
Security Criteria for a Transparent Encryption Layer
(Work in Progress)

Konstantinos Kallas
University of Pennsylvania

Philadelphia, USA

Clara Schneidewind
TU Wien

Vienna, Austria

Benjamin C. Pierce
University of Pennsylvania

Philadelphia, USA

Steve Zdancewic
University of Pennsylvania

Philadelphia, USA

Abstract—We study cryptographically-masked flows in the
presence of key leakage in an interactive setting. Focusing on the
encryption layer in a client-server setting, we propose a range of
correctness criteria embodying varying constraints on client and
server behavior and assumptions about the power of attackers.
We formalize these definitions in Coq and prove that a minimal
encrypting middlebox satisfies the strongest property.

I. INTRODUCTION

We want to reason about the security properties of servers
that use cryptographic encryption layers (e.g. SSL) to secure
communications with clients. A schematic representation of
such a server is given in Figure 1. Conceptually, the encryption
layer should be decoupled from the server-side logic: its only
purpose is encrypting and decrypting incoming and outgoing
communications. Conversely, the server logic should know
nothing about encryption, key management, etc...

Logic

En
cr

yp
tio

n
La

ye
r Client

m1

m2

enc(k, m1)

enc(k, m2)

Server

k

Fig. 1. Schematic illustration of a server with an encryption layer: Incoming
messages that represent valid encryptions with shared secret key k are
decrypted by the encryption layer and forwarded to the server logic. Outgoing
messages produced by the server logic are encrypted with k before being sent
to the client.

Formal reasoning about the security of such servers must
account for the special nature of cryptographically-masked
flows [5]. In particular, in this setting, encryption can ensure
message confidentiality only if the cryptographic key is kept
secret. If a key is leaked during the interaction, then an attacker
can use it to break the confidentiality of messages encrypted
with that key.

This paper aims to develop strong, general, and reasonably
realistic security properties that intuitively ensure desirable
features of servers with encryption layers. In particular, we
want to formally characterize the confidentiality of encrypted
communications and the absence of (partial) cryptographic key
leakage. The challenging part about this context is that it com-
bines cryptographic flows with key leakage in an interactive
setting, where inputs are provided over time, and can trigger

new outputs. This combination raises challenging questions
related to the specification of the environment of the server
(attacker and client) and (to our knowledge) has not been
addressed before in the literature.

More precisely, it turns out that using standard security
notions for cryptographically-masked flows in the presence
of key leakage without restricting the environment behavior,
would deem seemingly secure servers (e.g. a server with
an encryption layer that rejects unencrypted messages by
sending them back to the client) to be insecure. This opens
up the question on which kind of restrictions on environment
inputs are realistic, whether they lead to achievable security
properties, and how they relate to attacker and client behaviors.

Our contributions in this paper are:

• We define security properties for transparent server-side
encryption layers (Section VI). In contrast to the exist-
ing work on information flow control, we are (to our
knowledge) the first to study cryptographically-masked
flows in the presence of key leakage in an interactive
setting. We also describe a way of expressing attacker
capabilities by restricting what the attacker cannot do,
instead of specifying what they can do (Section V).

• We construct a minimalistic cryptographic middlebox that
encapsulates a server, encrypting its outgoing messages
and decrypting incoming messages. We prove this mid-
dlebox to satisfy the presented security notions for a
class of servers that satisfy a structural non-interference
property (Section VII).

• We formally specify the presented security notions and
the accompanying infrastructure in the Coq proof assis-
tant. We are in progress of finalizing the mechanized
proofs of the results presented in this paper within our
framework.

To focus attention on fundamentals, we simplify the problem
by omitting many important aspects of such scenarios such as
authentication, key exchange, and protocol negotiation. Also,
we consider a single-client setting with exactly one secret key
that has been pre-shared between the server and an honest
client.

We overview background in Section II, present key ideas
in Section III, summarize related work in Section VIII, and
discuss limitations and possible future work in Section X.

II. BACKGROUND

The information flow of systems that support cryptographic
primitives has been studied under the name cryptographically-
masked flows [5]. Defining non-interference-based security
properties in the presence of cryptographically-masked flows
raises special challenges that have been extensively discussed
by Askarov et al. [5], [6]. In this section we briefly overview
these results, before presenting the key ideas of our work in
Section III.

A. Non-Interference

Non-interference is a standard notion for describing strong
security properties such as confidentiality or integrity for
input-output systems or programs. More precisely, non-
interference is a hyperproperty [15] that relates pairs of
program executions: secrecy is usually expressed using non-
interference by requiring that two runs that only differ in
secret (or high confidentiality) inputs should not be distin-
guishable by observing their public (or low confidentiality)
outputs. Formally, this notion is typically captured by defining
two similarity relations called low input equivalence (written
∼I) and low output equivalence (written ∼O) on a program
configuration Σ. In the case of secrecy, low input equivalence
relates all configurations that differ only in their secret (or
confidential) values, while low output equivalence relates
configurations that are indistinguishable from the perspective
of an attacker who can only observe public (low) output values.

B. Occlusion

Defining non-interference in the presence of cryptographic
encryption comes with a particular challenge: Low output
equivalence should respect that messages m, which are en-
crypted with a secure encryption scheme using a secret key
k (written enck(m)), are not distinguishable by an attacker.
However, as encrypted ciphertexts are just another kind of
message, it should be straightforward for an attacker to dis-
tinguish whether the very same cipher text is sent twice. This
leads to a problem commonly referred to as occlusion [5].

Consider the example shown in Figure 2.

Fig. 2. Simple server with secret key k and secret s that leaks information
about s by occlusion. Note that each invocation of enc(k,0) corresponds to
the creation of a fresh encryption (with fresh random coins).

An attacker can easily learn some information about the
secret s (violating the secrecy of s) by observing the server’s
output: If the attacker observes that the exact same value is
sent two times in sequence, they can estimate that the value
of s will not be equal to 0 with overwhelming probability. To
account for this issue, Askarov et al. [5] extend encryptions to
not only depend on a key k and a message m, but also on an

initial vector r (that can be thought of as random coins used
in probabilistic encryption schemes).

For initial vectors r one can then characterize the following
equality (=̇) on ciphertexts that needs to be respected by the
low output equivalence [5]:

∀ k1 k2 m1 m2 r1 r2.

r1 = r2 ⇐⇒ enck1,r1(m1) =̇ enck2,r2(m2)

This characterization of =̇ ensures that (for same value of r)
ciphertexts encrypting different messages can be indistinguish-
able (for same value of r), but at the same can be distinguished
(for different values of r). This allows us to account for the
previously shown occlusion problem when using a particular
notion of non-interference called possibilistic non-interference.

C. Possibilistic Non-Interference

The idea of possibilistic non-interference is that, for every
two low-input-equivalent program configurations, the (observ-
able) behavior of a run of the program on one of the configura-
tions can be matched by a run on the other configuration. More
formally, considering that Σ ↓ Σ′ denotes that configuration
Σ evaluates to Σ′, possibilistic non-interference statements are
of the form:

∀ Σ1 Σ2. Σ1 ∼I Σ2 → Σ1 ↓ Σ′1 →
∃ Σ′2. Σ2 ↓ Σ′2 → Σ′1 ∼O Σ′2

Note that the concrete semantics of non-interference heavily
depends on the definitions of Σ, ∼I , and ∼O. For capturing
secrecy, low input equivalence should relate such configura-
tions that only differ in secret values For expressing reactive
non-interference, configurations should model input and output
streams that the low input and output equivalences can be
applied to. Qualifying input and output as confidential can
e.g., be achieved by an explicit labeling [5].

Applying the idea of possibilistic non-interference to the
example in Figure 2, we would require that the set of traces
produced by the server for any value of secret s1 is output
equivalent to the set of traces produced by any other secret
value s2. In particular each run of a server with s = 0 would
need to be matched by a server with s = 1. Making the
randomness of the encryption explicit, enck,r1(0) · enck,r2(0)
for some r1 6= r2 would be a valid trace for the server with
s = 0. This trace, however cannot be matched by a low output
equivalent trace of the server with s = 1 as such a server can
only produce traces of the form enck,r(0) · enck,r(0). Hence,
the server would be considered to violate the secrecy of s.

III. KEY IDEAS

The goal of this work is to study security properties for
interactive servers (such as web servers) with a simple trans-
parent encryption layer. We want strong—but reasonable—
security notions that apply to a general setting, and to this
end we want to limit both the assumptions we make about the
server logic and the restrictions we place on the adversarial
environment. In particular, we state our definitions in terms of
interaction traces between the server and its environment, as

opposed to fixing a specific model for representing servers,
clients, or attackers. Similarly, we characterize adversarial
environments in terms of their limitations, rather than con-
structively specifying their possible actions; this reduces the
risk of under-specifying adversarial capabilities and gives us
stronger guarantees.

In this section we overview the key ideas of the paper,
starting from the security properties that we are aiming
for, followed by a discussion on the issues that arise from
the particular setting under consideration (cryptographically-
masked flows in the presence of key leakage for interactive
servers). We close with a brief discussion on the specification
of attacker capabilities.

A. Security Properties

When studying the security properties of a server with an
encryption layer, we are mostly interested in the secrecy of
data that was exchanged via the encrypted connection (more
precisely, those messages that were encrypted with a shared
secret key k). From now on, we will refer to this notion of
secrecy as confidential data secrecy.

Intuitively, confidential data secrecy should be expressible
by a single non-interference-based definition; however, it turns
out that, in the setting of cryptographically masked flows with
key leakage, such a direct characterization is not easy: Since
cryptographic keys are modeled symbolically, the notion of
key leakage that is commonly used [6] is only concerned with
leakage of full keys, not with partial or gradual leakage of
key information. Hence, expressing confidential data secrecy
as a non-interference property using this model of key leakage
would only imply a weak notion of key secrecy (namely that
that the key used for encryption might not be leaked as a
whole, as otherwise an attacker could use this key to decrypt
confidential messages). However, a server that leaks its secret
key bit by bit would be considered secure by such a definition.
We address this issue by explicitly demanding keys that are
used for encrypting secure connections to satisfy a strong
secrecy propperty.

For this reason the two security properties for web servers
with shared secret k that we want to focus on in this work are
the following notions of strong secrecy:

1) The secrecy of server-side secret keys (more precisely
the shared private key with a client). We will call this
property strong key secrecy.

2) The secrecy of input values that were sent under en-
cryption with the shared private key. We will call this
property strong confidential data secrecy.

Strong key secrecy corresponds to the standard notion of
strong secrecy [3] applied to keys that are used by a server and
its clients to encrypt their communications. Intuitively, strong
key secrecy means that the server doesn’t leak any information
about the key that it uses to encrypt the communication with its
client. Correspondingly, strong confidential data secrecy will
be captured by a reactive non-interference notion that requires
that no information about encrypted inputs sent by the client
can be leaked.

B. Restricting Attacker Capabilities

There are several issues that arise when specifying strong
secrecy properties for interactive servers in the presence of en-
cryption, and some of them have been separately solved in the
setting of cryptographically masked flows without key leakage
for interactive systems [5] and the setting of cryptographically
masked flows with key leakage for non-interactive systems [6].
However, it turns out that in the combined setting, the previous
solutions are not adequate anymore. Below, we try to briefly
describe the arising issues, by presenting illustrating examples
of problematic interactions.

a) Guessing Secrets: A typical question that is raised
when modeling strong secrecy for interactive systems is how to
prevent an attacker from guessing secrets. Consider the server
with secret key k depicted in Figure 3.

Fig. 3. Simple interactive server with secret key k that sends back any received
value.

This server should intuitively be considered secure (in the
sense of strong secrecy) as it does not leak any information
about the secret key k. However, if the attacker is able to
guess the key k, then k will be sent out in plain by the server.
This issue can be tackled by treating all values that are not k,
to be dissimilar from k in the low input equivalence relation
∼I . Therefore, the set of low input equivalent runs contains
a single run, thus trivially satisfying low output equivalence
due to reflexivity.

b) Key Leakage: In the presence of encryption, messages
that are encrypted with a secret key should be considered
low output equivalent as they cannot be distinguished by an
attacker. However, an attacker could learn information about
a key used for encryption while interacting with the server,
and later on use this information to distinguish encrypted
messages. Consider the example in Figure 4. This server is

Fig. 4. Simple server with secret key k and secret s that first leaks secret
key k and then sends out the encryption of s under k.

clearly insecure as it leaks the secret key k and afterwards
sends the ciphertext of some secret s encrypted under k. To
account for that, the low output equivalence ∼O should be
sensitive to the set of keys (from now on referred to as key
knowledge) that an attacker could deduce while interacting
with the server. Note that the same issue arises when the key
k is leaked after the ciphertext enc(k, s).

Following prior work [6], this can be captured by making
the low output equivalence trace sensitive. Two ciphertexts
using the same key are considered equivalent, only if the key

used to decrypt them cannot be derived from an adversary
after observing the whole interaction with the server.

c) Key Leakage by Guessing Secrets: The previously de-
scribed notion of low output equivalence alone is not sufficient
to correctly characterize security when combining the previous
two examples as depicted in Figure 5.

Fig. 5. Simple server with secret key k and secret s that sends back the first
message it receives and then sends out the encryption of s under k.

The depicted server holds two secret values: a secret key
k and a confidential value s. Intuitively, this server should
be secure as it simply sends back the first message that it
receives from the environment and afterwards sends the secret
encrypted under the secret key k hence not leaking anything
about s (or k). However, assuming that an attacker can increase
their key knowledge by observing the server output, in the
depicted run an attacker that could guess k would learn k
from the server output. This would allow them to decrypt
the ciphertext that they learns in the next step and thereby
to violate the secrecy of s.

This issue cannot be solved by refining the notion of
similarity between two arbitrary input traces as done before,
but requires to limit the set of possible input traces in the
first place. To account for this, we specify the capabilities
of an attacker, thus restricting the possible input traces, by
describing what a realistic attacker should not be able to
do. Intuitively, the attacker should not be able to produce a
message that, if observed, would increase their key knowledge.
In the depicted example such a property would be trivially
violated as sending out key k would imply that k is in the
attacker’s key knowledge.

C. Attackers

We characterize attackers as the sets of traces that they can
produce given an initially known set of cryptographic keys. For
example, in order to prevent the issue described in Figure 5,
we restrict traces where the attacker sends keys that they don’t
know in plain text. Our attacker characterizations fall into two
separate categories:

1) The interaction of server with an attacker alone.
2) The interaction of server with an attacker in the presence

of other (honest) participants concurrently communicat-
ing with the server.

While the first scenario focuses on whether an attacker can
trick a server into leaking (information about) the secret key
that they shares with an honest user, the second scenario
additionally models concurrent ongoing sessions with other
(honest) clients. Satisfying secrecy properties in the second
setting gives particularly strong guarantees, as they imply that
no interaction of honest clients and adversaries with the server,

could lead to the leakage of encrypted message contents, or
of the shared encryption key.

Fig. 6. Simple server with secret key k that leaks key upon receiving a correct
encryption of message 0..

In particular, the server depicted in Figure 6 would be
considered insecure in this setting for two reasons:

1) An attacker would learn that the value sent by the
(honest) client was actually an encryption of message
0 (violating strong confidential data secrecy)

2) An attacker would learn the secret key k (violating
strong key secrecy).

All of the above scenarios can be modeled by explicitly
tracking the attacker’s knowledge of keys and using that
knowledge to proscribe the sets of traces that would be im-
possible to produce by an attacker limited to that knowledge.
Below, we formulate such a notion of “knowledge” and use it
to define several characterizations of attacker capabilities.

IV. DEFINITIONS

We begin by describing our assumptions about the un-
derlying cryptographic model. First of all, we only consider
symmetric probabilistic encryption schemes. The encryption
algorithm of a probabilistic encryption scheme, is a function
E from a key, a plaintext, and some randomness (referred to as
an initial vector). The scheme is called probabilistic, because
the algorithm can produce a set of ciphertexts for each pair of
key and plaintext, depending on the given initial vector. We
assume the decryption algorithm D is deterministic, and that it
fails if a wrong key is used. Formally the decryption function
is defined as follows.

∀r,D(k, E(k′, v, r)) =

{
v, if k = k′

⊥, otherwise

In addition, we assume Shannon’s perfect secrecy [22],
meaning that an observer can learn no information about the
plaintext or the key, just by observing its ciphertext.

A. Traces

The notions in this paper are defined in terms of the
observable interactions between a server and its environment.
The attacker is encapsulated by the environment and can
observe the network interactions of the server, that is, the
messages that it sends and receives. Messages m ∈ M can
contain arbitrary values n in plain text, keys k in plain text,
ciphertexts enck,r(m) which represent the result of E(k, v, r),
or pairs of messages. The formal definition of the message
data type M can be seen below:

M3 m,m1,m2 : = n | k | enck,r(m) | (m1,m2) k, n ∈ N

The interaction of the server with the environment is repre-
sented as a finite sequence of messages that were sent from,
or received by the server. Each message sent or received is
represented as an event, which can either be of type send or
receive. Formally:

E 3 e := send(m) | recv(m) m ∈M

We will call the sequence of events an event trace and assume
(indexed) variables s to range over event traces.

We introduce the following notions for reasoning about the
set representations of messages in an event trace:

o(s) := {m | ∃e. e = send(m)} output messages

i(s) := {m | ∃e. e = recv(m)} input messages

msg(s) := i(s) ∪ o(s) trace messages

Note that the set representation of traces is only used to
define the key knowledge that an adversary can acquire from
observing a trace, and not for the equivalence based security
definitions.

B. Attacker Knowledge and Derivability

In the standard setting, non-interference is defined with
respect to a similarity notion, that represents the equivalence
of two observed events from the viewpoint of an observer.
However, in a setting where events could contain messages
encrypted under some key, a static notion of equivalence
is not adequate, as the indistinguishability of two events
depends on the keys that an observer knows of, and this can
change over time. For example an observer who only knows
key k cannot distinguish between messages enck1,r1(m1) and
enck2,r2(m2), when k 6= k1 and k 6= k2, even if k1 = k2.
However, an observer who knows both k1, k2 can distinguish
the two ciphertexts, by decrypting them and inspecting the
encrypted values. Therefore the equivalence notion has to be
parametrized by the keys that the attacker knows and can use
for decrypting (or encrypting) ciphertexts. We call the set of
keys κ that the attacker knows key knowledge.

To describe the keys that an attacker can learn from a trace,
we define a derivability relation ·, · ` ·, · on pairs of traces and
key knowledge sets. We will refer to pairs of the form (tr, κ)
as knowledge states and call tr the working trace and κ the key
knowledge. Note that tr here denotes the set representation of
a trace. This is adequate as the order of events does not affect
the key knowledge that can be derived from a trace, as the
observer has recorded the whole trace, and can read it in any
order.

tri, κi ` tri, κi
k ∈ tr tri, κi ` tr, κ

tri, κi ` tr/{k}, {k} ∪ κ

enck,r(m) ∈ tr k ∈ κ tri, κi ` tr, κ

tri, κi ` {d} ∪ tr/{enck,r(d)}, κ

(m1,m2) ∈ tr tri, κi ` tr, κ

tri, κi ` {m1,m2} ∪ tr/{(m1,m2)}, κ

Intuitively, tri, tr ` κi, κ holds when given initial key
knowledge κi, an observer can deconstruct the trace tri to
trace tr and in the process learn new keys, thus ending up
with key knowledge κ. The applications of the presented rules
can be seen as the steps that an attacker with knowledge
κi would perform to extract all extractable keys from trace
tri. In this process, tri is transformed to tr by deconstructing
composed messages (pairs), decrypting encrypted data in case
that the encryption key is known, and adding plain keys to the
accumulated key knowledge.

The presented derivability notion is monotone in the key
knowledge: κi is a subset of κ, as the knowledge can only
increase when observing a trace. In contrast, traces are drained:
intuitively tr contains less “extractable” information than tri.
We make these intuitions precise, by formulating derivability
as a rewrite system on knowledge states.

({k} ∪ tr, κ)→ (tr/{k}, {k} ∪ κ)

({enck,}(m) ∪ tr, {k} ∪ κ)→ ({m} ∪ tr/{enck,}(n), {k} ∪ κ)

({(m1,m2)} ∪ tr, κ)→ ({m1,m2} ∪ tr/{(m1,m2)}, κ)

Note that each rewrite rule removes an element from the initial
trace. We can use those elements to characterize the concrete
action taken in each rewrite step. We optionally annotate the
rewrite relation with this action.

Extending standard notions for abstract rewrite systems,
we say that a knowledge state (tr, κ) is unreducible if there
is no (tr′, κ′) such that (tr, κ) → (tr′, κ′). Accordingly we
will say that (tri, κi) reduces to normal form (tr, κ) (written
(tri, κi) ↓max (tr, κ)), if (tri, κi) →∗ (tr, κ) and (tr, κ) is
unreducible where →∗ denotes the reflexive and transitive
closure of →.

In order to establish a confluence result, we have to formally
capture the possible deviation of a knowledge state after
applying two different steps. It turns out that two different
rewriting steps cannot be easily joined within one step as
illustrated in the following example:

Example 1:

({k1, (k1, k2)}, ∅)
(k1,k2)−−−−→ ({k1, k2}, ∅)

k1−→ ({k2}, {k1})

({k1, (k1, k2)}, ∅)
k1−→ ({(k1, k2)}, {k1})

(k1,k2)−−−−→ ({k1, k2}, {k1})

More precisely, it is possible to join the key knowledge
within one step, but not necessarily the working trace. How-
ever, we can capture the gap between the sets by a looser
equivalence relation that we call mutual deconstruction.

Intuitively, a valid deconstruction of a message m with re-
spect to a key knowledge κ, is a decomposition that preserves
all atomic components of m upto keys in κ. Formally we
describe deconstructions by the following predicate:

m κ {m}
k ∈ κ
k κ ∅

k ∈ κ m κ tr
enck,r(m) κ tr

m1
κ tr1 m2

κ tr2
(m1,m2) κ tr1 ∪ tr2

By lifting deconstruction to traces, we can establish a new
equivalence relation on trace knowledge states.

Definition 1 (Trace Deconstruction): Trace tr1 deconstructs
trace tr2 under knowledge κ (written tr1 κ tr2) iff

∀m. m ∈ tr1 → ∃tr. m κ tr ∧ tr ⊆ tr2.

Definition 2 (Mutual Trace Deconstruction): Traces tr1
and tr2 mutually deconstruct each other under knowledge κ
(written tr1!κ tr2) iff

tr1 κ tr2 ∧ tr2 κ tr1

With respect to mutual trace deconstruction we can prove
confluence of the given abstract rewrite system.

Lemma 1 (Confluence): Let (tr, κ) →∗ (tr1, κ1) and
(tr, κ) →∗ (tr2, κ2). Then there exist κ∗, tr∗1, and tr∗2 such
that (tr1, κ1)→∗ (tr∗1, κ

∗), (tr2, κ2)→∗ (tr∗2, κ
∗) and

tr∗1 !
κ∗

tr∗2.
From this result we can prove the existence of unique

normal forms:
Lemma 2 (Existence of unique normal forms): For every

(tr, κ) there is a unique normal form (trmax, κmax)

V. ATTACKER CAPABILITIES

In contrast to classical reactive non-interference notions,
which typically assume unrestricted attackers [14], the setting
of cryptographically-masked flows requires a restriction of
an interactive attacker’s capabilities. An unrestricted attacker
would correspond to a computationally unbounded one and
hence could easily break any cryptographic primitive.

Instead of defining the attacker capabilities in a constructive
way, that is by specifying what the attacker can do (construct
and send messages to the server, destruct observed messages
from the server, etc.), we would like to specify attacker
capabilities in a non-constructive way. The rationale behind
this decision is that a non-constructive attacker specification
approaches the attacker from an overapproximation of its
behaviour, therefore reducing the risk of underspecifying at-
tacker capabilities. At the same time we would prefer to state
attacker capabilities independently from the concrete attacker
representation. More precisely, we don’t want the attacker
model to be tied to a specific language or process calculus,
but to be purely defined on interaction traces with the server.

In this paper we propose several different trace-based spec-
ifications of attacker capabilities with respect to the attacker’s
key knowledge (or knowledge state). All attacker notions that
we present characterize the potential actions of an adversarial
environment that encompasses active attackers who interact
with the system in question. Note that when referring to
attacker capabilities in the remainder of the paper we comprise
the full environment’s actions (including the clients’ actions).
Taking this unified view allows for simple, uniform specifi-
cations of potential inputs to the server and hence simplifies
reasoning about the server’s security.

The presented notions differ in the amount of knowledge
that the attacker may use for for creating their messages to
the system. Accordingly, we formulate attacker capabilities as
predicates on traces parametrized by the attacker’s initial key
knowledge κi.

A. Attacker Capabilities

We specify attacker capabilities along two dimensions:
Their ability of sending messages that they constructed them-
selves and their ability of sending messages that were con-
structed by other entities. We refer to the former as attacker-
constructed messages and to the latter as client constructed
messages. Both attacker-constructed as well as client con-
structed messages are defined with respect to a key knowledge.
Intuitively, those ciphertexts that are encrypted with keys
known to the attacker are considered attacker-constructed,
while ciphertexts that were encrypted with unknown keys are
considered client constructed.

1) Attacker-constructed Messages: The general idea of
restricting attacker-constructed messages is to ensure that
the attacker did not use keys that they didn’t know when
constructing some message. This is important, as it establishes
that an attacker can’t simply guess keys and hence provoke
situations as described in Section III-B. For expressing this,
we can use the intuition that the maximal key knowledge
κmax of trace tri with initial knowledge κi actually gives the
set of keys that were used in attacker-constructed messages.
Ensuring that κmax does not contain any previously unknown
message therefore effectively restricts attacker traces not to
use inaccessible knowledge.

By directly applying this intuition, we arrive at the follow-
ing (non-adaptive) definition of possible attacker traces with
attacker-constructed messages restricted by knowledge κi.

T attacker
non-adapt(κ

i) : =

{s | (i(s), κi) ↓max (trmax, κmax) ∧ κmax ⊆ κi}

Note that this definition is non-adaptive in the sense that it
considers the initial knowledge κi as static reference along the
trace 1) for qualifying (sub) messages as attacker-constructed
and 2) as reference for knowledge growth.

An adaptive definition takes into account that the attacker’s
key knowledge might grow by observing messages that were
sent by the server. We capture this by requiring that every
message m sent by the attacker (hence is a receive event)
should not increase the attacker’s key knowledge (as compared
to the key knowledge before the receive event). This intuition
is formalized by the following definition:

T attacker
adapt (κi) :=

{s | ∀spre spost m. s = spre · [recv(m)] · spost →
(msg(spre), κ

i) ↓max (trpre
max, κ

pre
max)→

({m}, κpre
max) ↓max (trmax, κmax)→ κmax ⊆ κpre

max}

This definition can be seen as a point-wise version of the non-
adaptive definition where each receive event is restricted by
the knowledge κpre

max gained from the prefix trace instead of the
initial knowledge κi.

Note that the key knowledge in this setting is inter-
dependent: 1) knowledge is used for classifying messages
into attacker-constructed and client constructed ones (because
whether the content of an encrypted message is considered for

knowledge generation depends on whether the encryption key
is contained in the attacker’s key knowledge) 2) knowledge
evolves according to the (decryptable) trace messages and
a growth in key knowledge again changes the messages
considered for key generation.

For these reason the two presented notions are also incom-
parable. Consider the example in Figure 7.

Fig. 7. Simple server with secret keys k1 and k2 that leaks k1.

This server leaks the key k1. Assuming an adaptive attacker
that initially doesn’t know k1 or k2, the message enck1,r(k2)
would not be allowed to be sent after receiving k1 as doing
so would increase the attacker’s knowledge given that they
already learned k1 from the prior interaction. Statically as-
suming the empty key knowledge sending enck1,r(k2) would
not increase the key knowledge as ({enck1,r(k2)}, ∅) ↓max

({enck1,r(k2)}, ∅).
On the other hand, there are clearly inputs forbidden by

a non-adaptive attacker that are allowed by a non-adaptive
definition as shown by the interaction depicted in Figure 8.
Assuming the knowledge from the previous interaction (so

Fig. 8. Simple server with secret keys k1 and k2 that leaks k1.

the server message k1), an attacker sending key k1 would
not increase it’s key knowledge. However, assuming an initial
empty knowledge sending k1 would cause an increase in the
key knowledge, hence be forbidden by T attacker

non-adapt(∅).
This issue gives rise to a more liberal definition of attacker

capabilities that performs message classification according to
the initial knowledge, but judges the key growth with respect
to the adaptive key knowledge:

T attacker
semi-adapt(κ

i) :=

{s | ∀spre spost m. s = spre · [recv(m)] · spost →
(msg(spre), κ

i) ↓max (trpre
max, κ

pre
max)→

({m}, κi) ↓max (trmax, κmax)→ κmax ⊆ κpre
max}

This definition would allow for the both interactions depicted
in Figure 7 and Figure 8. This is as enck1,r(k2) would be
assumed to be client constructed with respect to the initial
empty key knowledge in Figure 7 and hence would not subject
to restriction. On the other side, in Figure 8, sending out k1
would not cause an increase in knowledge with respect to the
knowledge learned by the previous interaction (which would
be exactly {k1}).

2) Client Constructed Messages: While attacker-
constructed messages are restricted by the maximal key
knowledge that they expose, client constructed messages
show up as encryptions in the maximal working trace of
the environment inputs and can be restricted by putting
limitations on that maximal working trace.

For restricting client constructed messages we need to
consider two aspects: 1) which key knowledge is considered
for classifying messages as client constructed. As done for
attacker-contructed messages we need to make a distinction
into adaptive and a non-adaptive knowledge used for classi-
fication. 2) whether one should allow for replaying messages
that were already observed, so the kind of restriction put on
client constructed messages.

For simplifying the characterization of client constructed
messages, we will let in the following denote ENCS(tr) the
encryptions in trace tr. More formally:

ENCS(tr) := {menc ∈ trmax | ∃k r m. menc = enck,r(m)}

First we consider a non-adaptive notion where (non-
decryptable) encryptions are excluded:

T client
non-adapt(κ

i) :=

{s | (i(s), κi) ↓max (κmax, trmax) ∧ ENCS(trmax) = ∅}

Note that the classification of messages to be be client con-
structed is based on the initial knowledge κi. This means
that even learning a key during interaction does not allow for
sending encryptions using this key. Considering the interaction
with the key-leaking server depicted in Figure 9, sending
enck,r(m) would be forbidden even though the attacker would
have sufficient knowledge for creating this encryption himself
as she learned k from the interaction. However according to an
empty initial knowledge enck,r(m) will be classified as client
constructed and hence be constraint.

Fig. 9. Simple server with secret keys k that leaks k.

A more realistic notion considers an adaptive key knowledge
similar to the one in the specification of T attacker

adapt (·). This notion
ensures that once a key is learned an encryption with this key
can be created.

T client
adapt (κi) :=

{s | ∀spre spost m. s = spre · [recv(m)] · spost →
(msg(spre), κ

i) ↓max (trpre
max, κ

pre
max)→

({m}, κpre
max) ↓max (trmax, κmax)→ ENCS(trmax) = ∅}

This notion accounts for the interaction shown in Figure 9 as
it accounts for the growth in key knowledge by observing the
interaction for classifying as enck,r(m) as attacker-constructed
and hence does not constrain it.

TABLE I
OVERVIEW ON POSSIBLE ATTACKERS EXPRESSED AS INTERSECTIONS ON
CAPABILITIES FOR RESTRICTING ATTACKER-CONSTRUCTED AND CLIENT

CONSTRUCTED MESSAGES.⋂
T attacker

non-adapt(·) T attacker
adapt (·) T attacker

semi-adapt(·)

T client
non-adapt(·) Anon-adapt(·) × ×

T client
adapt (·) × Aadapt(·) Asemi-adapt(·)
T client

adapt, replay(·) × Aadapt, replay(·) Asemi-adapt, replay(·)
TE Anon-adapt, preplay(·) Aadapt, preplay(·) Asemi-adapt, preplay(·)

Finally, for allowing an attacker to replay messages that
were already seen, we extend the adaptive definition to allow
for encryptions in the maximal working trace in case that they
were already present in the previous (server) trace.

T client
adapt, replay(κ

i) :=

{s | ∀spre spost m. s = spre · [recv(m)] · spost →
(msg(spre), κ

i) ↓max (trpre
max, κ

pre
max)→

({m}, κpre
max) ↓max (trmax, κmax)→

ENCS(trmax) ⊆ ENCS(trpre
max)}

Fig. 10. Simple server with secret keys k sends out enck,r(m1).

Considering the interaction depicted in Figure 10, the first
attacker message (enck,r(m1)) will be allowed as it does
not increase the knowledge about client constructed messages
that was assembled from the previous interaction (which
is exactly {enck,r(m1)}). In contrast, the second attacker
message (enck,r(m2)) will be rejected as it adds a new client
constructed message.

B. Attackers

Section V-B overviews the different ways of combining
the attacker capabilities for attacker-constructed and client-
constructed messages. Combinations that are infeasible (due
to incompatible levels of adaptability) are marked with ×.

Additionally, in Figure 11 we give a hierarchy of the
attackers presented in Table V-B. In this paper we want to
focus on two interesting combinations: The semi-adaptive
replaying attacker (as a standard attacker from literature) and
the semi-adaptive preplaying attacker (as a particularly strong,
but still reasonable attacker in the web setting).

1) Semi-adaptive Replaying attacker: A realistic attacker
should – in addition to creating arbitrary messages that don’t
require any knowledge of secret keys – be able to replay
encryptions in the case that she has already encountered them
during her interaction with the server. This notion is captured
by the semi-adaptive replaying attacker, formally defined as
follows:

non-adapt adapt

 semi-adapt

 semi-adapt, replay

 non-adapt, preplay

 semi-adapt, preplay

 adapt, preplay

 adapt, replay

Fig. 11. Hierarchy of different attacker capability characterizations: A
connection A1 → A2 denotes that ∀κi. A1(κi) ⊆ A2(κi). Attackers that
are not transitively connected are considered incomparable.

Definition 3 (Semi-adaptive replaying attacker):

Asemi-adapt, replay(s) := T attacker
semi-adapt(s) ∩ T client

adapt, replay(s).

Intuitively, T attacker
semi-adapt(s) ensures that messages sent by the

attacker may not contain any secret keys (unless they occur en-
crypted under some other unknown key). The semi-adaptivity
ensures that encrypted messages whose keys are learned during
the interaction are not considered to contribute to the attacker’s
key knowledge. Instead the sending of encrypted messages is
purely restricted by T client

adapt, replay(s) which ensures that those
encryptions with initially unknown keys might only be those
already learned in the prior interaction with the server.

2) Semi-adaptive Preplaying Attacker: For defining a semi-
adaptive preplaying attacker, we don’t put any restrictions
on client constructed messages, but only prevent attacker-
constructed messages to contain guessed keys.

Definition 4 (Semi-adaptive preplaying attacker):

Asemi-adapt, preplay(s) := T attacker
semi-adapt(s)

Even though such a preplaying attacker who allows for
arbitrary client constructed messages might seem unrealis-
tically powerful on the first sight, it turns out that such a
notion actually describes the potential encrypted interactions
of an honest user with the server that might be observed by
an attacker. For characterizing the security of an encrypted
connection between and honest user and server the observation
from these kinds of interactions should not allow an attacker to
draw any conclusions on the honest user’s encrypted messages
to the server. Hence modeling arbitrary messages encrypted
under keys that are unknown to the attacker is essential
for defining a meaningful notion of the (strong) secrecy of
confidential data.

On the other hand, it might also be the case, that only
the user that established the secure connection could trigger a
flawed server into leaking (information about) the encryption
key used during this secure connection as depicted in Figure 6.

From this perspective, a preplaying attacker might be con-
sidered to control the honest user, thus being able to trigger all
actions that an honest user (knowing the key) could perform.
This would correspond to an attacker that can trick a user into
performing arbitrary actions (as e.g., assumed in CSRF attacks
where an attacker makes a user execute unwanted actions).

So intuitively, there are two possible interpretations of this
attacker characterization; one where the attacker is able to
trick any user into performing arbitrary actions and one where
the attacker interacts with the server in an environment that
contains honest users that arbitrarily interact with the server. In
the first interpretation it is implicitly assumed that the users
cannot be tricked to leak any secret keys in plain, whereas
in the second interpretation a well-behavedness condition is
implicitly assumed from the honest users.

VI. NON-INTERFERENCE NOTIONS FOR SERVERS

Non-interference is a standard security notion for capturing
the absence of information leakage in systems. In this work
we are concerned with the leakage of information that might
corrupt a secure connection between a server and a client.
Specifically we are interested in the (strong) secrecy of 1)
shared secrets (in particular private keys) between the server
and the client and 2) information sent via the secure connection
(messages encrypted with a shared secret key).

A. Strong Key Secrecy

The first notion that we will consider is strong key secrecy.
Intuitively, strong secrecy means that no information (also
no partial information) about a secret might be leaked. This
includes leakages caused by implicit flows.

We will state the different security notions for servers in
terms of generic templates for possibilistic non-interference on
partial traces. The use of partial traces and a possibilistic non-
interference definition allows us to naturally account for the
termination and occlusion behavior of the server as discussed
in Section II-C.

We first give a template for strong key secrecy. We will
parametrize the non-interference template with a generic set
of servers X , and a corresponding (partial) trace predicate
isTrace ∈ X → P(TE×B). For every server the trace predicate
characterizes the set of the server’s traces where a trace also
incorporates a boolean flag for indicating whether the trace is
terminating or not.

Definition 5 (Possibilistic Strong Key Secrecy on Partial
Traces): Let X be a set of servers, server ∈ K → X be a
familiy of servers parametrized by a secret, and isTrace ∈
X → P(TE × B) be a family of trace predicates over servers
in X . Then we define server to satisfy strong key secrecy
for attacker capabilities A and low equivalence relation Lout∼
(written: KSECserver,isTrace

A,Lout∼
) as follows:

KSECserver,isTrace

A,Lout∼
:= ∀κi1 κi2 k1 k2 s1 r1.

(s1, r1) ∈ isTrace(server(k1))

→ κi1 = K/{k1} → κi2 = K/{k2} → s1 ∈ A(κi1)

→ ∃ s2 r2. (s2, r2) ∈ isTrace(server(k2)) ∧ s2 ∈ A(κi2)

∧ s1 κi
1

Lout∼ κi
2
s2 ∧ r1 = r2

Intuitively, this non-interference notion describes that an
attacker should not leak anything about it’s secret. To achieve
this, we choose the strong attacker scenario in which the

attacker initially knows all keys but the secret one. Note that
by requiring equality on the termination indicators r1 and r2,
we fix the non-interference notion to be termination-sensitive:
whenever a program run of a server (with a specific secret)
can terminate then there must be (a low output equivalent) run
for any other secret that also terminates. For generalizing the
non-interference template to also account for non-termination-
sensitive definitions one could parametrize the template by a
generic similarity notions on the termination indicators.

Relevant attackers for Strong Key Secrecy: Strong secrecy
is an interesting notion in the presence of non-preplaying
attackers: In this context it means that an attacker that is
in one (or multiple) sessions with the server cannot trick
the server into leaking the honest users key. Still, there are
possible scenarios where a key or information about a key
might be leaked, but that such an event can only be triggered
by a user knowing the secret key. Reconsidering the example
from Figure 6 one can see that in this case only a message
encrypted by the secret key could trigger the key leakage.
Detecting such behaviour would require a preplaying attacker
that models honest client actions.

B. Strong Confidential Data Secrecy

Protecting the keys that secure a connection is a necessary,
but not sufficient condition of achieving a secure communi-
cation between the server and an honest client. Additionally,
we would like to require from a secure server also not to leak
any contents submitted by a user over a secure connection. We
can capture this idea by a reactive non-interference notion that
requires that the client’s protected inputs can not influence the
servers outputs:

Definition 6 (Possibilistic Reactive Non-Interference on Par-
tial Traces): Let X be a set of servers, server ∈ X be a server,
and isTrace ∈ X → P(TE×B) be a family of trace predicates
over servers in X . Then we define server to be possibilistic
reactive non-interferent with respect to a secret key k, notions
of low-input equivalence Lin∼ and low-output equivalence Lout∼
(written CSECserver,k,isTrace

A,Lout∼ ,
Lin∼

) as follows.

CSECserver,k,isTrace

A,Lout∼ ,
Lin∼

:= ∀κi k s1 itr1 itr2 otr1. κi = K/{k}

→ (s1, r1) ∈ isTrace(server)→ s1 ∈ A(κi)

→ s1 = (itr1 ‖ otr1)→ itr1 κi
Lin∼κi itr2

→ ∃otr2 s2 r2. s2 = (itr2 ‖ otr2)

∧ (s2, r2) ∈ isTrace(server) ∧ s2 ∈ A(κi)

∧ s1 κi
Lout∼ κi s2 ∧ r1 = r2

where (itr1 ‖ otr1) denotes an interleaving of input and output
traces (including that input messages are lifted to send()
events and output messages are lifted to recv() events)

Intuitively, we will consider such inputs low input equivalent
that cannot be distinguished by an attacker with initial key
knowledge. This will give us that every encrypted connection
that was initially protected by a secret key, will not leak

m κ1

M∼κ2 m

m1 κ1

M∼κ2 m2 m′
1 κ1

M∼κ2 m
′
2

(m1,m
′
1) κ1

M∼κ2 (m2,m
′
2)

k ∈ κi1 k ∈ κi2 m1 κ1

M∼κ2 m2

enck,r1 (m1) κ1

M∼κ2 enck,r2 (m2)

k1 6∈ κi1 k2 6∈ κi2
enck1,r(m1) κ1

M∼κ2 enck2,r(m2)

ε κ1

Lin∼ κ2 ε

m1 κ1

M∼κ2 m2 s1 κ1

Lin∼ κ2 s2 e ∈ {send, recv}

e(m1) · s1 κ1

Lin∼ κ2 e(m2) · s2

(msg(s1), κ1) ↓max (tr1, κ1max)

(msg(s2), κ2) ↓max (tr2, κ2max) s1 κ1
max

Lin∼ κ2
max

s2

s1 κ1

Lout∼ κ2 s2

Fig. 12. Low input and output equivalence

any information the messages sent via this connection (aka
protected with the corresponding secret key).

Relevant attackers for Strong Confidential Data Secrecy:
Interactive non-interference only yields a meaningful security
notion in the presence of preplaying attackers. Otherwise the
messages exchanged between honest (protected) users and the
server would not be modeled in the first place.

C. Low equivalences

The previously presented notions only get a concrete mean-
ing when giving instantiations for the notions of low input
and low output equivalence. Even though it is possible to
give several useful instantiations (e.g. to account for weaker
security definitions that allow for leakage due to response
patterns) we want to give here some strong intuitive definitions
for low input and low output equivalence that will be used in
the remainder of the paper. These notions are formally defined
by the inference rules given in Figure 12.

Intuitively, we will consider two input traces low input
equivalent (written Lin∼) if an attacker with some initial key
knowledge κi cannot distinguish them. In contrast, we will
consider two interaction traces low output equivalent (written
Lout∼) if an attacker even when deriving all knowledge that she
could learn from the interaction could not distinguish these
traces. As the (initial) key knowledge κi (which also restricts
the input traces according to the attacker definition) might
differ in the two runs considered by the non-interference based
definitions, low equivalences need to be parametrized by two
key knowledge sets: one representing the attacker knowledge
in the first run and one representing the knowledge in the
second run.

Formally, for the low input equivalence notion will just
require pairwise indistinguishability of the messages in the two
considered traces. Correspondingly message indistinguishabil-
ity (written M∼) is defined as in Figure 12.

Intuitively two encryptions of messages are considered
indistinguishable with respect to key knowledge sets κ1 and
κ2 if either their keys are known (and equal) and the encrypted
messages again are indistinguishable or if the keys are both
not known (with respect to the corresponding knowledge set)
and the same initial vector r was used for creating them.
This treatment of indistiguishability for encrypted messages
corresponds to the approach taken in [6] and [5]. Making two
encryptions only indistinguishable if they share the same initial
vector allows for easily finding an indistinguishable encryption
for each independent encryption while at the same time ac-
counting for dependencies between different encryptions. We
refer the reader to the discussion on occlusion in Section II-B.

Low input equivalence is defined by lifting message equiv-
alence to event traces in a standard way.

Finally, low output equivalence is defined in terms of low
input equivalence by replacing the (initial) key knowledge
by the maximal derivable knowledge. Two event traces are
considered output equivalent if all its messages are pairwise
equivalent with respect to the maxmimal knowledge that can
be derived from the corresponding traces.

The presented notions of low equivalences are parametrized
by two different kinds of initial key knowledge. As mentioned
before, this is as the two runs of the server that are related by
the non-interference notion need to be formulated with respect
to different secret key knowledge sets. This is necessary to
vary the secret in the two runs and at the same time require a
maximal attacker knowledge as it is done in Definition 5.

D. Practicability of Security Definitions

Combining the two presented security properties yields a
very strong notion of security that exceeds existing synergies
between the two definitions: While strong key secrecy alone
does not give any guarantees on what the server might leak
about confidentially transmitted data, enforcing strong confi-
dential data secrecy alone would already imply a weak form
of key secrecy. If a server would leak the secret key used
for encrypting the connection as a whole then also connection
secrecy would be trivially broken (given that the server logic
does not react purely uniformly to all kind of input). However,
this does not prevent a server from partially leaking a key: A
securely encrypting server that simply leaks its encryption key
bitwise with each message would satisfy Definition 6 as keys
are treated symbolically the underlying model. By additionally
demanding a server to satisfy strong secrecy, this gap in the
model closed.

Still, it remains to be discussed whether the presented
security notions are achievable in practice. The presented
properties are pretty strong in the sense that they do not
even allow for (partial) leakage of confidential data by the
server’s communication structure. In theory, a server could
leak confidential data by its response pattern or termination
behavior. While it seems reasonable that the communication
structure of a server should not depend on a cryptographic key
used for encryption, for the case of strong confidential data
secrecy this is less obvious as this would require the whole

server logic not to expose any such implicit information leaks.
Still, requiring a uniform termination behavior can be a reason-
able assumption for web servers as those should generally be
assumed to be non-terminating. In contrast, requiring uniform
response patterns might be more controversial. Depending on
the level of abstraction considered, input-dependent responses
of different data size would e.g. become visible by the number
of packages transmitted over the network. This could motivate
the study of inherently weaker security properties that however
we leave for future work.

VII. A SECURE ENCRYPTING MIDDLEBOX

In order to showcase the feasibility of the presented security
notions, we constructed a simple encrypting middlebox, which
implements the most basic symmetric encryption protocol (that
can be thought as an abstraction of the TLS record layer
without authentication), and proved it to satisfy strong key
secrecy and strong confidential data secrecy when composed
with a large class of web servers.

The middlebox is initialized with a symmetric key k, that
was previously shared with the single honest client, and is not
known by anyone else. It encrypts every message m that the
server sends using the key k and a fresh initial vector r, and
then forwards it over the network. Whenever the middlebox
receives a message, it tries to decrypt it using key k, and if
the decryption succeeds, it forwards the decrypted message to
the server. If not, it silently drops the message.

An inductive definition of the middlebox traces written in
Coq is shown in Figure 13: At the moment we assume that the

Inductive is_middlebox_trace (k:key) : trace→ trace→ Prop
:=

| m_empty:
is_middlebox_trace k [] []

| m_send: ∀ r m tr mtr,
is_middlebox_trace k tr mtr→
is_middlebox_trace k (send m :: tr)

(send (enc k m r) :: mtr)
| m_recv: ∀ r m tr mtr,

is_middlebox_trace k tr mtr→
is_middlebox_trace k (recv m :: tr)

(recv (enc k m r) :: mtr)
| m_recv_unenc: ∀ m tr mtr,

is_middlebox_trace k tr mtr→
encrypted_recv_message k m = false→
is_middlebox_trace k tr (recv m :: mtr).

Fig. 13. A trace-based specification of the middlebox. Note that
encrypted recv message k m is a function that returns whether a ciphertext
m was encrypted with a specific key k.

server is interacting with only one honest client, with which
the middlebox shares the encryption key k.

As the middlebox encrypts messages sent by the server one
by one, it is possible for information to be leaked from the
messaging patterns of the server. For example, an insecure
server, could send the same message N times, when it receives
the value N . The middlebox cannot protect the server from
this kind of information leakage, therefore we have to require
that the the server satisfies structural indistinguishability, i.e.
the message patterns of the server do not depend on the
confidential values that it exchanges with its client.

We prove that for any server satisfying structural indis-
tinguishability, the composition of the middlebox and the
server satisfies strong key secrecy and strong confidential data
secrecy in the presence of a semi-adaptive preplaying attacker
(see Section V-B).

We have formalized the presented security notions and the
case study in Coq [18] and we are in the process of finalizing
the mechanized proofs about the middlebox satisfying strong
key secrecy and strong confidential data secrecy.

VIII. RELATED WORK

A. Cryptographically Masked flows

The notion of cryptographically masked flows was first
introduced by [5]. This work focuses on a meaningful non-
interference based security notion for (interactive) programs
that contain cryptographic primitives (namely encryption and
decryption operations) and shows how to enforce this notion
using a security type system. In particular, this work identifies
the problem of occlusion, that specifically arises in that setting,
and addresses it by using a possibilistic non-interference
notion and by extending the similarity relation of encrypted
messages. Even though this work considers interactive pro-
grams, it does not account for key leakage.

Extending [5], Askarov et al. [6] study cryptographically
masked flows in the presence of key leakage for non-
interactive programs. In contrast to [5], this work uses a
knowledge-based security notion and relaxes it to account for
declassification and key release. In particular they show how
to express declassification in terms of key release in their
framework. However, one should be careful not to confuse
the knowledge notion used in this work with our notion of
key knowledge. Knowledge-based security definitions simply
present an alternative to classical non-interference based defi-
nitions. When studying the impact of key release, [6] need to
additionally introduce (similar to our work) an explicit notion
of key knowledge and derivability.

B. Knowledge-based Security

Following the line of [5], there has been a lot of work
on knowledge-based security [4], [7], [11], [19]. They define
knowledge as the uncertainty of an observer about the possible
values of confidential input, and confidentiality in terms of re-
ducing this uncertainty, also considering the interactive setting.
However, to our knowledge, none of these works considers
cryptographically masked flows.

More specifically, Askarov et al. [4] study different attacker
notions in the presence of dynamically changing policies. They
are not concerned with cryptographic attacker capabilities (e.g.
secret guessing), but rather focus on the interplay between
policy changes and the history of events that an attacker might
refer to, in order to refine their knowledge.

Recently, there has been work in applying knowledge-
based reasoning in the web setting, focusing on interactive
browsers [19]. In particular, they extend the work on declas-
sification by Askarov et al. [6] by defining a security notion

for web browsers that accounts for dynamic script’s behaviors
such as the creation of new DOM elements.

C. Non constructive Attacker Definitions
There has been previous work in specifying attacker capa-

bilities in a non-constructive way [8]–[10], although with a
different scope. Similarly to us, they don’t explicitly specify
what the attacker can do, but they specify what the attacker
model cannot violate, therefore considering the greatest at-
tacker that does not violate a set of properties. Initially
they only targeted reachability properties [8], but they then
extended their investigation to equivalence properties, such as
strong secrecy [9].

However, the difference from out work is that they focus
on getting computational security guarantees from proofs in
the symbolic setting. The properties that they restrict the at-
tacker with, are related to cryptographic assumptions, therefore
giving them computational security guarantees for free, by
proving a protocol secure in that symbolic setting.

D. Formal Protocol Analysis
Cryptographic protocols are often modeled using process

calculi (spi-calculus [2] , applied pi calculus [1]), or rewriting
logic [21]. In both these approaches, attackers’ actions are
limited by their knowledge. There restrictions are enforced
using different formalisms, most notably the notion of active
substitutions [1], [2], which captures the restrictions in the
semantics of the respective calculus.

Related to our work, Bertolotti et al. [12] give an efficient
way for explicitely representing the attacker’s knowledge in
the spi calculus. They define a set of natural deduction rules
resembling the rewrite rules we present here and show these
rules to destruct a set of messages into a normal form that
characterizes the minimal knowledge that an attacker needed
to construct all data that they exposed in an attack trace.

In general, there is a tremendous amount of work on formal
cryptographic protocol analysis for equivalence-based prop-
erties which we cannot cover here due to space constraints,
hence we refer the reader to the survey by Delaune et al. [16]
for an extensive overview of the field.

E. Security Formalization using Proof Assistants
There has been increasing interest during the recent years

to formalize security in proof assistants such as Coq and
Isabelle. Besson et al. [13] refine existing monitors for non-
interference with a notion of attacker knowledge in order to
make them more precise. They show that their monitor is
sound regarding to a knowledge-based non-interference notion
(extended from [6]) and formalize this proof together with the
notion of attacker knowledge in Coq.

Van Den Berghe et al. [24] specify a Coq model for
designing software systems by composing separate processes
in a network of components to facilitate security reason-
ing. They also provide an explicit representation of attacker
knowledge that however differs from our inductive-predicate
based approach. They only consider application-specific trace
properties as security properties.

Finally, Kanav et al. [17] specify a conference management
system in Isabelle [20], and verify that it satisfies several
confidentiality properties. They account for declassification by
extending Sutherland’s Non-deducibility [23].

IX. DISCUSSION AND LIMITATIONS

The domain of information flow control has been exten-
sively studied in throughout the years resulting in an over-
whelming quantity of related work. Even though we put
big efforts in assessing the existing literature, we would be
thankful for any feedback on the novelty of our approach and
related work that we might have missed.

The setting that we present in this work is subject to major
simplifications: The cryptographic primitives that we consider
are restricted to symmetric key encryption. In particular we do
not deal with public key cryptography, nonces, or hash func-
tions as might required for modeling real-world encryption
layers. This simplification is possible as we assume a pre-
established session between the server and an honest client
in that each of the parties already holds the secret shared
key. This also exempts us from modeling key generation and
key exchange. By restricting to a single client setting we do
not need to consider key management on the server side.
In particular, we don’t need to to place any assumptions on
how the server associates its internal client representation with
the cryptographic keys used for encrypting the corresponding
connections.

X. CONCLUSION

We have presented security properties for interactive servers
with encryption components in the presence of key leakage. To
our knowledge, we are the first to address security properties
in this setting. In addition, we have proposed non constructive
characterizations of attacker capabilities, as a general alterna-
tive to constructively specifying an attacker by their possible
actions. The strongest of those, named “semi-adaptive” pre-
playing attacker, can trick honest users into sending arbitrary
messages, as well as use keys that were observed during the
interaction with the server. Finally, we have proved that a
simple encrypting middlebox satisfies the proposed security
properties in the presence of a “semi-adaptive” attacker. We
are in the process of formalizing all the above in Coq.

Future Work: In the future we would like to overcome
some of the aforementioned limitations. In particular we would
like to account for key and nonce generation and study the
impact of these primitive operations on the characterization of
attacker capabilities. Building on top of that, we would like to
model authentication and key exchange protocols as needed
for establishing a secure connection.

Furthermore, we plan to extend our definitions to allow
for modeling multiple clients. In this setting it could also be
of interest to refine the client model by associating different
attacker capabilities to the secret keys which represent honest
clients. Following this idea, it would also be interesting to
study possible notions of purposeful declassification in the
setting of a (web) server.

REFERENCES

[1] Martı́n Abadi, Bruno Blanchet, and Cédric Fournet. The applied pi
calculus: Mobile values, new names, and secure communication. J.
ACM, 65(1):1:1–1:41, October 2017.

[2] Martı́n Abadi and Andrew D. Gordon. A calculus for cryptographic
protocols: The spi calculus. Information and Computation, 148(1):1 –
70, 1999.

[3] Martn Abadi. Security protocols and their properties. In Foundations
of Secure Computation, NATO Science Series, pages 39–60. IOS Press,
2000.

[4] Aslan Askarov and Stephen Chong. Learning is change in knowledge:
Knowledge-based security for dynamic policies. In 2012 IEEE 25th
Computer Security Foundations Symposium, pages 308–322. IEEE,
2012.

[5] Aslan Askarov, Daniel Hedin, and Andrei Sabelfeld. Cryptographically-
masked flows. In International Static Analysis Symposium, pages 353–
369. Springer, 2006.

[6] Aslan Askarov and Andrei Sabelfeld. Gradual release: Unifying declas-
sification, encryption and key release policies. In 2007 IEEE Symposium
on Security and Privacy (SP’07), pages 207–221. IEEE, 2007.

[7] Musard Balliu. A logic for information flow analysis of distributed
programs. In Nordic Conference on Secure IT Systems, pages 84–99.
Springer, 2013.

[8] Gergei Bana and Hubert Comon-Lundh. Towards unconditional sound-
ness: Computationally complete symbolic attacker. In Pierpaolo Degano
and Joshua D. Guttman, editors, Principles of Security and Trust, pages
189–208, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[9] Gergei Bana and Hubert Comon-Lundh. A computationally complete
symbolic attacker for equivalence properties. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’14, pages 609–620, New York, NY, USA, 2014. ACM.

[10] Gergei Bana, Koji Hasebe, and Mitsuhiro Okada. Computationally
complete symbolic attacker and key exchange. In Proceedings of the
2013 ACM SIGSAC Conference on Computer & Communications
Security, CCS ’13, pages 1231–1246, New York, NY, USA, 2013. ACM.

[11] Anindya Banerjee, David A Naumann, and Stan Rosenberg. Expressive
declassification policies and modular static enforcement. In 2008 IEEE
Symposium on Security and Privacy (sp 2008), pages 339–353. IEEE,
2008.

[12] Ivan Cibrario Bertolotti, Luca Durante, Riccardo Sisto, and Adriano
Valenzano. Efficient representation of the attackers knowledge in cryp-
tographic protocols analysis. Formal Aspects of Computing, 20(3):303–
348, 2008.

[13] Frédéric Besson, Nataliia Bielova, and Thomas Jensen. Hybrid mon-
itoring of attacker knowledge. In 2016 IEEE 29th Computer Security
Foundations Symposium (CSF), pages 225–238. IEEE, 2016.

[14] Aaron Bohannon, Benjamin C Pierce, Vilhelm Sjöberg, Stephanie
Weirich, and Steve Zdancewic. Reactive noninterference. In Proceedings
of the 16th ACM conference on Computer and communications security,
pages 79–90. ACM, 2009.

[15] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. J. Comput.
Secur., 18(6):1157–1210, September 2010.

[16] Stéphanie Delaune and Lucca Hirschi. A survey of symbolic methods
for establishing equivalence-based properties in cryptographic protocols.
Journal of Logical and Algebraic Methods in Programming, 87:127–
144, 2017.

[17] Sudeep Kanav, Peter Lammich, and Andrei Popescu. A conference
management system with verified document confidentiality. In Armin
Biere and Roderick Bloem, editors, Computer Aided Verification, pages
167–183, Cham, 2014. Springer International Publishing.

[18] Coq development team. The Coq proof assistant reference manual.
LogiCal Project, 2018. Version 8.8.1.

[19] McKenna McCall, Hengruo Zhang, and Limin Jia. Knowledge-based
security of dynamic secrets for reactive programs. In 2018 IEEE
31st Computer Security Foundations Symposium (CSF), pages 175–188.
IEEE, 2018.

[20] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Is-
abelle/HOL: a proof assistant for higher-order logic, volume 2283.
Springer Science & Business Media, 2002.

[21] Sonia Santiago, Santiago Escobar, Catherine Meadows, and José
Meseguer. A formal definition of protocol indistinguishability and its
verification using maude-npa. In International Workshop on Security
and Trust Management, pages 162–177. Springer, 2014.

[22] C. E. Shannon. A mathematical theory of communication. The Bell
System Technical Journal, 27(3):379–423, July 1948.

[23] David Sutherland. A model of information. In Proceedings of the
9th national computer security conference, volume 247, pages 175–183.
Washington, DC, 1986.

[24] Alexander van Den Berghe, Koen Yskout, Wouter Joosen, and Riccardo
Scandariato. A model for provably secure software design. In Pro-
ceedings of the 5th International FME Workshop on Formal Methods in
Software Engineering, pages 3–9. IEEE Press, 2017.

