcrum code. They want to ascertain that it generates n with
good randomness. Our assertion that n is uniquely originating
may idealize a claim that holds with overwhelming probability.

Attestation rules. By contrast, the next two rules are
attestation rules. The party making a trust decision obtains
evidence about the code controlling the enclave it is evaluating.
This evidence always derives ultimately from a run of the
local-quote role. Thus, if a rule draws some conclusion, the
deciding party can always inspect the evidence—and the code
that yields the hash ch—to determine whether this code will
act only in accordance with our protocols.

In rule 6, the conclusion is that the crowbar’s signing key
is non-compromised. If a deciding party wants to check this,
that party should consider whether it belongs to a keypair
that is generated within the crowbar enclave, and whether the
private signing part ever contributes to transmitted data except
by being used for signature via a sound algorithm.

If C is code with #(C) = ch, a static analysis of C may
be able to ascertain this. Accepting the premise CbCode(ch)
summarizes the conclusion of examining C. Although we
do not model any aspect of this appraisal, we codify the
consequences of the decision.
Rule 6: (Crowbar attestation)
∀eid, ch : MESG, k ∈ AKEY, pmk : SKEY .

EnclCodeKey(eid, ch, k, pmk) ∧ CbCode(ch)
=⇒ Non(k−1).

The last rule states that the processor doesn’t change. This says
more than the private key being non-compromised. It would
still be non-compromised if the original enclave transferred
it, through a secure channel, to another enclave that would
still use it only for crowbar functionality. One may determine,
by inspecting code, that it will not engage in that behavior.
Thus, an attestation can also give evidence that the processor
on which the crowbar key is used will not change.
Rule 7: (Crowbar immobile)
∀z : STRD, eid, ch : MESG, k : AKEY, pmk , pmk ′ : SKEY
EnclCodeKey(eid, ch, k, pmk) ∧ CbCode(ch)∧
CrBar(z, 2) ∧ CrBarPubK(z, k) ∧ CrBarPr(z, pmk ′)

=⇒ pmk = pmk ′

The rules—specifically, Rules 6–7—use CbCode(. . .) only as a
hypothesis, and never in a conclusion, so the effect of deciding
to assume instances of CbCode(. . .) is very clear: It determines
which in which cases Rules 6–7 may apply. These two rules
codify the significance of CbCode(. . .).

C. Protocol analysis: Crowbar level

Suppose that an application-level protocol acquires, for
some CA with Non(sk(CA)):
certificate [[ cert fm F, vk(F ) ]]sk(CA);
fulcrum report [[ fm eid :: ch :: k :: rest ]]sk(F ) for the same

F ; and
crowbar report [[ cb er′ ]]k−1 prepared with the matching

signing key k−1.
What then follows? If er′ takes the form eid′ :: ch′ :: k′ :: rest′,
we would like to infer that the crowbar has attested a subject
enclave eid′, controlled by code ch′, and controlling the key
k′. The subject enclave should be guaranteed by the occurrence
of a local-quote with this er′, targeted to the crowbar enclave
eid. The crowbar itself is the subject enclave of a local-quote
on the same pmk , converted to a remote quote by an epid-
quote strand.

One would expect this conclusion to hold only if
CbCode(ch), which is needed in Rule 6 to infer Non(k−1).
With the additional assumption that er′ 6= er, CPSA derives
the desired conclusion.

If er′ = er, the local-quote strands may be identical. If
er 6= eid :: ch :: k :: rest, they are certainly distinct. In the
latter case, one local-quote attests to the enclave executing the
crowbar, and its local quote is converted into an EPID quote by
the EPID quoting enclave. The other local-quote is converted
into a standard digital signature by a run of the crowbar role,
as shown in Fig. 4.

The dotted arrows in Fig. 4 indicate a flow of information
in which the value received is distinct from the value sent. In
this case, the tuple of the three incoming values is received.
CPSA reasons about inequality using the logical rule
Rule 8: ∀m : MESG . Neq(m,m) =⇒ Falsehood.

The crowbar may now be used for application-level attes-
tation. If properties of the target code ch′ are known, these
can be formulated in rules about enclaves running this target
code. We show how to do this in Section A.
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Fig. 4. Shape for a certificate, fulcrum report, and crowbar report

Omitting rules. Removing any of Rules 4–6 cause parts of
the conclusion in Fig. 4 to be lost.

Omitting Rule 7 is more interesting. CPSA infers the pres-
ence of all but the rightmost strand of Fig. 4, the second
instance of local-quote. Moreover, the instance of the crowbar
has as its processor parameter pmk ′, some processor possibly
6= pmk , i.e. possibly distinct from the processor on which
the epid-quote and its local-quote occurred. Hence, we do not
know whether Non(pmk ′) holds, and we cannot infer integrity
for the MAC mac(er′,#(pmk ′, τ)). Possibly the adversary
produced it, rather than a local-quote strand.

Without Rule 7, the key k may have migrated from the
enclave eid to another processor. The process receiving k
may not be an enclave, and the new processor may not
even be SGX-equipped. Hence the signature may have been
applied to an enclave record er purportedly guaranteed by a
compromised pmk ′.

Including Rule 7 thus imposes a behavioral requirement on
the crowbar: It must never migrate its key to another enclave
or any remote process. Inspecting the code ch may confirm
that it will never do so.

Using the crowbar from an application. Suppose that we
have a protocol Π and two roles ρ1, ρ2 ∈ Π. A principal A
executing role ρ1 would like to authenticate a peer B executing
role ρ2. Suppose also that an analysis of Π shows that this
holds assuming that a private key KB is non-compromised.

We can then always use the crowbar to discharge this
assumption:

1. We will embed the code C executing ρ2 (apart from
actual I/O) in an enclave. We introduce a predicate
PeerCode(ch) true of ch = #(C) only when C protects
KB and uses it only in accordance with ρ2.

2. We codify this in an axiom
Rule 9: (ρ2 Attestation)
∀eid, ch : MESG, k ∈ AKEY, pmk : SKEY .

EnclCodeKey(eid, ch, k−1B , pmk) ∧ PeerCode(ch)
=⇒ Non(kB)

3. We prepend a step before ρ1 to collect a certificate,
fulcrum report, and crowbar report.

In strands where the crowbar report’s subject enclave satisfies
PeerCode(ch), A can infer Non(kB) and safely complete the
run. In Appendix A, we illustrate this in detail in the case of
a particular application level protocol.

IV. TYPES OF RULES

We first categorize Rules 1–3 from Section II. We then
divide the rules we have used into three types: hardware rules,
trust rules, and attestation rules.

Hardware rules. Rule 1 stipulates a hardware property,
namely when the processor generates a local quote on er, there
is an enclave with record er. Rule 3 is also, at least partly, a
hardware requirement: a processor with a manufacturer-made
EPID key protects pmk , and uses it only to generate and check
local quotes. There is also a trust aspect: the manufacturer
should not install a manufacturer-made key Kepid unless the
processor can protect its secret pmk .

These rules define the hardware requirements. Naturally, the
hardware’s enclave support must also justify the code analysis
leading to the attestation rules.

Trust rules. Rules 2, 4, and 5 are trust rules. Rule 2
expresses our trust that the manufacturer will operate a reliable
Attestation Server, and it defines what we need from the
AS, namely confirmation of the origin of Kepid and of its
protection from compromise. However, there is no attestation
here, since there is no evidence that particular code is in
control of the AS. Hence there is no direct evidence the code
will ensure the conclusions we care about.

Rule 4 expresses trust in our organization’s CA. Specifi-
cally, CA must emit this type of certificate only when the
private key sk(f) will be protected from disclosure and used
only by code playing the role of fulcrum. Rule 5 expresses trust
in our organization’s fulcrum code, specifically its ability to
use the PKI correctly to find the manufacturer’s AS. Trust in
the manufacturer is also needed, namely to protect dk(as) and
allow only the proper AS code to use this key. Again, there
is no attestation here, since no quote provides evidence that
particular code is in control and will behave correctly.
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Attestation rules. Rules 6, 7, and 9 are attestation rules.
Each of them has a premise EnclCodeKey(eid, ch, k, pmk),
so they apply only when other considerations have already
established an enclave with code (hashing to) ch.

A rational process governs proposed enclave rules. One can
analyze the behaviors of the known code. Does it randomly
generate the keypair (k, k−1) and installing k in the enclave
record? Does it protect the private k−1, using it only in secure
cryptographic algorithms? What holds (empirically or by code
analysis) about side channels? Does the code use its keys only
for transmissions and receptions following the specific roles
in which this key is expected to engage?

In attestation rules, we always know what code is in control,
and we know that it executes within an enclave. Thus, we
can use well-understood methods to ascertain whether the
conclusion follows.

Uses of the rules. The rules are valuable. First, they
provide simple specifications of the relevant components. The
hardware rules make clear what we need from SGX. The trust
rules provide guidelines for organizations’ CAs, fulcrums,
and—in the case of the manufacturer—the public attestation
server. The attestation rules specify what behavior to permit
from the attested code ch.

Hence, the rules provide guidance to an implementer about
how to build the components correctly. If components already
exist, they should provide advice to a formal analyst who
would like to prove that these components will live up to their
purpose within the mechanism.

They also help the red team that would like to find out how
the mechanism can fail. It says which misbehaviors in the
pieces would lead to failure of the mechanism. Also, testing
gets improved focus from these succinct, intuitive rules.

Developing the rules. CPSA is an excellent assistant for
developing rules. It gives quick interactive feedback when
rules are too weak. This allows a designer to balance out
the security goals she expects the system to achieve against
the requirements she is willing to impose on the remaining
components. CPSA’s graphic output makes the effects of
particular choices very clear. Its speed is very helpful; no
individual run in the development of this paper took more
than a second on a standard laptop.

Broader types of rules. Our rules have only a few forms.
Some conclusions assert that a key K is non-compromised,
i.e. Non(K). Rule 7 asserts an equality, pmk = pmk ′. A few
others assert facts EnclCodeKey(. . .), ManMadeEpid(. . .), and
Unique(n).

They are particularly simple because our protocols are well-
structured. We have used tags—i.e. the constants rq, fm, cb,
and cert fm—to make them syntactically unmistakable. Thus,
principals cannot misinterpret the purpose of a message [2].
This is good practice whenever the designer has control over
the message formats. However, sometimes the formats have
already been defined.

We also studied a variant of the SGX and crowbar proto-
cols omitting all tags rq, fm, cb, and cert fm. Initially, CPSA

reported many possible confusions among roles. Some of these
may be eliminated by distinguishing cryptographic primitives.
For instance, an EPID signature is generated by the EPID
quote role, but will never be generated by the fulcrum role,
and the attestation server will validate only an EPID signature.
Additional rules can capture these ideas.

Moreover, the trust anchor key sk(CA) will never be used
as a fulcrum key or a crowbar key, eliminating some instances
of these roles.

An enclave with code for one of the roles will never engage
in a different role. For instance, the code that implements the
crowbar can never act in the fulcrum role. It lacks the logic to
contact an Attestation Server with a properly formatted query,
as a fulcrum does. This justifies a rule:

∀z : STRD, f : NAME, K : AKEY .
EnclCodeKey(eid, ch, vk(f), pmk) ∧
CbCode(ch) ∧ Fulc(z, 4) ∧ FulcSelf(z, f)

=⇒ Falsehood.

This is a natural requirement on the software implementing
the crowbar.

We reproduces the same analysis we showed in Section III
without tags, using a total of 21 rules. We consider the division
of labor between protocol structure and rules that we presented
in Sections II–III to be cleaner and more convincing than this
version with twice as many rules. However, when protocol
structure cannot be changed, rules of these broader kinds are
quite usable.

V. RELATED WORK AND CONCLUSION

We will highlight three areas of related work.

Security protocol analysis is a very well-developed field,
with numerous sophisticated tools for trace properties (e.g. [6],
[17], [21], [34], [38]), and some for determining indistin-
guishability properties also (e.g. [8], [9], [13], [14]). In many
cases, our work is compatible with other approaches rather
than in competition with it. For instance, tamarin [34] has a
notion of restriction used to restrict the traces of interest. It
may also be possible to build similar conditions into ProVerif’s
resolution back end [6]. This increases the value of using rules
to formalize the context in which protocols run: Multiple tools
can shed light on the consequences.

Enrich-by-need is specific to CPSA, however. This is very
useful in development, as CPSA provides a complete overview
of the minimal, essentially different possibilities. This shows
which (true) rules should be added to the specifications, or
what strengthenings of the protocol are needed so that true
rules can suffice.

Connecting security protocols to context has been less
studied than one would expect. There are many cases where
the protocol should inform the application it serves of security-
relevant events. For instance, the renegotiation attacks on
TLS [39] arose because the protocol could not signal to
the application level when the authenticated identity of the
peer changed. As a consequence, an adversary can benefit by
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prepending an unauthenticated flow of data before an authen-
ticated flow from a legitimate party; the receiving application
may misinterpret both parts as a single stream with a single
responsible peer.

Some papers a decade ago generated application-specific
protocols for specific tasks, expressed in a session notation,
and implementations for them [5], [16], [4], improving on a
compiler for application-specific protocols [26]. More recently,
a study of protocols and the goals they meet showed how
application-level goals may be expressed in an extension of a
language for protocol goals [40].

Rigorous reasoning about the behavior of TEEs is rec-
ognized need [43]. Sihna et al.’s Moat proved confidentiality
properties of the code in an enclave [45]. [44] provided a much
easier way to prove a much narrower property: Separate the
code of an enclave into a fixed library and user code. The user
code can be subjected to an automated control flow check,
so it does not abuse the library. The library responsible for
encrypted I/O and memory management is subjected to a one-
time code verification. Thus, many enclaves can be proved
to interact with the external world only through properly
encrypted I/O.

Gollamudi and Chong [23] produce code for enclaves that
respect information flow properties, although at the cost of
a larger trusted computing base. Their compiler lays out
multiple enclaves for different parts of a program, depending
on security type annotations.

Barbosa et al. [3] develop cryptographic-style definitions
for core functionalities within TEEs including key exchange,
attested and outsourced computation. They prove that specific
schemes, in standard crypto-style pseudocode, achieve these
functionalities. Their fine-grained results come at the cost of
mechanized support and clean construction of protocols and
rules.

Much of the recent work complements ours, which provides
proof goals for enclave code. If the local code meets these
derived goals, our analysis shows that protocols and code will
cooperate to achieve our overall application goals.

Conclusion.
In this paper, we have illustrated, by means of an example

and some variants, how to combine reasoning about protocols
with reasoning about their context of execution. All of our rea-
soning is mechanized, and we provide a complete visualization
of the executions that are possible for a given scenario.

We have argued that, for attestation protocols, the rules
may be divided into hardware rules, trust rules, and attestation
rules. This provides an objective set of requirements for the
supporting mechanisms, based in hardware for attestation or
in trust anchors or trust between organizations. We believe
that the modular layers we found provides a repeatable way
to ensure user-level protocols are crafted to their trust and
attestation context.
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mated verification of equivalence properties of cryptographic protocols.
ACM Trans. Comput. Log., 17(4):23:1–23:32, 2016.

[14] Vincent Cheval. APTE: an algorithm for proving trace equivalence. In
TACAS, pages 587–592, 2014.

[15] George Coker, Joshua Guttman, Peter Loscocco, Amy Herzog, Jonathan
Millen, Brian O’Hanlon, John Ramsdell, Ariel Segall, Justin Sheehy, and
Brian Sniffen. Principles of remote attestation. International Journal of
Information Security, pages 1–19, 2011.

[16] Ricardo Corin, Pierre-Malo Deniélou, Cédric Fournet, Karthikeyan
Bhargavan, and James J. Leifer. A secure compiler for session ab-
stractions. Journal of Computer Security, 16(5):573–636, 2008.

[17] Cas Cremers and Sjouke Mauw. Operational semantics and verification
of security protocols. Springer, 2012.

[18] Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer. Com-
pleteness of the authentication tests. In J. Biskup and J. Lopez, editors,
ESORICS, number 4734 in LNCS, pages 106–121. Springer-Verlag,
September 2007.

[19] Daniel Dolev and Andrew Yao. On the security of public-key protocols.
IEEE Transactions on Information Theory, 29:198–208, 1983.

[20] Daniel J. Dougherty, Joshua D. Guttman, and John D. Ramsdell.
Security protocol analysis in context: Computing minimal executions
using SMT and CPSA. In Integrated Formal Methods, pages 130–150.
Springer, 2018.

[21] Santiago Escobar, Catherine Meadows, and José Meseguer. Maude-
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Tilo Müller, and Felix Freiling. Sancus 2.0: A low-cost security
architecture for IoT devices. ACM Trans. Priv. Secur., 20(3):7:1–7:33,
July 2017.

[37] John D. Ramsdell and Joshua D. Guttman. CPSA4: A cryptographic
protocol shapes analyzer with geometric rules. The MITRE Corporation,
2018. https://github.com/ramsdell/cpsa.

[38] John D. Ramsdell, Joshua D. Guttman, and Moses Liskov. CPSA: A
cryptographic protocol shapes analyzer, 2016. http://hackage.haskell.
org/package/cpsa.

[39] E. Rescorla, M. Ray, S. Dispensa, and N. Oskov. Transport Layer Se-
curity (TLS) Renegotiation Indication Extension. RFC 5746 (Proposed
Standard), February 2010.

[40] Paul D. Rowe, Joshua D. Guttman, and Moses D. Liskov. Measur-
ing protocol strength with security goals. International Journal of
Information Security, February 2016. DOI 10.1007/s10207-016-0319-z,
http://web.cs.wpi.edu/∼guttman/pubs/ijis measuring-security.pdf.

[41] Salman Saghafi, Ryan Danas, and Daniel J. Dougherty. Exploring
theories with a model-finding assistant. In Conference on Automated
Deduction, volume 9195 of Lecture Notes in Computer Science, pages
434–449. Springer, 2015.

[42] Benedikt Schmidt, Simon Meier, Cas Cremers, and David A. Basin.
Automated analysis of Diffie-Hellman protocols and advanced security
properties. Computer Security Foundations, (CSF), pages 25–27, 2012.

[43] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis,
Marcus Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. VC3:
trustworthy data analytics in the cloud using SGX. In 2015 IEEE
Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May
17-21, 2015, pages 38–54, 2015.

[44] Rohit Sinha, Manuel Costa, Akash Lal, Nuno P. Lopes, Sriram K.
Rajamani, Sanjit A. Seshia, and Kapil Vaswani. A design and verification
methodology for secure isolated regions. In PLDI, pages 665–681, 2016.

[45] Rohit Sinha, Sriram K. Rajamani, Sanjit A. Seshia, and Kapil Vaswani.
Moat: Verifying confidentiality of enclave programs. In ACM CCS,
pages 1169–1184, 2015.

[46] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng
Wang, Vincent Bindschaedler, Haixu Tang, and Carl A. Gunter. Leaky
cauldron on the dark land: Understanding memory side-channel hazards
in SGX. In ACM CCS, pages 2421–2434, 2017.

[47] Ting Yu, Marianne Winslett, and Kent E. Seamons. Interoperable
strategies in automated trust negotiation. In ACM CCS, pages 146–155,
2001.

APPENDIX

In this appendix, we provide—for the curiosity of referees—
full details and CPSA runs for an example. They show the
correctness of the recipe for application-level protocols given
at the end of Section III in this case. They also show how
to build in additional properties such as a requirement for a
fresh attestation rather than a “canned” one. Figures 6–7 are
screenshots of actual CPSA output, which is quite close to the
more print-ready figures in the body.

Again, input and output files have been placed on the web,
and may be retrieved by referees with the help of the PC
chairs.

The analysis in Section III-C tells us just how to use the
crowbar and fulcrum. Before executing the main protocol, a
role must collect the certificate [[ cert fm f, vk(f) ]]sk(CA), the
fulcrum report [[ fm eid :: ch :: k :: rest ]]sk(f), and the crowbar
report [[ cb er ]]k−1 .

Moreover, P needs a trust anchor CA, i.e. a vk(CA)
such that sk(CA) will be used only in accordance with the
protocol, meaning Non(sk(CA)). Second, Rule 4 requires that
the certificate for a principal f ensures that Non(sk(f)), and
Rule 5 requires that the code in control of sk(f), by using the
PKI correctly, will connect only to correct attestation servers,
and will use freshly generated challenge values. Finally, P
must know suitable values ch such that CbCode(ch), where
the latter ensures that an enclave controlled by ch will protect
its private key k−1 (Rule 6) and will not migrate k−1 (Rule 7).

A. The Yes-or-No protocol

As an example application level protocol, consider the Yes-
or-No protocol, as shown in Fig. 5. In this protocol, the
client P (a.k.a. the poser) uses the certificate, fulcrum report,
and crowbar report—written jointly as Repts—to ensure that
its intended peer A is compliant. It then transmits a yes/no
question Q together with two nonces Y and N encrypted with
pk(A). The job of the compliant answerer A is to release either
the first nonce Y in case the answer is yes or else the second
nonce N in case the answer is no. If P completes the branch
receiving Y , P learns one answer, and P learns the other
answer by completing the other branch.

The secrecy goal of this protocol is to ensure that even
an adversary that can guess what question Q will be asked
cannot determine what the answer is. The adversary cannot
distinguish
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Where Repts take the forms: [[ cert fm f, vk(f) ]]sk(CA),
[[ fm eidC :: chC :: kC :: restC ]]sk(f), [[ cb er ]]

k−1
C

.

Fig. 5. The Yes-or-No protocol

Run 1 in which the answer was yes; v0 was chosen as the
value of the parameter Y ; and v1 was chosen as the value
of the parameter N ; from

Run 2 in which the answer was no; v1 was chosen as the
value of the parameter Y ; and v0 was chosen as the value
of the parameter N .

Distinguishing these two runs would require distinguishing
{|Q, v0, v1|}pk(A) from {|Q, v1, v0|}pk(A). With a semantically
secure encryption, this is intractable.

Our CPSA analysis concentrates on the authentication prop-
erty, which is that when P completes along either branch, the
answerer must in fact have executed the corresponding branch.
If the poser thinks the answer was yes, then the answerer really
committed to yes; and likewise for no.

B. Rules for the client protocol
Suppose that P obtains the Repts, where in the crowbar

report [[ cb er ]]k−1 we have er = eidA :: chA :: kA :: restA,
i.e. the value er has the right structure for an enclave record.

The analysis of Section III-C tells us that the behavior
summarized in Fig. 4 must be present, and moreover two
enclaves are present, one running the crowbar itself, and the
other, which the crowbar has attested, running code chA. Thus,
for some pmk :

EnclCodeKey(eidC , chC , kC , pmk) and
EnclCodeKey(eidA, chA, kA, pmk).

We only need one additional attestation rule for this protocol
to be useful. This rule gives the consequences for an enclave
running the code chA we expect for the answerer. The rule is
an attestation rule, as it is entirely analogous to Rule 6.
Rule 10: (Answerer attestation) ∀ eid, ch : MESG .

EnclCodeKey(eid, ch, k, pmk) ∧ AnsCode(ch)
=⇒ Non(k−1).

That is, code whose hash satisfies AnsCode will, if running in
an enclave, generate a fresh keypair (k, k−1) and successfully
protect k−1, using it only in accordance with the protocol.

C. Protocol analysis: Application level
Consider now a scenario in which a poser runs the yes

branch to completion; in particular, it contains code hash chc

in the fulcrum report and cha in the crowbar report. Moreover,
we assume:
Facts: CbCode(chC), AnsCode(chA), Neq(chC , chA);
Keys: Non(sk(CA)).
Now CPSA constructs the diagram shown in Fig. 6.
The leftmost strand starts by receiving the certificate,
the fulcrum report, and the crowbar report. The mid-
dle reconstructs the consequences in Fig. 4. Using
EnclCodeKey(eidA, chA, kA, pmk), which we infer, together
with the assumption AnsCode(chA), we apply Rule 10, infer-
ring Non(k−1A ), i.e. Non(dk).

Hence, only an answerer strand can extract Y from
{|Q,Y,N |}pk(A); the adversary does not have the decryption
key. Thus, CPSA infers the rightmost strand.

The analysis in the client-no case corresponds exactly.

Omitting rules. Omitting Rule 10 has the expected effect:
Without it, CPSA has no ground to infer Non(k−1A ). If the
key k−1A is compromised, perhaps the adversary has used it to
decrypt {|Q,Y,N |}k, and the adversary can transmit Y back
to the poser P . Thus, the rightmost strand in Fig. 6, the ans-
yes strand, will not be added. The poser has no evidence of
the authenticity of the answer.

D. Recency for the crowbar report

Fig. 6 indicates reason to think that either run of the local-
quote role was recent at the time when the client-yes role
occurred. The quotes may have occurred long before P poses
the question Q. This is what we expect for the quote that attests
to the crowbar’s status, which is checked by the fulcrum. We
said that this should occur once when the processor is received,
to confirm the supply chain from manufacturer to purchaser.

However, possibly the crowbar should have run recently,
obtaining a new attestation for the answerer enclave after the
poser started his strand.

To obtain this functionality, no change is needed to the
machinery in Sections II and III. We simply make a small
change to the application level protocol described in this
section. We prepend a transmission to the beginning of the
poser roles. It sends a fresh nonce a that the poser checks
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Fig. 6. CPSA output for client protocol.

is contained as an additional field in the crowbar record
attestation to the answerer. This enclave record has the form
er = eidA :: chA :: kA :: restA, where the poser now checks
that restA = a :: rest′ in fact contains the nonce.

In the implementation, additional functionality in the an-
swerer enclave is needed to receive a and insert it into the
enclave record so that the quote will have this form. However,
our formalization is not sensitive to how this is done: any
way to accomplish this is acceptable, as long as it preserves
Rule 10, and the key remains non-compromised, to be used
only in accordance with the protocol.

With this change to the poser protocol, CPSA produces the
form shown in Fig. 7. The dashed arrow at the top records
the conclusion that the poser’s first transmission precedes
the local-quote attesting to the answerer. This illustrates the
flexibility of our fulcrum/crowbar machinery.
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Fig. 7. CPSA output for client protocol with recency.
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