
First-Order Logic for Flow-Limited Authorization

Abstract—We present the Flow-Limited Authorization First-
Order Logic (FLAFOL), a logic for reasoning about authorization
decisions in the presence of information-flow policies. We formal-
ize the FLAFOL proof system, characterize its proof-theoretic
properties and verify them in Coq, and develop its security
guarantees. In particular, FLAFOL is the first logic to provide
a non-interference guarantee while supporting all connectives
of first-order logic. Furthermore, this guarantee is the first to
combine the notions of non-interference from both authorization
logic and information-flow systems.

Index Terms—authorization, information flow, logic, proof
theory, authorization logic

I. INTRODUCTION

Distributed systems often make authorization decisions
based on private data. A public decision might therefore leak
private information. Preventing such leakage requires nontrivial
reasoning about the interaction between information flow and
authorization policies [1]–[3]. In particular, the justification for
an authorization decision can violate information-flow policies.
To understand this concern, consider a social network where
Bob can say that only his friends may view his photos, and
that furthermore only his friends may know the contents of
his friend list. If Alice is not on Bob’s friend list and she tries
to view one of his photos, telling her that she does not have
permission leaks Bob’s private information.

Reasoning about the interaction between authorization and
information-flow policies is difficult, partially because they
use different notions of trust. Information-flow systems tend
to focus on tracking data dependencies by representing an
information-security policies as labels on data. They then
represent trust as a flows-to relation between labels, which deter-
mines when one piece of data may safely influence another. In
contrast, authorization logics tend to directly encode delegations
between principals as a speaks-for relation. Such delegations
are often all-or-nothing, where a delegating principal trusts
any statements made by the trusted principal, although some
logics (e.g., [4]–[6]) support restricting delegations to specific
statements. Flows-to relations implicitly encode delegations
while speaks-for relations implicitly encode permitted flows.
To understand how, we must understand how these disparate
notions of trust interact.

The purpose of both forms of trust is to selectively constrain
communication, which system components rely on to make
secure authorization decisions. For example, in the social
network example above, suppose Bob’s security settings are
recorded on server X , and his photos are stored on server Y .
When Alice tries to view Bob’s photo, server Y communicates
with server X to determine if Alice is permitted to do so.
Modeling this communication is important because (1) the
servers that Y communicates with influence its authorization

decisions, and (2) communication can leak private informa-
tion. Therefore, describing the information security of such
authorization decisions requires a nuanced form of trust that
includes information-flow policies.

Information flow systems make it easy to track when and
what information is communicated from one principal to
another. Each transfer of data from one label to another
represents a communication. It is less clear in authorization
logics when such communications occur. One interpretation
might be that if Alice delegates trust to Bob, then she
immediately imports all of Bob’s beliefs. In fact, several logics
(e.g., [6]–[8]) make this explicit by interpreting Bob’s beliefs
as if they also came from Alice.

Where authorization logics do excel is at reasoning about
beliefs. Authorization logics allow us to write Alice says ϕ,
which means that Alice believes formula ϕ. Because this says
statement is itself a formula, we can reason about what Bob
believes Alice believes by nesting says formulae. Information
flow, on the other hand, has no notion of belief, and so cannot
reason about principals’ beliefs about each others’ beliefs.

In addition to being able to express trust and communication,
authorization policies are often difficult to express formally.
Any tool that combines authorization and information flow
should therefore be capable of expressing real-world policies.
Nexus [6], [9]—a distributed operating system that uses
authorization logic directly in its authorization mechanisms—
can encode all of its authorization policies using first-order
logic.1

Finally, to evaluate any attempt to combine authorization
with information flow policies, we must examine the resulting
security guarantees. Both authorization logics and information-
flow systems have security properties called non-interference.
In information-flow systems this property is standard, while
authorization logics often view it as highly desirable but unob-
tainable. Although the two formulations look quite different,
both make guarantees limiting how one component of a system
can influence another. In authorization logics, this takes the
form: Alice’s beliefs can only impact the provability of Bob’s
beliefs if Bob trusts Alice. In information-flow systems—which
are mostly defined over programs—changing the value of
an input variable x can only change the value of an output
variable y when there is a flow relationship between the label
of x and the label of y.

Both of these notions of non-interference are important.
Consider again the example where Alice attempts to view
Bob’s photo, but Bob’s friend list is private. Bob adding or
removing Cathy from his friend list should not affect Alice’s

1The Nexus Authorization Logic is actually a monadic second-order logic,
but this is used only to encode says; only first-order quantification is used in
any of their examples [6].

beliefs. To enforce this, whether or not Cathy is Bob’s friend
must not affect the set of Bob’s beliefs that Alice may learn.

In order to glue together both ideas of non-interference,
we must understand the connection between their notions of
trust. As we have discussed, these trust notions are difficult to
connect, making the non-interference combination harder still.

Our goal in this work is to provide a logic that supports
reasoning about both information flow and authorization
policies by combining their models of trust to obtain the
advantages of both. To this end, we present the Flow-Limited
Authorization First-Order Logic (FLAFOL), which
• provides a notion of trust between principals that can vary

depending on information-flow labels,
• has clear points where communication occurs,
• uses says formulae to reason about principals’ beliefs,

including their beliefs about others’ beliefs,
• is expressive enough to encode real-world authorization

policies, and
• provides a strong security guarantee which combines both

authorization-logic and information-flow non-interference.
We additionally aim to clarify the foundations of flow-limited

authorization. We therefore strive to keep FLAFOL’s model of
principals, labels, and communication as simple as possible.
As a result, we deviate from previous work by not requiring
that labels form a lattice (see Sections III and V-A).

We are, of course, not the first to recognize the important
interaction of information-flow policies with authorization, but
all prior work in this area is missing at least one important
feature. The three projects that have done the most to combine
authorization and information flow are FLAM [2], SecPAL+ [1],
[5], and AURA [10], [11]. FLAM models trust using information
flow, AURA uses DCC [8], [12], a propositional authorization
logic, and SecPAL+ places disconnected information flow labels
on principal-based trust policies. Neither FLAM nor SecPAL+

can reason about nested beliefs, and both are severely restricted
in what logical forms are allowed. Finally, FLAM’s security
guarantees are non-standard and difficult to compare to other
languages, while AURA relies on DCC’s non-interference
guarantee which does not apply on any trust relationships
outside of those assumed in the static lattice.

The rest of this paper is organized as follows: In Section II
we discuss three running examples. This also serves as an
intuitive introduction to FLAFOL. In Section III we discuss the
system model of FLAFOL, including our minimalist model of
information-flow labels. In Section IV we discuss the FLAFOL
proof rules in detail. In Section V we discuss the proof theory
of FLAFOL, proving several important theorems, including
consistency and cut elimination. These theorems are proven in
Coq. In Section VI we provide a non-interference theorem
for FLAFOL. In Section VII we discuss future work, in
Section VIII we discuss related work, and finally in Section IX
we conclude.

II. FLAFOL BY EXAMPLE

We now examine several examples of authorization policies
and how FLAFOL expresses them. This will serve as a gentle

introduction to the main ideas of FLAFOL, and introduce
notation and running examples we use throughout the paper.

We explore three main examples in this section:
1) Viewing pictures on social media
2) Sanitizing data inputs to prevent SQL injection attacks
3) Providing a hospital bill in the presence of reinsurance
Each setting has different requirements. For instance, each

defines the meaning of a label in its own way. The ability of
FLAFOL to adapt to each demonstrates its expressive power.
In a new setting, it is often convenient—even necessary—to
define constants, functions, and relations beyond those baked
into FLAFOL. We use such symbols freely in our examples
to express our intent clearly. Formally, FLAFOL interprets
them using standard proof-theoretic techniques, as we see in
Section III.

Notably, FLAFOL does not allow computation on terms, so
the meaning of functions and constants are axiomatized via
FLAFOL formulae. This allows principals to disagree on how
functions behave. This can be useful to model situations where
each principal has their own view of some piece of data.

A. Viewing Pictures on Social Media

We begin by reconsidering in more detail the example from
Section I where Alice requests to view Bob’s picture on a
social media service. This social media service allows Bob to
set privacy policies, and Bob has chosen to make his pictures
visible to only his friends. When Alice makes her request,
the service can scan Bob’s friend list and determine if she is
allowed to view the photo. If she is on Bob’s friend list and
the photo is available, it shows her the photo. If the photo
is unavailable, it shows her an HTTP 404: Not Found page.
(Of course, since databases are not entirely reliable, it shows
her a 404 page sometimes even when the photo is available.)
Finally, if she is not on Bob’s friend list, it shows her an
HTTP 403: Forbidden page.

Bob may choose who belongs in the role of “friend.”
Following the lead of other authorization logics, FLAFOL
represents Bob believing that Alice is his friend as
Bob says isFriend(Alice). Since says statements can encom-
pass any formula, we can express the fact that Bob believes
that Alice is not his friend as Bob says ¬isFriend(Alice).

We interpret these statements as Bob’s beliefs. This reflects
the fact that Bob could be wrong, in the sense that he may affirm
formulae with provable negations. There is no requirement that
Bob believes all true things nor that Bob only believe true
things (see Section IV), so holding an incorrect belief does not
require Bob to believe False. Note that because False allows
us to prove anything, a principal who does believes False will
affirm every statement.

Now imagine that, as in Section I, the social media service
allows Bob to set a privacy policy on his friend list as well. As
before, Bob can restrict his friend list so that only his friends
may learn its contents. If Alice makes her request and she is
on Bob’s friend list, she may again see the photo. However,
if she is not on Bob’s friend list, showing her an HTTP 403
page would leak Bob’s private information; Alice would learn

that she is not on Bob’s friend list, something Bob only shared
with his friends. Thus, whether she is not on Bob’s friend list,
the photo does not exist, or the database does not respond, the
social media service must show Alice an HTTP 404 page.

In order to discuss this in FLAFOL, we need a way to
express that Bob’s friend list is private. Since, formally, his
friend list is a series of beliefs about who his friends are, we
must express the privacy of those beliefs. We view this as
giving each belief a label describing Bob’s policy about who
may learn that belief.

Syntactically, we attach this label to the says connective.
For example, Bob may use the label Friends to represent the
information-security policy “I will share this with only my
friends.” If he attaches that policy to his belief about Alice being
his friend, we would write Bob saysFriends isFriend(Alice).
Over the next two sections (Sections III and IV) we will develop
the technology required for Bob to express that policy.

Notably, including these labels only provides the above
semantics because FLAFOL is intuitionistic. In a classical
system, we could use the law of the excluded middle to prove
at any label—including a public one—that either Alice can see
Bob’s picture or she cannot. If we encode the result Alice sees
using implications (e.g., Bob saysFriends isFriend(Alice) →
show(pic,Alice)), we could then derive that either Alice sees
the picture or Alice sees an HTTP 403: Forbidden. Since both
results improperly leak information, we should display neither,
but in a classical system we would provably show one or the
other. This leads us to reject the law of the excluded middle.

B. Preventing SQL Injections with Integrity Tracking

For our second example, imagine a stateful web application.
It takes requests, updates its database, and returns web pages.
In order to avoid SQL injection attacks, the system will only
update its database based on high-integrity input. However,
it marks all web request inputs as low integrity, representing
the fact that they may contain attacks. The server knows how
to sanitize inputs using a sanitize function, neutralizing any
attacks, so when it encounters a low-integrity input, it is willing
to sanitize that input and endorse the result.

While FLAFOL does not support this sort of endorsement
directly, its support for arbitrary implications means that we
can easily encode it. Let the predicate DBInput(x) mean that
a value x—possibly taken from a web request—is a database
input. When a user makes a request with database input x,
we can thus represent it as System saysLInt DBInput(x).
Here LInt represent low-integrity beliefs. Now, to represent the
system’s willingness to endorse any sanitized input, we say

System saysLInt DBInput(x)→
System saysHInt DBInput(sanitize(x))

This type of endorsement also has interesting security
ramifications, which we investigate in Section VI.

C. Providing a Hospital Bill in the Presence of Reinsurance

Imagine now that Alice finds herself in the hospital. Luckily
she has insurance provided by employer, but her employer just

switched insurance companies. She was issued a new insurance
card, which she immediately put in her purse. Now she has
two unexpired insurance cards, and she can’t remember which
one is valid. Thus, there are two insurers, I1 and I2, either of
which may be Alice’s insurer.

Imagine further that Bob’s job is to create a correct hospital
bill for Alice. He uses the label `H to determine both who may
learn the contents of Alice’s bill and who may help determine
them. That is, `H expresses both a confidentiality policy and
an integrity policy. Bob believes that Alice’s insurer may help
determine the contents of Alice’s bill, since they can decide
how much they are willing to pay for Alice’s surgery.

Bob, as an insurance expert, also knows that I2 has a
reinsurance treaty with I1. This means that if Alice is insured
with I2 and the surgery is very expensive, I1 will foot some of
the bill. Thus, I1 may help determine the contents of Alice’s
hospital bill, even if I2 turns out to be her current insurer.

Bob is willing to accept Alice’s insurance cards as evidence
that she is insured by either I1 or I2, which we can express as
Bob says`H (canWrite(I1, `H)∨canWrite(I2, `H)). Because
Bob knows about I2’s reinsurance treaty with I1, he knows
that if I2 helps determine the contents of Alice’s bill, they
will delegate some of their power to I1, Which we express as
Bob says`H (I2 says`H canWrite(I1, `H)).

Bob’s beliefs allow him to prove that I1 may help determine
the contents of Alice’s bill; assuming the previous two
statements we can prove that Bob says`H canWrite(I1, `H).
There are two possible cases: if Bob already believes that I1
can help determine the contents of Alice’s bill, we are done.
Otherwise, Bob believes that I2 can help determine the contents
of Alice’s bill, and so Bob is willing to let I2 delegate their
power. Since he knows that they will delegate their power to
I1, he knows that I1 can help determine the contents of Alice’s
bill in this case as well. This covers all of the cases, so we
can conclude that Bob says`H canWrite(I1, `H).

We think of Bob as performing this proof, since it is a
proof that entirely is about Bob’s beliefs. From this point-of-
view, Bob’s ability to reason about I2’s beliefs appears to be
Bob simulating I2. This ability of one principal to simulate
another provides the key intuition to understand the generalized
principal, one of the most important constructs in the formal
presentation of FLAFOL (see Section III).

We also note that Bob used I2’s beliefs in this proof, even
though he does not necessarily trust I2. However, he might
trust it if it turns out to be Alice’s insurer. Because Bob trusts
I2 in part of the proof but not in general, we refer to this as
discoverable trust. FLAFOL’s ability to handle discoverable
trust makes reasoning about its security properties much more
difficult, as we will see in Section VI.

D. Further Adapting FLAFOL

All of the above examples use information-flow labels to
express confidentiality policies, integrity policies, or both.
While confidentiality and integrity are mainstay features of
information flow tracking, information-flow labels can also
express other properties. For instance, MixT [13] describes

Sorts σ ::= label | principal | · · ·
Labels `

Principals p, q, r
σ-terms t ::= x | f(t1, . . . , tn)

Formulae ϕ,ψ, χ ::= R(t1, . . . , tn)
| True | False
| ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ
| ∀x :σ. ϕ | ∃x :σ. ϕ
| p says` ϕ
| `1 v `2
| canRead(p, `)
| canWrite(p, `)

Generalized
Principals g ::= 〈〉 | g · p〈`〉

Fig. 1. FLAFOL Syntax

how to use information-flow labels to create safe transactions
across databases with different consistency models, and the
work of Zheng and Myers [14] uses information-flow labels
to provide availability guarantees. FLAFOL allows such alter-
native interpretations of labels by using an abstract permission
model to give meaning to labels.

In our last example we used the relation canWrite to
determine who may affect the contents of Alice’s hospital
bill, and in our first example we could have expressed our
confidentiality permissions using a similar canRead relation.
These relations form FLAFOL’s (very abstract) notion of trust.
By default, canRead and canWrite gain meaning only through
their behavior in a context. As we discuss in Appendix E, they
can also encode capabilities and FLAM’s model of trust.

III. SYSTEM MODEL

In FLAFOL, terms are divided into different types, called
sorts in the tradition of logic. Formally, FLAFOL is parameter-
ized on a set of sorts which must contain at least principal and
label. It is also parameterized on a set of function symbols F
and a set of relation symbols R.

Terms t in FLAFOL are either variables or function ap-
plications, which consist of a function symbol f ∈ F and
zero or more arguments. We encode constants as functions
with no arguments. For instance, the principal constant Alice
is formally a nullary function into principal. Both logic and
functional programming commonly view constants this way.

Atomic formulae in FLAFOL are either True, False, or a
relation, which consists of a relation symbol R ∈ R and zero
or more parameters, each of which is a FLAFOL term. We
have three required relations that we discuss below: flows-to
(v), canRead, and canWrite. Figure 1 contains the complete
syntax of FLAFOL formulae. For brevity we assume that all
FLAFOL terms and formulae are well-sorted.

We assume no particular function symbols for either
principal or label, but as mentioned, we do assume three
relations on principals and labels. Flows-to relates two labels,
while canRead and canWrite relate a principal and a label.

FLOWSTOREFL
Γ ` ` v ` @ g

FLOWSTOTRANS
Γ ` `1 v `2 @ g Γ ` `2 v `3 @ g

Γ ` `1 v `3 @ g

CRVAR
Γ ` canRead(p, `2) @ g Γ ` `1 v `2 @ g

Γ ` canRead(p, `1) @ g

CWVAR
Γ ` canWrite(p, `1) @ g Γ ` `1 v `2 @ g

Γ ` canWrite(p, `2) @ g

Fig. 2. Flows-To and Permission Rules

We refer to these three relations as permissions because they
define the trust relationships governing communication between
principals.

The flows-to relation is reflexive and transitive, making the
label sort a preorder. Intuitively, if `1 v `2 then data labeled
`1 can affect data labeled `2. If Alice can read a piece of data
A with label `2, she may learn information about data with
label `1 used to calculate A. This means she should be able to
read data with label `1. Thus, canRead must (contravariantly)
respect the preorder on labels. Similarly, if Alice can help
determine some piece of data B labeled with `1, she can
influence any data labeled with `2 that is calculated from B, so
Alice should be able to help determine data labeled at `2. Thus,
canWrite must (covariantly) respect the preorder on labels.

Existing information-flow tools often require their labels
to form a lattice. We find that a preorder is sufficient for
FLAFOL’s design and guarantees, so we decline to impose
additional structure. Since all lattices form preorders, our results
are entirely compatible with lattice-based label models. Indeed,
in Section V-A we show that enforcing a lattice structure on
FLAFOL’s labels is both simple and logically consistent.

This effort to minimize the system constraints extends to
other areas as well. As we noted in Section II, the fact that
permission relations are governed primarily by assumptions
placed in the context Γ allows FLAFOL to reason about
systems with complex and varied permission models. Labels
may represent any combination of different security policies
(e.g., confidentiality, integrity, availability, etc.) and, critically,
principals may disagree with each other, including on the
permission relations. Additionally, FALFOL’s ability to handle
arbitrary sorts—like integers or capability tokens—and function
and relation symbols allow it to straightforwardly model
numerous system components. For instance, in Section II-B we
used the unary relation DBInput on sort data to represent that
a piece of data is an input, and the sanitize : data → data
function symbol to represent a sanitization operation.

Figure 2 shows the rules that enforce the flows-to preorder
and the variance for canRead and canWrite. We give the
proof rules in the form of a sequent calculus. The trailing @ g
represents who affirms that formula in the proof, similarly to
how says formulae represent who affirms a statement at the
object level. Unlike says formulae, these meta-level objects—

called generalized principals—encode arbitrary reasoners,
including possibly-simulated principals.

Recall from Section II-C that we can think of some proofs as
being performed by principals, if those proofs entirely involve
that principal’s beliefs. In that example, Bob reasoned about
his belief that another principal, the insurer I2, trusted a third
principal. We think of this ability to reason about the beliefs
of others as the ability to simulate other principals. In fact,
because principals’ beliefs are segmented by labels, principals
can have multiple simulations of the same other principal.

This suggests that FLAFOL captures the reasoning of
principals at some level of simulation. A generalized principal
is a stack of principal/label pairs, representing a stack of
simulators and simulations. The empty stack, written 〈〉,
represents ground truth. Figure 1 contains the formal grammar
for generalized principals.

Every formula ϕ in a FLAFOL proof is paired with a
generalized principal g who believes the formula, written ϕ @ g.
This gives us the ability to write rules that work for all possible
reasoners.

Applying FLAFOL. FLAFOL can help ensure that a system’s
authorization mechanism does not leak information. If we
represent the components of the system as principals and all
information as beliefs using appropriate sorts, relations, and
function symbols, we can encode an authorization request as
a relation. For example, in Section II-A, we encode Bob’s
friend list and his privacy policies as a set of beliefs—for
instance, isFriend(Alice) @ Bob〈Friends〉 records that Alice
is on Bob’s friend list, and that Bob’s friend list is only visible
to his friends. We further encode permission to view a picture
using a binary relation canView that relates a picture sort
and principals. A proof that canView(x,Alice) would then
indicate that Alice is authorized to view picture x.

With such an encoding, a proof that any request authorized
by the system has a valid FLAFOL proof would demonstrate
that the system can validate the authorization without leaking
information. One way to make such an assurance would be
for the system to use proof-carrying authorization. That is,
any request must contain a FLAFOL proof that the request
is authorized. Because FLAFOL is an intuitionistic sequent
calculus, such a system could use an off-the-shelf proof search
algorithm, such as Andreoli’s Focusing proof search [15].

IV. PROOF SYSTEM

So far, we have discussed the intuitions behind FLAFOL
and its syntax. Here we introduce FLAFOL formally. Unfortu-
nately, we cannot examine every aspect of FLAFOL’s formal
presentation in detail, though interested readers should see
Appendix A. Instead, we discuss the most novel and most
security-relevant aspects of FLAFOL’s design.

FLAFOL sequents are of the form Γ ` ϕ @ g, where Γ is a
context containing beliefs. This means that the FLAFOL proof
system manipulates beliefs, as described in Section III. Readers
familiar with sequent calculus may recognize that FLAFOL is
intuitionistic, as there is only one belief on the right side of
the turnstile.

Sequent calculus rules tend to manipulate beliefs either on
the left or the right side of the turnstile. For instance, consider
the FLAFOL rules for conjunctions:

ANDL
Γ, (ϕ @ g), (ψ @ g) ` χ @ g′

Γ, (ϕ ∧ ψ @ g) ` χ @ g′

ANDR
Γ ` ϕ @ g Γ ` ψ @ g

Γ ` ϕ ∧ ψ @ g

We find it easiest to read left rules “up” and right rules “down.”
With this reading, the ANDL rule uses an assumption of the
form ϕ ∧ ψ @ g by splitting it into two assumptions, one
for each conjunct, while the ANDR rule takes proofs of two
formulae and proves their conjunction.2

Most of the rules of FLAFOL are standard rules for first-
order logic with generalized principals included to indicate who
believes each formula. For instance, the rules for conjunctions
above were likely familiar to those who know sequent calculus.

Figure 3 contains FLAFOL rules selected for discussion.
The first, FALSEL, tells us how to use False as an assumption.
In standard intuitionistic first-order logic, this is simply the
principle of Ex Falso: if we assume False, we can prove
anything. In FLAFOL, a generalized principal who assumes
false is willing to affirm any formula. This includes statements
about other principals, so FALSEL extends the generalized
principal arbitrarily. We use g · g′ as notation for extending
the generalized principal g with a list of principal-label pairs,
denoted g′.

We discuss the disjunction rules ORR1, ORR2, and ORL
because says distributes over disjunctions. That is, given
p says` (ϕ ∨ ψ), we can prove (p says` ϕ) ∨ (p says` ψ).
In an intuitionistic logic like FLAFOL,3 disjunctions must be
a proof of one side or the other. The proof of distribution of
says over or then says that if p has evidence of either ϕ or
ψ, then p can examine this evidence to discover whether it is
evidence of ϕ or evidence of ψ.

One might want to model a principal who cannot observe
whether they are holding evidence of ϕ or of ψ. For instance,
we might want to model a principal p who receives an encrypted
message containing a bit b. Then p knows that either b = 0 or
b = 1, but p cannot examine the evidence to determine which.
Thus, while p says` (b = 0 ∨ b = 1), we should not be able
to show that (p says` b = 0) ∨ (p says` b = 1). A NuPRL-
like “squash” operator, which prevents evidence from being
used [17], could model this, but further research is needed for
FLAFOL to reason about the security of such protocols.

The implication rules IMPR and IMPL interpret the premise
of an implication as ground truth, while the generalized
principal who believes the implication believes the consequent.
In particular, this means that says statements do not distribute
over implication as one might expect, i.e., p says` (ϕ → ψ)

2For readers interested in learning more about sequent calculus, we recom-
mend MIT’s interactive tool for teaching sequent caluclus as a tutorial [16].

3Recall that we argued in Section II-A that reasoning about authorization
and information-flow security together is naturally intuitionistic.

FALSEL
Γ,False @ g ` ϕ @ g · g′

ORR1
Γ ` ϕ @ g

Γ ` ϕ ∨ ψ @ g
ORR2

Γ ` ψ @ g

Γ ` ϕ ∨ ψ @ g
ORL

Γ, ϕ @ g ` χ @ g′ Γ, ψ @ g ` χ @ g′

Γ, (ϕ ∨ ψ @ g) ` χ @ g′

IMPR
Γ, ϕ @ 〈〉 ` ψ @ g

Γ ` ϕ→ ψ @ g
IMPL

Γ ` ϕ @ 〈〉 Γ, ψ @ g ` χ @ g′

Γ, (ϕ→ ψ @ g) ` χ @ g′

SAYSR
Γ ` ϕ @ g · p〈`〉

Γ ` p says` ϕ @ g
SAYSL

Γ, ϕ @ g · p〈`〉 ` ψ @ g′

Γ, p says` ϕ @ g ` ψ @ g′

VARR
Γ ` ϕ @ g · p〈`′〉 · g′ Γ ` `′ v ` @ g · p〈`〉

Γ ` ϕ @ g · p〈`〉 · g′

FWDR
Γ ` ϕ @ g · p〈`〉 · g′ Γ ` canRead(q, `) @ g · p〈`〉 Γ ` canWrite(p, `) @ g · q〈`〉

Γ ` ϕ @ g · q〈`〉 · g′

Fig. 3. Selected FLAFOL Proof Rules

does not imply that (p says` ϕ) → (p says` ψ). Instead,
p says` (ϕ→ ψ) implies ϕ→ (p says` ψ). We can therefore
think of implications as tests of the system state. That is, if a
generalized principal g believes ϕ→ ψ, g can run a test that
allows it to observe ψ whenever ϕ is true about the system.

We can still form implications about generalized principal’s
beliefs, but we must insert appropriate says statements into
the premise to do so. In Section V-D, we discuss how this
implication semantics is necessary for both our proof theoretic
and security results.

The next two rules of Figure 3, SAYSR and SAYSL, are
the only rules which specifically manipulate says formulae.
Essentially, generalized principals allow us to delete the says
part of a formula while not forgetting who said it. Thus,
generalized principals allow us to define sequent calculus rules
once for every possible reasoner.

The final rules, VARR and FWDR, define communication in
FLAFOL. Both manipulate beliefs on the right, and each has
a corresponding left rule, which acts contravariantly and can
be found in Appendix A.

Information-flow communication is provided by the variance
rule VARR. This can be thought of like the variance rules used
in subtyping. Most systems with information-flow labels do
not have explicit variance rules, but instead manipulate relevant
labels in every rule. By adding an explicit variance rule, we
not only simplify every other FLAFOL rule, we also remove
the need for the label join and meet operators that are usually
used to perform the label manipulations. Others have noted
that adding explicit variance rules improves the design of the
rest of the system [18], [19], but it remains an unusual choice.

Authorization-logic-style communication is provided by the
forwarding rule FWDR. In FLAFOL, p can forward a belief
at label ` to q if:

• p is willing to send its beliefs at label ` to q, denoted
p says` canRead(q, `), and

• q is willing to allow p to determine its beliefs at label `,
denoted q says` canWrite(p, `).

After establishing this trust, p can package up its belief and
send it to q, who will believe it at the same label.

V. PROOF THEORY

In this section, we evaluate FLAFOL’s logical design. We
show that FLAFOL has the standard sequent calculus properties
of (positive) consistency and cut elimination. We also develop
a new proof-theoretic tool, compatible supercontexts, which we
use in our non-interference theorem in Section VI and discuss
fundamental limitations that inform our unusual implication
semantics. Importantly, every theorem in this section is verified
in the Coq proof assistant [20].

A. Consistency

One of the most important properties about a logic is
consistency, meaning it is impossible to prove False. This
is not possible in an arbitrary context, since one could always
assume False. One standard solution is to limit the theorem
to the empty context. By examining the FLAFOL proof rules,
however, we see that it is only possible to prove False by
assumption or by Ex Falso. Either method requires that False
already be on the left-hand side of the turnstile, so if False
can never get there, then it should be impossible to prove.

To understand when False can appear on the left-hand side
of the turnstile, we note that formulae on the left tend to stay
on the left and formulae on the right tend to stay on the right.
The only exception is the implication rules IMPL and IMPR
which move the premise of the implication to the other side.
The fact that no proof rule allows us to change either side of
the sequent arbitrarily gives a lot of useful structure to proofs.
To handle implications, however, we must keep track of their
nesting structure, which we do by considering signed formulae.
We call a formula in a sequent positive if it appears on the
right side of the turnstile and negative if it appears on the left.

s ∈ {+,−} + = − − = +

ϕs ≤ (ϕ ∧ ψ)s ψs ≤ (ϕ ∧ ψ)s

ϕs ≤ (ϕ→ ψ)s ψs ≤ (ϕ→ ψ)s

ϕs ≤ ϕs
ϕs ≤ ψs

′
ψs

′
≤ χs

′′

ϕs ≤ χs
′′ ϕs ≤ (p says` ϕ)s

Fig. 4. Selected rules for the Signed Subformula Relation

If ϕ is positive we write ϕ+, and if ϕ is negative we write ϕ−.
Figure 4 shows selected rules from the signed subformula
relation, which we discuss in more depth in Appendix B.

The intuition above and this relation lead to the following
theorem. Perhaps confusingly, formulae which do not contain
False as a negative subformula are called positive formulae,
explaining the name.

Theorem 1 (Positive Consistency). For any context Γ, if

False− � ϕ− for all ϕ @ g ∈ Γ

then Γ 0 False @ g′.

The proof follows by a simple induction on the FLAFOL
proof rules. Details are available in the Coq code.

We get the result with an empty context as a corollary. This
states that False is not a theorem of FLAFOL.

Corollary 1 (Consistency). 0 False @ g

Proof. If Γ is empty, then the “for all” in Theorem 1 is
vacuously true.

Theorem 1 demonstrates that a variety of useful constructs
are logically consistent. For instance, we can add a lattice
structure to FLAFOL’s labels. We can define join (t) and meet
(u) as binary function symbols on labels and > and ⊥ as label
constants. Then we can simply place the lattice axioms (e.g.,
∀` : label. ` v >) in our context to achieve the desired result.
Since none of the lattice axioms include False, Theorem 1
ensures that they are consistent additions to the logic.

B. Compatible Supercontexts

To prove Theorem 1 we needed to consider the possible
locations of formulae within a sequent, but in Section VI we
will need to reason about the possible locations of beliefs.
To enable this, we introduce the concept of a compatible
supercontext (CSC). Informally, the CSCs of a sequent are
those contexts that contain all of the information in the
current context, along with any counterfactual information
that can be considered during a proof. Intuitively, the rules
ORL and IMPL allow a generalized principal to consider
such information by using either side of a disjunction or the
conclusion of an implication. If it is possible to consider such
a counterfactual, there is a CSC which contains it. We use
the syntax ∆� Γ ` ϕ @ g to denote that ∆ is a CSC of the

CSCREFL
Γ� Γ ` ϕ @ g

CSCUNION
∆1 � Γ ` ϕ @ g ∆2 � Γ ` ϕ @ g

∆1 ∪∆2 � Γ ` ϕ @ g

CSCORL1
∆� Γ, ϕ @ g ` χ @ g′

∆� Γ, (ϕ ∨ ψ @ g) ` χ @ g′

CSCIMPR
∆� Γ, ϕ @ 〈〉 ` ψ @ g

∆� Γ ` ϕ→ ψ @ g

Fig. 5. Selected Rules for Compatible Supercontexts

sequent Γ ` ϕ @ g. Figure 5 contains selected rules for CSCs.
Others can be found in Appendix C.

Since all of the information in Γ has already been discovered
by the generalized principal who believes that information, we
require that Γ� Γ ` ϕ @ g with CSCREFL.

If we can discover two sets of information, we can discover
everything in the union of those sets using CSCUNION. This
rule feels different from the others, since it axiomatizes certain
properties of CSCs. We conjecture that there is an alternative
presentation of CSCs where we can prove this rule.

The rest of the rules for CSCs essentially follow the proof
rules, so that any belief added to the context during a proof can
be added to a CSC. For instance CSCORL1 and CSCORL2
allow either branch of an assumed disjunction to be added to a
CSC, following the two branches of the ORL rule of FLAFOL.

If a context appears in a proof of a sequent, then it is a CSC
of that sequent. We refer to this as the compatible-supercontext
property (CSC property).

Theorem 2 (CSC Property). If ∆ ` ψ @ g′ appears in a proof
of Γ ` ϕ @ g, then ∆� Γ ` ϕ @ g.

C. Cut Elimination

In constructing a proof, it is often useful to create a lemma,
prove it separately, and use it in the main proof. If we both
prove and use the lemma in the same context, the main proof
follows in that context as well. We can formalize this via the
following rule:

CUT
Γ ` ϕ @ g1 Γ, ϕ @ g1 ` ψ @ g2

Γ ` ψ @ g2

This rule is enormously powerful. Not only does it allow
us to create lemmata to be used in a proof, it allows us to
prove some things that do not obviously have other proofs. For
instance, consider the following rule.

UNSAYSR
Γ ` p says` ϕ @ g

Γ ` ϕ @ g · p〈`〉

We can show that this rule is admissible—meaning any sequent
provable with this rule is provable without it—by cutting a

proof of the sequent Γ ` p says` ϕ @ g with the following
proof:4

SAYSL

AX
ϕ @ g · p〈`〉 ` ϕ @ g · p〈`〉

p says` ϕ @ g ` ϕ @ g · p〈`〉

However, the CUT rule allows an arbitrary formula to appear
on both sides of the turnstile in a proof. That formula may
not even be a subformula of anything in the sequent at the
root of the proof-tree! This would seemingly destroy the CSC
property that FLAFOL enjoys, and which we rely on in order
to prove FLAFOL’s security results. As is standard in sequent
calculus proof theory, we show that CUT can be admitted,
allowing FLAFOL the proof power of CUT while maintaining
the analytic power of the CSC property.

Theorem 3 (Cut Elimination). The CUT rule is admissible.

To prove Theorem 3, we first normalize each FLAFOL proof
and then induct on the formula ϕ followed by each proof in
turn. Both of these inductions are highly nontrivial. Appendix D
contains more details. This theorem is proven in Coq.

This theorem is one of the key theorems of proof theory [21],
[22]. Frank Pfenning has called it “[t]he central property of se-
quent calculi” [23]. From the propositions-as-types perspective,
cut elimination is preservation of types under substitution.

D. Implications and Communication

Recall from Section III how we interpret a formula such
as Alice saysPublic (ϕ → ψ): if ϕ is true about the
system, then Alice gets to observe ψ. We now have the
tools to understand why we use this interpretation. Imagine
that we replace rules IMPL and IMPR with rules IMPL′

and IMPR′ which interpret the above formula as: if Alice
believes ϕ, then Alice also believes ψ. These rules would
replace ϕ @ 〈〉 in IMPL/IMPR with ϕ @ g. They would
allow us to prove that if Alice saysPublic (ϕ → ψ) then
(Alice saysPublic ϕ)→ (Alice saysPublic ψ).

In this system, imagine that we had a proof of
Γ ` Alice saysPublic (ϕ→ ψ) which required Alice to for-
ward ϕ to Bob, which she is willing to do because she believes
ϕ publicly. Alice is also willing to relabel this belief as private,
since this is a public belief. Distributing the says gives a proof
of the form Γ ` (Alice saysPrivate ϕ)→ (Alice saysPrivate ψ).
If we cut this proof with a proof of Γ ` Alice saysPrivate ϕ and
then eliminate the cut, we discover that Alice needs to send ϕ
to Bob. Alice, however, may be unwilling to do this since
she may only believe ϕ privately. Because of how FLAFOL
interprets Alice saysPublic (ϕ→ ψ), when Alice relabels her
implication to secret, she is only relabeling the output. Thus,
any communications that happen in the proof of the implication
are still allowed.

We can alternatively adopt a propositions-as-types viewpoint.
In this perspective, the says modalities are type constructors,
the variance and forwarding rules act as subtyping relations

4Not only can UNSAYSR be proven without CUT (as can all FLAFOL
proofs), it is actually important for proving cut elimination. See the Coq code.

on the resulting types, and implications are functions. The
proof rules suggested in the preceding paragraph would then
force functions to behave covariantly on their inputs where
they should behave contravariantly. This makes β-reduction—
which corresponds to cut elimination—impossible. By treating
premises as ground truth, functions become invariant on their
premises, allowing us to prove cut elimination.

This limitation is fundamental. Given a set of modalities
M1,M2, . . . with a preorder ≤, it is impossible to have all of:

1) Distributing modalities over implication: for any modality
M and formulae ϕ and ψ, M(ϕ→ ψ) ` (Mϕ)→ (Mψ)

2) Varying modalities according to the preorder: for any
M1 ≤M2 and ϕ, M1ϕ `M2ϕ

3) Proven implications where the proof of the implication
uses (2), (variance and forward in FLAFOL).

The combination of (1) and (2) forces implications to treat their
premises covariantly, but (3) requires implications to treat their
premises contravariantly. A standard type-theoretic argument
suggests that this is incoherent. Because (2) is fundamental to
FLAFOL’s approach to information flow and communication
and (3) is important for modeling real-world systems (see
Section II-B), we choose to keep (2) and (3) in FLAFOL,
leading to our current form of implication.

VI. NON-INTERFERENCE

Both authorization logics and information flow systems have
important security properties called non-interference [24]–[26].
On the face, these two notions of non-interference look very
different, but their core intuitions are the same. Both statements
aim to prevent one belief or piece of data from interfering with
another—even indirectly—unless the security policies permit
an influence. Authorization logics traditionally define trust
relationships between principals and non-interference requires
that p’s beliefs affect the provability of q’s beliefs only when
q trusts p. Information flow control systems generally specify
policies as labels on program data and use the label flows-to
relation to constrain how inputs can affect outputs. For non-
interference to hold, changing an input with label `1 can only
alter an output with label `2 if `1 v `2.

FLAFOL views both trust between principals and flows
between labels as ways to constrain communication of beliefs.
The forward rules model an authorization-logic-style sending
of beliefs from one principal to another based on their trust
relationships. The label variance rules model a single principal
transferring beliefs from one label to another based on the
flow relationship between those labels. By reasoning about
generalized principals, which include both the principal and the
label, we are able to capture both at the same time. The result
(Theorem 5) mirrors the structure of existing authorization
logic non-interference statements [8], [26]. No similar theorem
reasons about information flow or applies to policies combining
discoverable trust and logical disjunction. Theorem 5 does both.

A. Trust in FLAFOL

Building a notion of trust on generalized principals requires
us to consider both the trust of the underlying (regular)

REFLSF
Γ ` g sf g

EXTSF
Γ ` g1 sf g2

Γ ` g1 · p〈`〉 sf g2 · p〈`〉

SELFLSF
Γ ` g · p〈`〉 sf g · p〈`〉 · p〈`〉

SELFRSF
Γ ` g · p〈`〉 · p〈`〉 sf g · p〈`〉

VARSF
Γ ` ` v `′ @ g · p〈`′〉
Γ ` g · p〈`〉 sf g · p〈`′〉

FWDSF

Γ ` canRead(q, `) @ g · p〈`〉
Γ ` canWrite(p, `) @ g · q〈`〉

Γ ` g · p〈`〉 sf g · q〈`〉

TRANSSF
Γ ` g1 sf g2 Γ ` g2 sf g3

Γ ` g1 sf g3

Fig. 6. The rules defining speaks for.

principals and label flows. The explicit label flow relation
(v) cleanly captures restrictions on changing labels. Trust
between principals requires more care. Alice may trust Bob with
public data, but that does not mean she trusts him with secret
data. Similarly, Alice may believe that Bob can influence low
integrity data without believing Bob is authorized to influence
high integrity data. This need to trust principals differently at
different labels leads us to define our trust in terms of the two
permission relations: canRead(p, `) and canWrite(p, `).

We group label flows and principal trust together in a meta-
level statement relating generalized principals. As this relation
is the fundamental notion of trust in FLAFOL, we follow
existing authorization logic literature and call it speaks for.

The speaks-for relation captures any way that one generalized
principal’s beliefs can be safely transfered to another. This can
happen through flow relationships (g · p〈`〉 speaks for g · p〈`′〉
if ` v `′), forwarding (g · p〈`〉 speaks for g · q〈`〉 if p can
forward beliefs at ` to q), and introspection (g · p〈`〉 speaks for
g · p〈`〉 · p〈`〉 and vice versa). We formalize speaks-for with
the rules in Figure 6.

To validate this notion of trust, we note that existing
authorization logics often define speaks-for as an atomic
relation and create trust by requiring that, if p speaks for
q, then p’s beliefs can be transfered to q. As our speaks-for
relation exactly mirrors FLAFOL’s rules for communication,
it enjoys this same property.

Theorem 4 (Speaks-For Elimination). The following rule is
admissible in FLAFOL:

ELIMSF
Γ ` ϕ @ g1 Γ ` g1 sf g2

Γ ` ϕ @ g2

This notion of trust allows us to begin structuring a non-
interference statement. Ideally, we would like to say that beliefs
of g1 can only influence beliefs of g2 if Γ ` g1 sf g2. Formally,
this might take the form: if Γ, (ϕ @ g1) ` ψ @ g2 is provable,

then either Γ ` ψ @ g2 is provable or Γ ` g1 sf g2. Unfortu-
nately, this statement is false for three critical reasons: says
statements, implication, and the combination of discoverable
trust and disjunctions.

B. Says Statements and Non-Interference

The first way to break the proposed non-interference state-
ment above is simply by moving affirmations of a statement
between the formula—using says—and the generalized prin-
cipal who believes it. For example, we can trivially prove
p says` ϕ @ 〈〉 ` ϕ @ 〈〉 · p〈`〉, yet we cannot prove
〈〉 sf 〈〉 · p〈`〉.

To address this case, we can view p says` ϕ @ 〈〉 as a
statement that 〈〉 ·p〈`〉 believes ϕ. This insight suggests that we
might generally push all says modalities into the generalized
principal. This strategy works for simple formulae, but breaks
down with conjunction and disjunction. In those cases, the
different sides may have different says modalities and either
side could influence a belief through those different generalized
principals. We eliminate this concern by considering a set of
generalized principals referenced in a given belief. We build
this set using an operator we denote G.

G(χ @ g) ,



G(ϕ @ g · p〈`〉) χ = p says` ϕ
G(ϕ @ g) ∪ G(ψ @ g) χ = ϕ ∧ ψ or ϕ ∨ ψ
G(ψ @ g) χ = ϕ→ ψ⋃
t:σ G(ϕ[x 7→ t] @ g) χ = ∀x :σ. ϕ or ∃x :σ. ϕ

{g} otherwise

Implications consider only the consequent, as the implication
cannot affect the provability of a belief unless its consequent
can. For quantified formulae, a proof may substitute any term
of the correct sort for the bound variable, so we must as well.

Using this new operator, we can patch the hole says
statements created in our previous non-interference statement,
producing the following: If Γ, (ϕ @ g1) ` ψ @ g2, then
either Γ ` ψ @ g2, or there is some g′1 ∈ G(ϕ @ g1),
g′2 ∈ G(ψ @ g2), and some g′′1 such that Γ ` g′1 · g′′1 sf g′2.

The g′′1 here is needed because the side conditions of the
forward and variance rules are statements about prefixes of the
final generalized principal.

The G operator converts reasoning about beliefs from the
object level (FLAFOL formulae) to the meta level (generalized
principals). FLAFOL’s ability to freely move between the two
forces us to push all such reasoning in the same direction to
effectively compare the reasoner in two different beliefs. Prior
authorization logics do not contain a metal-level version of
says, meaning similar conversions do not even make sense.

C. Implications

While use of the G function solves part of the problem with
our original non-interference proposal, it does not address all
of the problems. Implications can implicitly create new trust
relationships, allowing beliefs of one generalized principal to
affect beliefs of another, even when no speaks-for relationship
exists. To understand how this can occur, we revisit our example
of preventing SQL injection attacks from from Section II-B.

SF-CI
Γ ` g1 sf g2

Γ ` g1 canInfl g2
EXTCI

Γ ` g1 canInfl g2
Γ ` g1 · g′ canInfl g2 · g′

TRANSCI
Γ ` g1 canInfl g2 Γ ` g2 canInfl g3

Γ ` g1 canInfl g3

IMPCI
ϕ→ ψ @ g ∈ Γ g1 ∈ G(ϕ @ 〈〉) g2 ∈ G(ψ @ g)

Γ ` g1 canInfl g2

Fig. 7. The rules defining the can influence relation.

Recall from Section II-B that a web server might treat
sanitized versions of low-integrity input as high integrity.
Further recall, it might represent this willingness with the
following implication.

System saysLInt DBInput(x)→
System saysHInt DBInput(sanitize(x))

In an intuitively-sensible context where System believes
HInt v LInt—high integrity flows to low integrity—but not vice
versa, there is no way to prove System〈LInt〉 sf System〈HInt〉.
The presence of this implication, however, allows some beliefs
at System〈LInt〉 to influence beliefs at System〈HInt〉. This
influence is actually an endorsement from LInt to HInt, and
our speaks-for relation explicitly does not capture such effects.

Prior work manages this trust-creating effect of implications
either by claiming security only when all implications are
provable [8] or by explicitly using assumed implications to
represent trust [26]. We keep closer to the latter model and make
the implicit trust of implications explicit in our statement of non-
interference. To do so, we do not use the speaks-for relation,
but instead we construct a new relation between generalized
principals we call can influence.

Intuitively, g1 can influence g2—denoted Γ ` g1 canInfl g2—
if either g1 speaks for g2 or there is an implication in Γ that
allows a belief of g1 to affect the provability of a belief of g2.
This relation, formally defined in Figure 7, uses the G operator
discussed above to capture the generalized principals actually
discussed by each subformla of the implication. Because
FLAFOL interprets the premise of an implication as a test
whose modality is independent of the entire belief, so too
does the can-influence relation. The relation is also transitive,
allowing it to capture the fact that a proof may require many
steps to go from a belief at g1 to a belief at g2.

Simply by taking our attempted non-interference statement
from above and replacing speaks-for with can-influence allows
us to straightforwardly capture the effect of implications on
trust within the system.

While this change may appear small, it results in a highly con-
servative estimate of possible influence. Implications are precise
statements that can allow usually-disallowed information flows
under very particular circumstances. Unfortunately, because
our non-interference statement only considers the generalized
principals involved, not the entire beliefs, it cannot represent
the same level of precision. A single precise implication added

to a context can therefore relate whole classes of previously-
unrelated generalized principals, eliminating the ability for
non-interference to say anything about their relative security.

This same lack of precision in information flow non-
interference statements has resulted in long lines of research
on how to precisely model or safely restrict declassification
and endorsement [27]–[35]. We believe it would be interesting
future work to apply these analyses and restrictions to FLAFOL
to produce more precise statements of security.

D. Discovering Trust with Disjunctions

The G operator and can-influence relation address diffi-
culties from both says formulae and implications, but our
statement of non-interference still does not account for the
combination of disjunctions and the ability to discover trust
relationships. To understand the effect these two features
can have in combination, recall from the reinsurance exam-
ple of Section II-C that Bob believes canWrite(I1, `H) if
he believes that canWrite(I1, `H) ∨ canWrite(I2, `H) and
I2 says`H canWrite(I1, `H).

We clearly cannot remove either of Bob’s beliefs and still
prove the result. Our desired theorem statement would thus
require that Bob〈`H〉 · I2〈`H〉 can influence Bob〈`H〉, which
there is no way to prove. The reason the sequent is still provable,
as we noted in Section II-C, is that Bob can discover trust in I2
when he branches on an Or statement, which then allows I2 to
influence Bob. In this branch, we can prove Bob〈`H〉·I2〈`H〉 sf
Bob〈`H〉 · Bob〈`H〉, which then speaks for Bob〈`H〉.

To handle such assumptions, we cannot simply consider the
context in which we are proving a sequent; we must consider
any context that can appear throughout the proof. We developed
the notion of compatible supercontexts in Section V-B for
exactly this purpose. Indeed, if we replace Γ with an appropriate
compatible supercontext when checking the potential influence
of generalized principals, we remove the last barrier to a true
non-interference theorem.

E. Formal Non-Interference

The techniques above allow us to modify our attempted
non-interference statement into a theorem that holds.

Theorem 5 (Non-Interference). For all contexts Γ and beliefs
ϕ @ g1 and ψ @ g2, if

Γ, ϕ @ g1 ` ψ @ g2,

then either (1) Γ ` ψ @ g2, or (2) there is some ∆� Γ, ϕ @
g1 ` ψ @ g2, g′1 ∈ G(ϕ @ g1), g′2 ∈ G(ψ @ g2), and g′′1 such
that ∆ ` g′1 · g′′1 canInfl g′2.

The proof of this theorem follows by induction on the proof
of Γ, ϕ @ g1 ` ψ @ g2. For each proof rule, we argue that
either ϕ @ g1 is unnecessary for all premises or we can extend
an influence from one or more subproofs to an influence from
ϕ @ g1 to ψ @ g2. We provide details in Appendix F and are
working on mechanizing the proof in Coq.

Much like other authorization logic non-interference state-
ments [8], [26], this theorem limits when a belief ϕ @ g1 can

be necessary to prove ψ @ g2 in context Γ. As we mentioned
above, however, it is the first such non-interference statement
for any full first-order authorization logic with discoverable
trust. Moreover, it describes how FLAFOL mitigates both:
• communication between principals, via canRead and

canWrite statements, and
• movement of information between security levels repre-

sented by information flow labels, via flows-to statements.
The canInfl relation seems to make our non-interference

statement much less precise than we would like. After all,
implications precisely specify what beliefs can be declassified
or endorsed, whereas canInfl conservatively assumes any
beliefs can move between the relevant generalized principals.
This lack of precision serves a purpose. It allows us to reason
about any implications, including those that arbitrarily change
principals and labels, something which other no authorization
logics have done before. It is therefore worth noting that, when
all of the implications in the context are provable, the theorem
holds even if you replace canInfl with sf everywhere. The same
proof works, with some simple repair in the IMPL case.

Another complaint of imprecision applies to compatible
supercontexts. Specifically, if any principal assumes ϕ ∨ ¬ϕ
for any formula ϕ, then there is a CSC in which that principal
has assumed both, even though these are arrived at through
mutually-exclusive choices. Since CSCs have been added in
order to allow disjunctions and discoverable trust to co-exist, it
is good to know that if we disallow either, CSCs are not required
for non-interference. That is, if there are no disjunctions in the
context, then we can always instantiate the ∆ in Theorem 5
with Γ, ϕ @ g1. Similarly, if every permission that is provable
in any CSC of Γ, ϕ @ g1 ` ψ @ g2 is provable under Γ, ϕ @ g1,
then we can again always instantiate ∆ with Γ, ϕ @ g1.

Together, these points demonstrate that there are only two
types of poorly-behaved formulae that force the imprecision
in Theorem 5. This further shows that our non-interference
result is no less precise than those of other authorization logics
in the absence of such formulae. We add imprecision only
when needed to allow our statement to apply to more proofs.
Interesting future research would allow for a more-precise non-
interference theorem even in the presence of such formulae.

To see how Theorem 5 corresponds to traditional non-
interference results for information flow, consider a setting
where every principal agrees on the same label ordering, and
where there are no implications corresponding to declassifica-
tions or endorsements. Then any two contexts Γ and Γ′ which
disagree only on beliefs labeled above some ` can prove exactly
the same things at label `—Γ ` ϕ @ g · p〈`〉 if and only if
Γ′ ` ϕ @ g · p〈`〉—since Theorem 5 allows us to delete all of
the beliefs on which they disagree. If we think of contexts as
inputs, as in a propositions-as-types interpretation, then this
says that changing high inputs cannot change low results.

VII. FUTURE WORK

FLAFOL is already very powerful, but it suggests numerous
avenues for future work.

First, FLAFOL only disallows direct flows of information in
proofs, but checking proofs can cause communication and
potentially leak information. Importantly, eliminating cuts
in proofs can increase the information leaked during proof-
checking because eliminating cuts can reduce the uncertainty
about which discoveries can be made during a proof. This is
disturbing, since we would like to be able to perform sound
security analyses on proofs with cut; system designers should
not need to understand the very complicated cut-elimination
proof. The program counter mechanism used by information
flow control systems like Fabric [36] and FLAM [2] seems to
prevent similar leaks. Incorporating program counter labels to
limit communication in FLAFOL proofs could eliminate these
leaks in FLAFOL as well.

This improvement also widens the range of programs that
can safely use FLAFOL. Justifications for authorization need
to be found as well as checked. From the point of view of an
authorization logic, this corresponds to proof search. Searching
for an authorization proof in a distributed system, however,
may require communication between principals, potentially
leaking why they are searching for this proof in the first place.
One avenue forward embeds FLAFOL in a language with
information-flow types, and runs proof search in that language.
This would guarantee that the proof search does not leak data
assuming FLAFOL proofs do not leak data when checked.

We have developed new techniques for reasoning about
authorization-logic proofs in order to prove non-interference
for FLAFOL. These reasoning principles should be expanded
and used in other logics. For instance, using the tools developed
in Section VI, we should be able to give non-interference proofs
for logics like NAL [6] and FOCAL [37] which reason about
implication and disjunction. We should also be able to add
disjunction and implication to logics like DCC [8], [12] while
still providing a non-interference theorem.

Finally, it would be nice to reason about the temporal
components of authorization; this is one place where work on
information flow far outstrips that on authorization logic [33],
[34]. Trust relationships may change over time, allowing or
disallowing communication pathways. Understanding how this
changes which authorizations should be provable, and how this
affects information-flow policies, is a rich area for exploration.

VIII. RELATED WORK

Prior work in both information flow control and authorization
logics have explored connections between authorization and
information security. The Decentralized Label Model [38]
incorporates a notion of ownership into its information flow
policies, specifying who may authorize exceptions to a policy.

The Flow-Limited Authorization Model (FLAM) [2] was
the first information-flow label model to directly consider
the confidentiality and integrity of policies when authorizing
information flows. Prior work on Rx [39] and RTI [40] enforced
information flow policies via roles whose membership are
protected with confidentiality and integrity labels.

We deviate from these works in several important ways. First,
FLAFOL is a formal authorization logic. Second, we employ

both principals and labels, but keep them entirely separate.
Many information flow models are defined with respect to
an abstract security lattice and omit any direct representation
of principals. The Decentralized Label Model [41] expresses
labels in terms of principals. FLAM [2] takes this a step
further and represents principals directly as a combination
of confidentiality and integrity labels. This view restricts
FLAM from reasoning about labels with policies other than
confidentiality and integrity, since they might necessitate subtle
changes to FLAM’s reasoning rules.

Unifying principals and labels also undermines FLAM’s
effectiveness as an authorization logic. It is convenient to
construct complex policies from simpler ones, such as a
policy protecting Alice’s confidentiality and Bob’s integrity.
FLAM regards such a compound policy as a principal, but
this principal does not represent an actual entity in the system.
These principals break the connection between principals and
system entities often present in authorization logics. While it
is certainly possible to represent these in FLAFOL, FLAFOL
does not necessarily force a reasoner to break this connection
between principals and system entities.

Becker [42] explores preventing probing attacks, authoriza-
tion queries which leak secret information, in Datalog-based
authorization logics like DKAL [43] and SecPAL [5]. In
SecPAL+ [1], Becker proposes a new can listen to operator,
similar to FLAFOL’s canRead permission, that expresses who
is permitted to learn specific statements. However, can listen
to expresses permissions on specific statements, not labels
as canRead does. Moreover, FLAFOL tracks dependencies
between statements using these labels, so the security conse-
quences of adding a new permission are more explicit.

Garg and Pfenning [26] present an authorization logic and a
non-interference result that ensures untrusted principals cannot
influence the truth of statements made by other principals.
FLAFOL differs from this logic in two ways. First, FLAFOL
supports all first-order connectives while Garg and Pfenning
only support implication and universal quantification. Second,
Garg and Pfenning only use implications to encode trust, rather
than having an explicit trust relation between principals.

The Dependency Core Calculus [8], [12] (DCC) has been
used to model information flow control and authorization, but
not both. DCC also has a non-interference property, but like
many authorization logics, it employs an external lattice to
express trust between principals. FLAFOL supports both finer-
grained trust and discoverable trust.

The Flow-Limited Authorization Calculus [3] uses ideas
from FLAM and DCC to support discoverable trust. FLAC and
Polymorphic DCC [8] are based on System F, which contains
some elements of second-order logic since it supports universal
quantification over types, but does not support some features
of first-order logic like existential quantification.

Finally, AURA [10], [11] embeds DCC into a language
with dependent types in order to explore how authorization
logic interacts with programs. Their non-interference result for
authorization comes directly from DCC, but they express first-
order properties by combining constructs from the programming

language with constructs from DCC. This makes it unclear what
guarantees the theorem provides. Jia and Zdancewic encode
information-flow labels into AURA as principals and develop
a non-interference theorem in the style of information-flow
systems [11]. This setup unfortunately makes it impossible for
principals to disagree about the meaning of labels, since the
labels themselves define their properties.

IX. CONCLUSION

We have introduced FLAFOL, a first-order logic which com-
bines notions of trust from both authorization and information
flow. It also provides a concrete model of communication
that respects this combination. Furthermore, FLAFOL gives
principals the ability reason about each other’s differing
opinions, including differing opinions about trust. FLAFOL
has a powerful non-interference theorem that navigates this
complexity, a top-tier result for authorization logics. It is,
moreover, the most complete first-order logic with such a
guarantee.

FLAFOL’s statement of non-interference contains several
subtleties. Two of these subtleties reflect the power of first-order
logic, and reduce to prior non-interference assurances where
those apply. However, the generalized principal construction
of FLAFOL adds further complications. In particular, the non-
interference statement itself is given in terms of generalized
principals, rather than the principals themselves. We have also
shown how to discuss the security of individual principals,
though doing so is complicated. Interesting future work would
further understand how to move results from generalized
principals to the underlying principals.

REFERENCES

[1] M. Y. Becker, “Information flow in credential systems,” in 23rd IEEE
Symp. on Computer Security Foundations (CSF). IEEE, 2010, pp.
171–185.

[2] O. Arden, J. Liu, and A. C. Myers, “Flow-limited authorization,” in 28th

IEEE Symp. on Computer Security Foundations (CSF), Jul. 2015, pp.
569–583.

[3] O. Arden and A. C. Myers, “A calculus for flow-limited authorization,”
in 29th IEEE Symp. on Computer Security Foundations (CSF), Jun. 2016,
pp. 135–147.

[4] J. Howell and D. Kotz, “A formal semantics for SPKI,” in ESORICS 2000,
ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2000, vol. 1895, pp. 140–158.

[5] M. Y. Becker, C. Fournet, and A. D. Gordon, “SecPAL: Design and
semantics of a decentralized authorization language,” Journal of Computer
Security, vol. 18, no. 4, pp. 619–665, 2010.

[6] F. B. Schneider, K. Walsh, and E. G. Sirer, “Nexus Authorization Logic
(NAL): Design rationale and applications,” ACM Trans. Inf. Syst. Secur.,
vol. 14, no. 1, pp. 8:1–8:28, Jun. 2011.

[7] B. Lampson, M. Abadi, M. Burrows, and E. Wobber, “Authentication
in distributed systems: Theory and practice,” in 13th ACM Symp. on
Operating System Principles (SOSP), Oct. 1991, pp. 165–182.

[8] M. Abadi, “Access control in a core calculus of dependency,” in 11th

ACM SIGPLAN Int’l Conf. on Functional Programming. New York,
NY, USA: ACM, 2006, pp. 263–273.

[9] E. G. Sirer, W. D. Bruijin, P. Reynolds, A. Shieh, K. Walsh, D. Williams,
and F. B. Schneider, “Logical attestation: An authorization architecture
for trustworthy computing,” in 11th ACM Symp. on Operating System
Principles (SOSP), 2011.

[10] L. Jia, J. A. Vaughan, K. Mazurak, J. Zhao, L. Zarko, J. Schorr, and
S. Zdancewic, “AURA: A programming language for authorization and
audit,” in 13th ACM SIGPLAN Int’l Conf. on Functional Programming,
Sep. 2008.

[11] L. Jia and S. Zdancewic, “Encoding information flow in AURA,” PLAS,
pp. 17–29, June 2009.

[12] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke, “A core calculus
of dependency,” in 26th ACM Symp. on Principles of Programming
Languages (POPL), Jan. 1999, pp. 147–160.

[13] M. P. Milano and A. C. Myers, “MixT: A language for mixing
consistency in geodistributed transactions,” in 39th ACM SIGPLAN
Conf. on Programming Language Design and Implementation (PLDI),
Jun. 2018.

[14] L. Zheng and A. C. Myers, “End-to-end availability policies and
noninterference,” in 18th IEEE Computer Security Foundations Workshop
(CSFW), Jun. 2005, pp. 272–286.

[15] J.-M. Andreoli, “Logic programming with focusing proofs in linear logic,”
Journal of logic and computation, vol. 2, no. 3, pp. 297–347, 1992.

[16] E. Z. Yang, “Logitext,” 2012, accessed February 19, 2019. [Online].
Available: http://logitext.mit.edu/main

[17] J. L. Caldwell, “Classical propositional decidability via nuprl proof
extraction,” TPHOLs, 1998.

[18] D. Volpano, G. Smith, and C. Irvine, “A sound type system for secure
flow analysis,” Journal of Computer Security, vol. 4, no. 3, pp. 167–187,
1996.

[19] M. Algehed, “Short paper: A perspective on the dependency core calculus,”
PLAS, October 2018.

[20] The Coq development team, The Coq proof assistant reference manual,
LogiCal Project, 2004, version 8.0. [Online]. Available: http://coq.inria.fr

[21] G. Takeuti, Proof Theory, ser. Dover Books on Mathematics. Dover
Books, 1987, Second Edition, republished by Dover Books in 2013.
Originally published by North-Holland, Amsterdam.

[22] J.-Y. Girard, Y. Lafont, and P. Taylor, Proofs and Types, ser. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press,
1989.

[23] F. Pfenning, “Structural cut elimination,” LICS, pp. 156–166, June 1995.
[24] D. E. Denning, “A lattice model of secure information flow,” Comm. of

the ACM, vol. 19, no. 5, pp. 236–243, 1976.
[25] J. A. Goguen and J. Meseguer, “Security policies and security models,”

in IEEE Symp. on Security and Privacy, Apr. 1982, pp. 11–20.
[26] D. Garg and F. Pfenning, “Non-interference in constructive authorization

logic,” in 19th IEEE Computer Security Foundations Workshop (CSFW).
New Jersey, USA: IEEE, 2006.

[27] S. Zdancewic and A. C. Myers, “Robust declassification,” in 14th IEEE
Computer Security Foundations Workshop (CSFW), Jun. 2001, pp. 15–23.

[28] A. Sabelfeld and A. C. Myers, “A model for delimited release,” in 2003
International Symposium on Software Security, ser. Lecture Notes in
Computer Science, no. 3233. Springer-Verlag, 2004, pp. 174–191.

[29] H. Mantel and D. Sands, “Controlled Declassification based on Intran-
sitive Noninterference,” in 2nd ASIAN Symposium on Programming
Languages and Systems, APLAS 2004, ser. LNCS 3303. Taipei, Taiwan:
Springer-Verlag, Nov. 2004, pp. 129–145.

[30] P. Li and S. Zdancewic, “Downgrading policies and relaxed noninterfer-
ence,” in 32nd ACM Symp. on Principles of Programming Languages
(POPL), Long Beach, CA, Jan. 2005.

[31] A. Sabelfeld and D. Sands, “Dimensions and principles of declassifica-
tion,” in 18th IEEE Computer Security Foundations Workshop (CSFW),
Jun. 2005, pp. 255–269.

[32] A. C. Myers, A. Sabelfeld, and S. Zdancewic, “Enforcing robust
declassification and qualified robustness,” Journal of Computer Security,
vol. 14, no. 2, pp. 157–196, 2006.

[33] S. Chong and A. C. Myers, “End-to-end enforcement of erasure and
declassification,” in IEEE Symp. on Computer Security Foundations
(CSF), Jun. 2008, pp. 98–111.

[34] L. Waye, P. Buiras, D. King, S. Chong, and A. Russo, “It’s my privilege:
Controlling downgrading in DC-labels,” in Proceedings of the 11th
International Workshop on Security and Trust Management, Sep. 2015.

[35] E. Cecchetti, A. C. Myers, and O. Arden, “Nonmalleable information
flow control,” in 24th ACM Conf. on Computer and Communications
Security (CCS), Oct. 2017, pp. 1875–1891.

[36] J. Liu, O. Arden, M. D. George, and A. C. Myers, “Fabric: Building
open distributed systems securely by construction,” J. Computer Security,
vol. 25, no. 4–5, pp. 319–321, May 2017.

[37] A. K. Hirsch and M. R. Clarkson, “Belief semantics of authorization
logic,” CCS, pp. 561–572, November 2013.

[38] A. C. Myers and B. Liskov, “Complete, safe information flow with
decentralized labels,” in IEEE Symp. on Security and Privacy, May 1998,
pp. 186–197.

[39] N. Swamy, M. Hicks, S. Tse, and S. Zdancewic, “Managing policy
updates in security-typed languages,” in 19th IEEE Computer Security
Foundations Workshop (CSFW), Jul. 2006, pp. 202–216.

[40] S. Bandhakavi, W. Winsborough, and M. Winslett, “A trust management
approach for flexible policy management in security-typed languages,”
in Computer Security Foundations Symposium, 2008, 2008, pp. 33–47.

[41] A. C. Myers and B. Liskov, “Protecting privacy using the decentral-
ized label model,” ACM Transactions on Software Engineering and
Methodology, vol. 9, no. 4, pp. 410–442, Oct. 2000.

[42] M. Y. Becker, “Information flow in trust management systems,” Journal
of Computer Security, vol. 20, no. 6, pp. 677–708, 2012.

[43] Y. Gurevich and I. Neeman, “DKAL: Distributed-knowledge authorization
language,” in IEEE Symp. on Computer Security Foundations (CSF).
IEEE, 2008, pp. 149–162.

APPENDIX A
THE FULL FLAFOL PROOF SYSTEM

The full FLAFOL proof system can be found in Figure 8.

APPENDIX B
SIGNED SUBFORMULAE

As we mention in Section V-A, FALFOL formulae tend
not to move between the left-hand side of the turnstile and
the right-hand side. Moreover, the only exceptions to this are
the implication rules. This means that looking at where a
subformula appears in a sequent tells us which side of the
turnstile it can appear on for the rest of the proof. Figure 9
contains the complete rules for the signed subformula relation
we mention in Section V-A.

Note that every subformula of a signed formula has a unique
sign. If a subformula appears by itself in a sequent during a
proof, then which side of the turnstile it is on is determined by
its sign. This structure results in the following formal property.

Theorem 6 (Left Signed-Subformula Property). If Γ ` ϕ @ g1
appears in a proof of ∆ ` ψ @ g2, then for all χ1 @ g3 ∈ Γ,
either (1) χ−1 ≤ ψ+ or (2) there is some χ2 @ g4 ∈ ∆ such
that χ−1 ≤ χ

−
2 .

This proof follows by induction on the FLAFOL proof rules.
Details are available in the Coq code.

Many logics also have a similar right signed-subformula
property. FLAFOL does not enjoy that property since
Γ ` ϕ @ g1 may be a side condition on a forward or a variance
rule, and thus not related directly to ψ.

APPENDIX C
COMPATIBLE SUPERCONTEXTS

Figure 10 contains the full rules for compatible super-
contexts.

APPENDIX D
DETAILS OF CUT ADMISSIBILITY PROOF

We provide here some details about the Coq formalization
of the admissibility of the Cut rule in FLAFOL. We define
FLAFOL in the file Sequent.v. There are three points we
wish to make about this file.

First, as is suggested by Pfenning [23], we drop the
structural rules from the logic (WEAKENING, EXCHANGE and
CONTRACTION) and modify our rules so that they never erase

http://logitext.mit.edu/main
http://coq.inria.fr

AX
Γ, ϕ @ g ` ϕ @ g

WEAKENING
Γ ` ψ @ g

Γ, ϕ @ g′ ` ψ @ g

CONTRACTION
Γ, (ϕ @ g), (ϕ @ g) ` ψ @ g′

Γ, ϕ @ g ` ψ @ g′
EXCHANGE

Γ, (ϕ @ g1), (ψ @ g2),Γ′ ` χ @ g

Γ, (ψ @ g2), (ϕ @ g1),Γ′ ` χ @ g

TRUER
Γ ` True @ g

FALSEL
Γ,False @ g ` ϕ @ g · g′

ANDR
Γ ` ϕ @ g Γ ` ψ @ g

Γ ` ϕ ∧ ψ @ g
ANDL

Γ, (ϕ @ g), (ψ @ g) ` χ @ g′

Γ, (ϕ ∧ ψ @ g) ` χ @ g′

ORR1
Γ ` ϕ @ g

Γ ` ϕ ∨ ψ @ g
ORR2

Γ ` ψ @ g

Γ ` ϕ ∨ ψ @ g
ORL

Γ, ϕ @ g ` χ @ g′ Γ, ψ @ g ` χ @ g′

Γ, (ϕ ∨ ψ @ g) ` χ @ g′

IMPR
Γ, ϕ @ 〈〉 ` ψ @ g

Γ ` ϕ→ ψ @ g
IMPL

Γ ` ϕ @ 〈〉 Γ, ψ @ g ` χ @ g′

Γ, (ϕ→ ψ @ g) ` χ @ g′

FORALLR
Γ ` ϕ @ g x /∈ fv(Γ, g)

Γ ` ∀x :σ. ϕ @ g
FORALLL

Γ, ϕ[x 7→ t] @ g ` ψ @ g′

Γ, (∀x :σ. ϕ @ g) ` ψ @ g′
EXISTSR

Γ ` ϕ[x 7→ t] @ g

Γ ` ∃x :σ. ψ @ g

EXISTSL
Γ, ϕ @ g ` ψ @ g′ x /∈ fv(Γ, ψ, g, g′)

Γ, (∃x :σ. ϕ @ g) ` ψ @ g′

SAYSR
Γ ` ϕ @ g · p〈`〉

Γ ` p says` ϕ @ g
SAYSL

Γ, ϕ @ g · p〈`〉 ` ψ @ g′

Γ, p says` ϕ @ g ` ψ @ g′

SELFR
Γ ` ϕ @ g · p〈`〉 · g′

Γ ` ϕ @ g · p〈`〉 · p〈`〉 · g′
======================= SELFL

Γ, (ϕ @ g · p〈`〉 · g′) ` ψ @ g′′

Γ, (ϕ @ g · p〈`〉 · p〈`〉 · g′) ` ψ @ g′′
=================================

VARR
Γ ` ϕ @ g · p〈`′〉 · g′ Γ ` `′ v ` @ g · p〈`〉

Γ ` ϕ @ g · p〈`〉 · g′
VARL

Γ, (ϕ @ g · p〈`′〉 · g′) ` ψ @ g′′

Γ, (ϕ @ g · p〈`〉 · g′) ` ` v `′ @ g · p〈`′〉
Γ, (ϕ @ g · p〈`〉 · g′) ` ψ @ g′′

FWDR

Γ ` ϕ @ g · p〈`〉 · g′
Γ ` canRead(q, `) @ g · p〈`〉
Γ ` canWrite(p, `) @ g · q〈`〉

Γ ` ϕ @ g · q〈`〉 · g′
FWDL

Γ, (ϕ @ g · q〈`〉 · g′) ` χ @ g′′

Γ, (ϕ @ g · p〈`〉 · g′) ` canRead(q, `) @ g · p〈`〉
Γ, (ϕ @ g · p〈`〉 · g′) ` canWrite(p, `) @ g · q〈`〉

Γ, ϕ @ g · p〈`〉 · g′ ` χ @ g′′

FLOWSTOREFL
Γ ` ` v ` @ g

FLOWSTOTRANS
Γ ` `1 v `2 @ g Γ ` `2 v `3 @ g

Γ ` `1 v `3 @ g

CRVAR
Γ ` canRead(p, `2) @ g Γ ` `1 v `2 @ g

Γ ` canRead(p, `1) @ g
CWVAR

Γ ` canWrite(p, `2) @ g Γ ` `2 v `1 @ g

Γ ` canWrite(p, `1) @ g

Fig. 8. Full FLAFOL Proof System

s ∈ {+,−} + = − − = +

ϕs ≤ ϕs
ϕs ≤ ψs

′
ψs

′
≤ χs

′′

ϕs ≤ χs
′′ ϕs ≤ (ϕ ∨ ψ)s

ψs ≤ (ϕ ∨ ψ)s ϕs ≤ (ϕ ∧ ψ)s ψs ≤ (ϕ ∧ ψ)s

ϕs ≤ (ϕ→ ψ)s ψs ≤ (ϕ→ ψ)s

(ϕ[x 7→ t])− ≤ (∀x :σ. ϕ)− ϕ+ ≤ (∀x :σ. ϕ)+

ϕ− ≤ (∃x :σ. ϕ)− (ϕ[x 7→ t])+ ≤ (∃x :σ. ϕ)+

ϕs ≤ (p says` ϕ)s

Fig. 9. Signed Subformula Relation

anything from the context. This makes meta-theoretic proofs
simpler and we prove that the removed rules are admissible.

Second, the logic described in the Coq is slightly more
general than the one described in the paper. In the Coq version
the ground generalized principal has a label attached to it.
Originally we added ground-level labels to deal with features
that we left for future work, but we don’t need them for this
version of FLAFOL. To show that this is a generalization,
for any FLAFOL proof without ground labels, we can simply
assign the same ground label to every belief in the proof and
acquire a valid proof in the Coq version.

Third, due to some of Coq’s shortcomings we have two
representations of our logic. The first is an (untyped) term
language with the appropriate typing rules, and the second is a
dependent inductive type. The untyped version eases reasoning
about equality, reduces compilation time, and makes proving
the admissibility of weakening and substitution easier. The
typed version is easier to write automation tactics for. We have
proved that both representations are equivalent.

In the file NormalForm.v we define a normal form
for FLAFOL proofs. The cut-elimination procedure uses
normalization into this form as an essential step. We say that
a proof is in First Normal Form when as soon as a rule which
manipulates something other than a formula is used, the rest
of the proof is in Second Normal Form. Similarly, we say that
a proof is in Second Normal Form if it never uses logical rules
(except TRUER and FALSEL). For instance, if a proof in First
Normal Form uses the VARR rule, it can’t use ANDR anymore.
This notion of FLAFOL Normal Form proof should not be
confused with “normal proof” in the literature which usually
means cut-free. The main theorem proven in this file is that
every provable sequent has a First Normal Form.

Lastly the file Cut.v contains the cut-elimination procedure.
Its structure is inspired by Pfenning’s structural cut elimination
[23]: nested triple induction on the formula being cut and on
both proofs. Due to the presence of rules like VARR and FWDR,
this exact proof strategy sometimes fails. Instead, we first

normalize the proofs for Γ ` ϕ @ g and Γ, ϕ @ g ` ψ @ g′. If
they’re both in First Normal Form but not in Second Normal
Form, we proceed as Pfenning suggests. If, however, one of
them is in Second Normal Form we define a different procedure.
This procedure consists of getting the dual rule to the last rule
used in the proof that is in Second Normal Form (e.g. VARL
for the VARR case) and make it the last rule to the other
proof. Due to the covariant-contravariant nature of these rules
and their duals, this is always possible. For more details see
lemmas Cut h1MCR and Cut h2MCR in Cut.v

APPENDIX E
EXAMPLES OF PERMISSION MODELS

We now show how FLAFOL can encode multiple concrete
permission models. This demonstrates the expressive power of
FLAFOL’s permission system and helps show ways in which
it might be used.

There is no particular reason for there to be some external
model of permissions. The “default” permission model simply
gives meaning to canRead and canWrite through their
behavior.

That is, the only properties of canRead and canWrite
are CRVAR, CWVAR, and the assumptions we make about
them in the form of FLAFOL formulae. This is appropriate in
many cases. For instance, in the example of viewing photos
on social media, canRead and canWrite have their behavior
tuned by Bob’s selections on his account settings page. It
is appropriate for the behaviors based on the selections to
be axiomatized directly, rather than forced into some other
model. Note that since we only care about confidentiality in
that example, canWrite can have a trivial implementation:

p says` canWrite(q, `′)↔ True.

FLAFOL can encode a more-concrete possible permission
model by assigning every principal a label representing “which
data this person is allowed to read or write.” This model appears
in the real world in the U.S. military, where every person has a
clearance label, and they are allowed to read documents labeled
at or below their clearance. A more subtle version of this model
separates reading and writing into confidentiality and integrity
labels and allows every principal to have their own idea of
each person’s label. This is similar to FLAM’s model, though
our version is typed and does not force confidentiality and
integrity to be the only part of principals/labels that matter.

We can formalize this by giving projection functions
πP,C , πP,I , πL,C , πL,I . The subscripts on the names of these
functions tell us what data they operate on. If the first character
is a P , it takes a principal as its argument; if the first character
is an L it takes a label. If the second character is a C, it
provides confidentiality label as its output; if the first character
is an I it provides an integrity label. We can think of πP,C(p)
as “the most confidential data that p can read,” while πP,I(p)
is “the highest integrity data that p can write.” We think of
πL,C(`) as “the confidentiality component of label `,” while

CSCREFL
Γ� Γ ` ϕ @ g

CSCUNION
∆1 � Γ ` ϕ @ g ∆2 � Γ ` ϕ @ g

∆1 ∪∆2 � Γ ` ϕ @ g

CSCCONTRACTION
∆� Γ, (ϕ @ g), (ϕ @ g) ` ψ @ g′

∆� Γ, ϕ @ g ` ψ @ g′
CSCEXCHANGE

∆� Γ, (ϕ @ g1), (ψ @ g2),Γ′ ` χ @ g

∆� Γ, (ψ @ g2), (ϕ @ g1),Γ′ ` χ @ g

CSCANDR1
∆� Γ ` ϕ @ g

∆� Γ ` ϕ ∧ ψ @ g
CSCANDR2

∆� Γ ` ψ @ g

∆� Γ ` ϕ ∧ ψ @ g
CSCANDL

∆� Γ, (ϕ @ g), (ψ @ g) ` χ @ g′

∆� Γ, (ϕ ∧ ψ @ g) ` χ @ g′

CSCORR1
∆� Γ ` ϕ @ g

∆� Γ ` ϕ ∨ ψ @ g
CSCORR2

∆� Γ ` ψ @ g

∆� Γ ` ϕ ∨ ψ @ g
CSCORL1

∆� Γ, ϕ @ g ` χ @ g′

∆� Γ, (ϕ ∨ ψ @ g) ` χ @ g′

CSCORL2
∆� Γ, ψ @ g ` χ @ g′

∆� Γ, (ϕ ∨ ψ @ g) ` χ @ g′
CSCIMPR

∆� Γ, ϕ @ 〈〉 ` ψ @ g

∆� Γ ` ϕ→ ψ @ g

CSCIMPL1
∆� Γ, ψ @ g ` χ @ g′

∆� Γ, (ϕ→ ψ @ g) ` χ @ g′
CSCIMPL2

∆� Γ ` ϕ @ 〈〉
∆� Γ, (ϕ→ ψ @ g) ` χ @ g′

CSCFORALLR
∆� Γ ` ϕ @ g x /∈ fv(Γ, g)

∆� Γ ` ∀x :σ. ϕ @ g
CSCFORALLL

∆� Γ, ϕ[x 7→ t] @ g ` ψ @ g′

∆� Γ, (∀x :σ. ϕ @ g) ` ψ @ g′

CSCEXISTSR
∆� Γ ` ϕ[x 7→ t] @ g

∆� Γ ` ∃x :σ. ϕ @ g
CSCEXISTSL

∆� Γ, ϕ @ g ` ψ @ g′ x /∈ fv(Γ, ψ, g, g′)

∆� Γ, (∃x :σ. ϕ @ g) ` ψ @ g′

CSCSAYSR
∆� Γ ` ϕ @ g · p〈`〉

∆� Γ ` p says` ϕ @ g
CSCSAYSL

∆� Γ, ϕ @ g · p〈`〉 ` ψ @ g′

∆� Γ, p says` ϕ @ g ` ψ @ g′

CSCSELFR
∆� Γ ` ϕ @ g · p〈`〉 · g′

∆� Γ ` ϕ @ g · p〈`〉 · p〈`〉 · g′
============================= CSCSELFL

∆� Γ, (ϕ @ g · p〈`〉 · g′) ` ψ @ g′′

∆� Γ, (ϕ @ g · p〈`〉 · p〈`〉 · g′) ` ψ @ g′′
======================================

CSCVARR
∆� Γ ` ϕ @ g · p〈`′〉 · g′ Γ ` `′ v ` @ g · p〈`〉

∆� Γ ` ϕ @ g · p〈`〉 · g′

CSCVARL
∆� Γ, (ϕ @ g · p〈`′〉 · g′) ` ψ @ g′′ Γ, (ϕ @ g · p〈`〉 · g′) ` ` v `′ @ g · p〈`′〉

∆� Γ, (ϕ @ g · p〈`〉 · g′) ` ψ @ g′′

CSCFWDR
∆� Γ ` ϕ @ g · p〈`〉 · g′ Γ ` canRead(q, `) @ g · p〈`〉 Γ ` canWrite(p, `) @ g · q〈`〉

∆� Γ ` ϕ @ g · q〈`〉 · g′

CSCFWDL

∆� Γ, (ϕ @ g · q〈`〉 · g′) ` χ @ g′′

Γ, (ϕ @ g · p〈`〉 · g′) ` canRead(q, `) @ g · p〈`〉 Γ, (ϕ @ g · p〈`〉 · g′) ` canWrite(p, `) @ g · q〈`〉
∆� Γ, ϕ @ g · p〈`〉 · g′ ` χ @ g′′

Fig. 10. Compatible Supercontext Rules

πL,I(`) is “the integrity component of label `.” With these
functions, we can say that

p says` canRead(q, `)↔ p says` (πL,C(`) v πP,C(q)),
and

p says` canWrite(q, `)↔ p says` (πP,I(q) v πL,I(`)).

The reversal of the order here comes from the fact that integrity,
as a flow ordering, is dual to confidentiality.

FLAFOL can also encode capabilities. A capability is a
token which can be presented to the owner of some data to
gain read or write access to that data. We consider copyable,
delegatable tokens with a single root authority. That is, when a
principal owns a token, they can copy that token and give the
copy to another principal. The root authority is a principal who
may forge new tokens freely. We represent a principal p having
a read token for the label ` using the relation hasRToken(p, `).

We state that q is a root authority if, for every p,

∀r :principal.
(
q says` hasRToken(r, `)→

p says` hasRToken(r, `)

)
This says that q gets to forge new tokens and give them away,
and every other principal will accept this token. To say that
tokens are copyable and delegatable is to say that for every p,

∀q :principal. p says` hasRToken(q, `)→ ∀r :principal.(
q says` hasRToken(r, `)→

p says` hasRToken(r, `)

) 
This says that if q holds a token to read `, then they can forge
a new token and give it to r, and every other principal will
accept this token.

To connect these to FLAFOL’s permission relations, we
simply say that holding a token provides read permissions.
That is, for every principal p,

p says` hasRToken(q, `)↔ p says` canRead(q, `).

The formulae above are enough to model copyable, del-
egatable read capabilities with a single root authority. Note
that while we have only shown read capabilities, the write
capabilities formulae are almost identical.

APPENDIX F
PROOF OF NON-INTERFERENCE

We now provide a proof of our non-interference statement.
First, we prove two CSC rules are admissible.

Lemma 1. The following two rules are admissible up to
α equivalence of Γ ` ϕ @ g1:

CSCATOMIC
∆� Γ ` ϕ @ g1 ϕ is atomic

∆� Γ ` ψ @ g2

CSCWEAKEN
∆� Γ ` ϕ @ g1

∆, ψ @ g2 � Γ, ψ @ g2 ` ϕ @ g1

Proof. Both proofs are by induction on the derivation of
∆� Γ ` ϕ @ g1.

CSCATOMIC follows from the fact that no right rules that
consider the shape of ϕ apply when it is atomic. CSCIR, CSC-
SCR, CSCVARR, and CSCFWDR can simply be eliminated
when we replace ϕ @ g1 with ψ @ g2. All other rules either
cannot apply when ϕ is atomic, or apply equally with ψ @ g2.

CSCWEAKEN follows from a direct straightforward induc-
tion (with heavy use of CSCEXCHANGE) noting that CSCREFL
is the only way to terminate the induction.

Theorem 5 (Non-Interference). For all contexts Γ and beliefs
ϕ @ g1 and ψ @ g2, if

Γ, ϕ @ g1 ` ψ @ g2,

then either (1) Γ ` ψ @ g2, or (2) there is some ∆� Γ, ϕ @
g1 ` ψ @ g2, g′1 ∈ G(ϕ @ g1), g′2 ∈ G(ψ @ g2), and g′′1 such
that ∆ ` g′1 · g′′1 canInfl g′2.

Proof. This is a proof by induction on the proof of
Γ, ϕ @ g1 ` ψ @ g2. As part of our induction, we claim that if
(1) holds than the proof of Γ ` ψ @ g2 is no larger than original
proof. This means that when an inductive application produces
the first case, we can safely apply the inductive hypothesis
again to the result.

Most of the cases are straightforward. We illustrate a typical
right rule with ANDR and a typical left rule with ORL. We
then handle the other cases of note.

Case ANDR: Here we consider the rule

Γ, ϕ @ g1 ` ψ1 @ g2 Γ, ϕ @ g1 ` ψ2 @ g2

Γ, ϕ @ g1 ` ψ1 ∧ ψ2 @ g2

We start by applying our inductive hypothesis to the left
premise. If condition (2) holds, we know that any com-
patible supercontext of that premise is also a compatible
supercontext of the proven sequent by CSCANDR1, and
G(ψ1 @ g2) ⊆ G(ψ1 ∧ ψ2 @ g2) by the definition of G. There-
fore the same generalized principals prove (2). If (1) holds we
apply our inductive hypothesis to the right premise. Again, if
(2) holds there, we similarly acquire the necessary influence
for (2). Otherwise we can remove ϕ @ g1 from both premises
and prove (1) with ANDR.

Case ORL: Here we consider the rule

Γ, χ1 @ g3 ` ψ @ g2 Γ, χ2 @ g3 ` ψ @ g2

Γ, (χ1 ∨ χ2 @ g3) ` ψ @ g2

As this is a left rule, we must consider two cases: one where
ϕ @ g1 is the active belief (in this case χ1 ∨χ2 @ g3) and one
where it is not.

When ϕ @ g1 is the active belief, we simply apply our
inductive hypothesis to the left premise. If (1) inductively
holds, then that is exactly a proof of (1) for the main sequent.
If (2) inductively holds, then CSCORL1 means we can use
the same ∆, and since G(χ1 @ g3) ⊆ G(χ1 ∨ χ2 @ g3), the
same generalized principals result in the necessary influence
to prove (2).

When ϕ @ g1 is not the active belief, we apply the inductive
hypothesis to both premises. If we can remove the belief from

the context in both, the we can use ORL to prove (1). Otherwise
we directly construct the necessary influence to prove (2).

Case FORALLR: Here we consider the rule
Γ, ϕ @ g1 ` χ @ g2 x /∈ fv(Γ, g)

Γ, ϕ @ g1 ` ∀x :σ. χ @ g2

We apply our inductive hypothesis. If (1) holds inductively,
we can prove (1) by re-applying FORALLR. If (2) holds,
we note that x is a valid term of sort σ, so G(χ @ g2) ⊆
G(∀x :σ. χ @ g2), meaning the influence from the inductive
application proves (2) as desired.

Case SAYSR: Here we consider the rule
Γ, ϕ @ g1 ` χ @ g2 · p〈`〉

Γ, ϕ @ g1 ` p says` χ @ g2

We again apply our inductive hypothesis to the premise. If we
can remove the context belief in the premise, then SAYSR
proves (1). If we find an influence, G(χ @ g1 · p〈`〉) =
G(p says` χ @ g2) by definition, and CSCSAYSR says that
the necessary compatible supercontext is valid, again meaning
the same influence given by the inductive hypothesis proves (2).

Case IMPL: Here we consider use of the rule
Γ ` χ1 @ 〈〉 Γ, χ2 @ g3 ` ψ @ g2

Γ, (χ1 → χ2 @ g3) ` ψ @ g2

Again, as a left rule, we separately consider when ϕ @ g1 is
the active belief and when it is not.

When it is the active belief, we simply apply the inductive
hypothesis to the right premise. If (1) holds inductively, then
Γ ` ψ @ g2 is provable and we are done. If (2) holds
inductively, then CSCIMPL1 allows us to use the same ∆,
and since G(χ2 @ g3) = G(χ1 → χ2 @ g3) by definition, the
same generalized principals create the necessary influence.

When ϕ @ g1 is not the active belief, this case is more
complicated. First we apply our inductive hypothesis to the
right premise. If (2) holds, we are done as the influence remains
the same. If (1) holds, we have Γ′, (χ2 @ g3) ` ψ @ g2 where
Γ′, ϕ @ g1 = Γ.

We now apply our inductive hypothesis again to this resulting
proof, thus checking if we can remove χ2 @ g3. If we
can remove that assumption, then WEAKENING proves (1).
Otherwise, there is some g′3 ∈ G(χ2 @ g3), g′2 ∈ G(ψ @ g2),
g′′3 , and some ∆1 � Γ′, χ2 @ g3 ` ψ @ g2 such that

∆1 ` g′3 · g′′3 canInfl g′2.

We make a third use of our inductive hypothesis, this time
applying to the original left premise Γ ` χ1 @ 〈〉. If (1)
holds inductively, then we have Γ′ ` χ1 @ 〈〉, and reapplying
IMPL proves (1). If (2) inductively holds, that means there
is some g′1 ∈ G(ϕ @ g1), g ∈ G(χ1 @ 〈〉), g′′1 , and some
∆2 � Γ ` χ1 @ 〈〉 such that

∆2 ` g′1 · g′′1 canInfl g.

By CSCIMPL2, ∆2 is a CSC of the original sequent, and
by CSCIMPL1 and CSCWEAKEN so is ∆1, ϕ @ g1. Thus

by CSCUNION, if we let ∆ = (∆1, ϕ @ g1) ∪ ∆2, then
∆ � Γ, (χ1 → χ2 @ g3) ` ψ @ g2. Finally, since
χ1 → χ2 @ g3 ∈ ∆, IMPCI says

∆ ` g canInfl g′3.

Using EXTCI and TRANSCI, we therefore have

∆ ` g′1 · g′′1 · g′′3 canInfl g′2.

Letting g′′1 · g′′3 be the relevant extension, this proves (2).

Case FWDR: Here we consider the rule

Γ, ϕ @ g1 ` ψ @ g · p〈`〉 · g′
Γ, ϕ @ g1 ` canRead(q, `) @ g · p〈`〉
Γ, ϕ @ g1 ` canWrite(p, `) @ g · q〈`〉

Γ, ϕ @ g1 ` ψ @ g · q〈`〉 · g′

We begin by applying our inductive hypothesis to the premise
Γ, ϕ @ g1 ` canRead(q, `) @ g · p〈`〉. If (2) holds, then there
is some g′1 ∈ G(ϕ @ g1), g′ ∈ G(canRead(q, `) @ g · p〈`〉),
g′′1 , and some ∆ � Γ, ϕ @ g1 ` canRead(q, `) @ g · p〈`〉
such that

∆ ` g′1 · g′′1 canInfl g′.

However, G(canRead(q, `) @ g · p〈`〉) = {g · p〈`〉}, and
therefore ∆ ` g′1 · g′′1 canInfl g · p〈`〉. Since Γ, (ϕ @ g1) ⊆ ∆,
we have

FWDSF

∆ ` canRead(q, `) @ g · p〈`〉
∆ ` canWrite(p, `) @ g · q〈`〉

∆ ` g · p〈`〉 sf g · q〈`〉

Therefore by SF-CI and TRANSCI, ∆ ` g′1 ·g′′1 canInfl g ·q〈`〉.
Since all elements of G(ψ @ g · q〈`〉 · g′) are extensions of
g · q〈`〉 and ∆ is a compatible supercontext of the final sequent
by CSCATOMIC, this means we can extend by some g′′′1 and
use EXTCI to prove that, for every g′2 ∈ G(ψ @ g · q〈`〉 · g′),

∆ ` g′1 · (g′′1 · g′′′1) canInfl g′2.

This proves (2).
If no such ∆, g′1, g′′1 exist (for the original influence), then

clearly there can be no influence to either g · q〈`〉 or any
extension of g · p〈`〉 · g′. This means, by induction, we must be
able to prove all three premises without ϕ @ g1 in the context,
allowing us to prove (1) by re-applying FWDR.

Case FWDL: Here we consider the rule

Γ, (χ @ g · q〈`〉 · g′) ` ψ @ g2
Γ, (χ @ g · p〈`〉 · g′) ` canRead(q, `) @ g · p〈`〉
Γ, (χ @ g · p〈`〉 · g′) ` canWrite(p, `) @ g · q〈`〉

Γ, (χ @ g · p〈`〉 · g′) ` ψ @ g2

As this is a left rule, we must separately consider whether or
not ϕ @ g1 is the active belief.

As above, we begin with the case where ϕ @ g1 is active.
In this case we start by applying our inductive hypothesis to
the premise Γ, (χ @ g · q〈`〉 ·g′) ` ψ @ g2. If (1) is inductively
true, that proves (1) in this case. Otherwise there is some

g3 ∈ G(χ @ g · q〈`〉 · g′), some g′2 ∈ G(ψ @ g2), some g′3, and
some compatible supercontext ∆ such that

∆ ` g3 · g′3 canInfl g′2.

Note that we know that g3 = g · q〈`〉 · g′′ for some g′′. By
FWDSF, we know that ∆ ` g · p〈`〉 sf g · q〈`〉. Therefore, by
repeated application of EXTSF, we can prove

∆ ` g · p〈`〉 · g′′ · g′3 sf g · q〈`〉 · g′′ · g′3.

We additionally note that g · q〈`〉 · g′′ ∈ G(χ @ g · q〈`〉 · g′),
so therefore g′1 = g · p〈`〉 · g′′ ∈ G(χ @ g · p〈`〉 · g′). Thus by
TRANSCI, we have that

∆ ` g′1 · g′3 canInfl g′2.

By CSCFWDL, ∆ is a compatible supercontext of the proven
sequent, so this proves (2).

We now consider the case where ϕ @ g1 is not the active
belief. In this case we begin with another application of
the inductive hypothesis on the first premise. If (2) holds,
then the influence directly proves (2). Otherwise we have
Γ′, (χ @ g · q〈`〉 · g′) ` ψ @ g2 where Γ′, ϕ @ g1 = Γ. We
now apply our inductive hypothesis to the second premise
(Γ, (χ @ g · p〈`〉 · g′) ` canRead(q, `) @ g · p〈`〉). If we can
remove ϕ @ g1 from the context, then by the same logic as
the previous case, we can do the same for the third premise
and prove (1) by re-applying FWDL. Otherwise there is some
g′1 ∈ G(ϕ @ g1), g′′1 , and some ∆1 � Γ, (χ @ g · p〈`〉 · g′)
such that

∆1 ` g′1 · g′′1 canInfl g · p〈`〉.

For our last use of the inductive hypothesis, we apply it to the
stripped-down first premise, in that case trying to remove the
belief χ @ g ·q〈`〉·g′. If we can remove belief, we can prove (1)
using WEAKENING. Otherwise, there is some ∆2 � Γ′, (χ @
g · q〈`〉 · g′) ` ψ @ g2, and some g3 ∈ G(χ @ g · q〈`〉 · g′),
g′2 ∈ G(ψ @ g2), and g′3 such that

∆2 ` g3 · g′3 canInfl g′2.

Letting ∆ = ∆1 ∪ (∆2, ϕ @ g1), we know it is a valid
compatible supercontext and proves the same influences as
in the IMPL case above. Additionally, as in the FWDR case
above, we know that ∆ ` g ·p〈`〉 sf g · q〈`〉 and therefore there
is some g′′′1 such that

∆ ` g′1 · (g′′1 · g′′′1) canInfl g3 · g′3.

Therefore TRANSCI proves the influence needed for (2). This
completes the most complex case of the proof.

The VARR and VARL cases are slight simplifications of
FWDR and FWDL, respectively. All other rules are straightfor-
ward.

	Introduction
	FLAFOL By Example
	Viewing Pictures on Social Media
	Preventing SQL Injections with Integrity Tracking
	Providing a Hospital Bill in the Presence of Reinsurance
	Further Adapting FLAFOL

	System Model
	Proof System
	Proof Theory
	Consistency
	Compatible Supercontexts
	Cut Elimination
	Implications and Communication

	Non-Interference
	Trust in FLAFOL
	Says Statements and Non-Interference
	Implications
	Discovering Trust with Disjunctions
	Formal Non-Interference

	Future Work
	Related Work
	Conclusion
	References
	Appendix A: The Full FLAFOL Proof System
	Appendix B: Signed Subformulae
	Appendix C: Compatible Supercontexts
	Appendix D: Details of Cut Admissibility Proof
	Appendix E: Examples of Permission Models
	Appendix F: Proof of Non-Interference

