
SPECTECTOR: Principled Detection of
Speculative Information Flows

Marco Guarnieri∗, Boris Köpf†, José F. Morales∗, Jan Reineke‡, and Andrés Sánchez∗
∗IMDEA Software Institute †Microsoft Research ‡Saarland University

Abstract—Since the advent of SPECTRE, a number of counter-
measures have been proposed and deployed. Rigorously reasoning
about their effectiveness, however, requires a well-defined notion
of security against speculative execution attacks, which has been
missing until now.

We present a novel, principled approach for reasoning about
software defenses against SPECTRE-style attacks. Our approach
builds on speculative non-interference, the first semantic notion
of security against speculative execution attacks. We develop
SPECTECTOR, an algorithm based on symbolic execution to
automatically prove speculative non-interference, or to detect
violations.

We implement SPECTECTOR in a tool, and we use it to detect
subtle leaks – and optimizations opportunities – in the way major
compilers place SPECTRE countermeasures.

I. INTRODUCTION

Speculative execution avoids expensive pipeline stalls by
predicting the outcome of branching (and other) decisions,
and by speculatively executing the corresponding instructions.
If a prediction turns out to be wrong, the processor aborts
the speculative execution and rolls back the effect of the
speculatively executed instructions on the architectural (ISA)
state, which consists of registers, flags, and main memory.

However, the speculative execution’s effect on the microar-
chitectural state, which comprises the content of the cache, is
not (or only partially) rolled back. This side effect can leak
information about the speculatively accessed data and thus
violate confidentiality. The family of SPECTRE attacks [1], [2],
[3], [4], [5], [6] demonstrates that this vulnerability affects all
modern general-purpose processors and poses a serious threat
for platforms with multiple tenants.

Since the advent of SPECTRE, a number of countermea-
sures have been proposed and deployed. At the software-
level, these include, for instance, the insertion of serializing
instructions [7], the use of branchless bounds checks [8], and
speculative load hardening [9]. Several compilers support the
automated insertion of these countermeasures during compi-
lation [10], [11], [12], and the first static analyses to help
identify vulnerable code patterns are emerging [13].

However, we still lack a precise characterization of security
against speculative execution attacks. Such a characterization
is a prerequisite for reasoning about the effectiveness of
countermeasures, and for making principled decisions about
their placement. It would enable one, for example, to identify
cases where countermeasures do not prevent all attacks, or
where they are unnecessary.

Our Approach: We develop a novel, principled approach
for detecting information flows introduced by speculative
execution, and for reasoning about software defenses against
SPECTRE-style attacks. Our approach is backed by a semantic
notion of security against speculative execution attacks, and
it comes with an algorithm, based on symbolic execution, for
proving the absence of speculative leaks.

Defining Security: The foundation of our approach is spec-
ulative non-interference, a novel semantic notion of secu-
rity against speculative execution attacks. Speculative non-
interference is based on comparing a program with respect
to two different semantics:
• The first is a standard, non-speculative semantics. We use

this semantics as a proxy for the intended program behavior.
• The second is a novel, speculative semantics that can

follow mispredicted branches for a bounded number of steps
before backtracking. We use this semantics to capture the
effect of speculatively executed instructions.

In a nutshell, speculative non-interference requires
that speculatively executed instructions do not leak more
information into the microarchitectural state than what the
intended behavior does, i.e., than what is leaked by the
standard, non-speculative semantics.

To capture “leakage into the microarchitectural state”, we
consider an observer of the program execution that sees the
locations of memory accesses and jump targets. This observer
model is commonly used for characterizing “side-channel
free” or “constant-time” code [14], [15] in the absence of
detailed models of the microarchitecture.

Under this observer model, an adversary may distinguish
two initial program states if they yield different traces of mem-
ory locations and jump targets. Speculative non-interference
(SNI) requires that two initial program states can only be dis-
tinguished under the speculative semantics if they can also be
distinguished under the standard, non-speculative semantics.

The speculative semantics, and hence SNI, depends on the
decisions taken by a branch predictor. We show that one can
abstract from the specific predictor by considering a worst-case
predictor that mispredicts every branching decision. SNI w.r.t.
this worst-case predictor implies SNI w.r.t. a large class of
real-world branch predictors, without introducing false alarms.

Checking Speculative Non-Interference: We propose SPEC-
TECTOR, an algorithm to automatically prove that programs
satisfy SNI. Given a program p, SPECTECTOR uses symbolic
execution with respect to the speculative semantics and the
worst-case branch predictor to derive a concise representation

1

1 if (y < size)
2 temp &= B[A[y] * 512];

Fig. 1. SPECTRE variant 1 - C code

of the traces of memory accesses and jump targets during
execution along all possible program paths.

Based on this representation, SPECTECTOR creates an SMT
formula that captures that, whenever two initial program states
produce the same memory access patterns in the standard
semantics, they also produce the same access patterns in
the speculative semantics. Validity of this formula for each
program path implies speculative noninterference.

Case studies: We implement a prototype of SPECTECTOR,
with a front end for parsing (a subset of) x86 assembly and
the Z3 SMT solver as a back end for solving SMT formulas.1

We perform two case studies where we evaluate the precision
and scalability of SPECTECTOR.
• For evaluating precision, we analyze the 15 variants of

SPECTRE v1 by Kocher [16]. We create a corpus of 240
microbenchmarks by compiling the 15 programs with the
CLANG, INTEL ICC, and Microsoft VISUAL C++ compilers,
using different levels of optimization and protection against
SPECTRE. Using SPECTECTOR, we successfully (1) detect
all leaks pointed out in [16], (2) detect novel, subtle leaks
that are out of scope of existing approaches that check for
known vulnerable code patterns [13], and (3) identify cases
where compilers unnecessarily inject countermeasures, i.e.,
opportunities for optimization without sacrificing security.
• For evaluating scalability, we apply SPECTECTOR to

the codebase of the Xen Project Hypervisor. Our evaluation
indicates that the cost of checking speculative non-interference
is comparable to that of discovering symbolic paths, which
shows that our approach does not exhibit bottlenecks beyond
those inherited by symbolic execution.

Scope: We focus on leaks introduced by speculatively
executed instructions resulting from mispredicted branch out-
comes, such as those exploited in SPECTRE v1 [2]. For an
in-depth discussion of our approach’s scope, see Section X.

Summary of contributions: Our contributions are both theo-
retical and practical. On the theoretical side, we present spec-
ulative non-interference, the first semantic notion of security
against speculative execution attacks. On the practical side, we
develop SPECTECTOR, an automated technique for detecting
speculative leaks (or prove their absence), and we use it to
detect subtle leaks – and optimization opportunities – in the
way compilers inject SPECTRE countermeasures.

II. ILLUSTRATIVE EXAMPLE

To illustrate our approach, we show how SPECTECTOR
applies to the SPECTRE v1 example [2] shown in Figure 1.

Spectre v1. The program checks whether the index stored
in variable y is less than the size of the array A, stored in

1SPECTECTOR is available at https://spectector.github.io.

1 mov size, %rax
2 mov y, %rbx
3 cmp %rbx, %rax
4 jbe END
5 mov A(%rbx), %rax
6 shl $9, %rax
7 mov B(%rax), %rax
8 and %rax, temp

Fig. 2. SPECTRE variant 1 - Assembly code

variable size. If that is the case, the program retrieves A[y],
amplifies it with a multiple (here: 512) of the cache line size,
and uses the result as an address for accessing the array B.

If size is not cached, evaluating the branch condition re-
quires traditional processors to wait until size is fetched from
main memory. Modern processors instead speculate on the
condition’s outcome and continue the computation. Hence, the
memory accesses in line 2 may be executed even if y ≥ size.

When size becomes available, the processor checks
whether the speculated branch is the correct one. If it is not, it
rolls back the architectural (i.e. ISA) state’s changes and exe-
cutes the correct branch. However, the speculatively executed
memory accesses leave a footprint in the microarchitectural
state, in particular in the cache, which enables an adversary to
retrieve A[y], even for y ≥ size, by probing the array B.
Detecting Leaks with SPECTECTOR. SPECTECTOR auto-
matically detects leaks introduced by speculatively executed
instructions, or proves their absence. Specifically, SPECTEC-
TOR detects a leak whenever executing the program under the
speculative semantics, which captures that the execution can
go down a mispredicted path for a bounded number of steps,
leaks more information into the microarchitectural state than
executing the program under a non-speculative semantics.

To illustrate how SPECTECTOR operates, we consider the
x86 assembly2 translation of Figure 1’s program (cf. Figure 2).

SPECTECTOR performs symbolic execution with respect to
the speculative semantics to derive a concise representation of
the concrete traces of memory accesses and program counter
values along each path of the program. These symbolic traces
capture the program’s effect on the microarchitectural state.

During speculative execution, the speculatively executed
parts are determined by the predictions of the branch predictor.
As shown in Section V-C, leakage due to speculative execution
is maximized under a branch predictor that mispredicts every
branch. The code in Figure 2 yields two symbolic traces w.r.t.
the speculative semantics that mispredicts every branch:3

start · rollback · τ when y < size (1)
start · τ · rollback when y ≥ size (2)

where τ = load (A+y)·load (B+A[y] * 512). Here, the
argument of load is visible to the observer, while start and

2We use a simplified AT&T syntax without operand sizes
3For simplicity of presentation, the example traces capture only loads but

not the program counter.

2

https://spectector.github.io

rollback denote the start and the end of a misspeculated
execution. The traces of the non-speculative semantics are
obtained from those of the speculative semantics by removing
all observations in between start and rollback.

Trace 1 shows that whenever y is in bounds (i.e., y <
size) the observations of the speculative semantics and the
non-speculative semantics coincide (i.e. they are both τ).
In contrast, Trace 2 shows that whenever y ≥ size, the
speculative execution generates observations τ that depend
on A[y] whose value is not visible in the non-speculative
execution. This is flagged as a leak by SPECTECTOR.

Proving Security with SPECTECTOR. The CLANG 7.0.0 C++
compiler implements a countermeasure, called speculative load
hardening [9], that applies conditional masks to addresses to
prevent leaks into the microarchitectural state. Figure 3 depicts
the protected output of CLANG on the program from Figure 1.

1 mov size, %rax
2 mov y, %rbx
3 mov $0, %rdx
4 cmp %rbx, %rax
5 jbe END
6 cmovbe $-1, %rdx
7 mov A(%rbx), %rax
8 shl $9, %rax
9 or %rdx, %rax

10 mov B(%rax), %rax
11 or %rdx, %rax
12 and %rax, temp

Fig. 3. SPECTRE variant 1 - Assembly code with speculative load hardening.
CLANG inserted instructions 3, 6, 9, and 11.

The symbolic execution of the speculative semantics pro-
duces, as before, Trace 1 and Trace 2, but with

τ = load (A+ y) · load (B+ (A[y] * 512) |mask),

where mask = ite(y < size,0x0,0xFF..FF) corre-
sponds to the conditional move in line 6 and | is a bitwise-or
operator. Here, ite(y < size,0x0,0xFF..FF) is a sym-
bolic if-then-else expression evaluating to 0x0 if y < size
and to 0xFF..FF otherwise.

The analysis of Trace 1 is as before. For Trace 2, however,
SPECTECTOR determines (via a query to Z3 [17]) that, for
all y ≥ size there is exactly one observation that the
adversary can make during the speculative execution, namely
load (A+y)·load (B+0xFF..FF), from which it concludes
that no information leaks into the microarchitectural state, i.e.,
the countermeasure is effective in securing the program. See
Section VIII for examples where SPECTECTOR detects that
countermeasures are not applied effectively.

III. LANGUAGE AND SEMANTICS

We now introduce µASM, a core assembly language which
we use for defining SNI and describing SPECTECTOR.

Basic Types
(Registers) x ∈ Regs
(Values) n, ` ∈ Vals = N ∪ {⊥}
Syntax
(Expressions) e := n | x | 	e | e1 ⊗ e2
(Instructions) i := skip | x← e | load x, e |

store x, e | jmp e | beqz x, ` |
x

e′←− e | spbarr
(Programs) p := n : i | p1; p2

Fig. 4. µASM syntax

A. Syntax

The syntax of µASM is defined in Figure 4. Expressions
are built from a set of register identifiers Regs , which contains
a designated element pc representing the program counter,
and a set Vals of values, which consists of the natural
numbers and ⊥. µASM features eight kinds of instructions:
a skip instruction, (conditional) assignments, load and store
instructions, branching instructions, indirect jumps, and
speculation barriers spbarr. Both conditional assignments
and speculation barriers are commonly used to implement
SPECTRE countermeasures [7], [9].

A µASM program is a sequence of pairs n : i, where i is an
instruction and n ∈ N is a value representing the instruction’s
label. We say that a program is well-formed if (1) it does not
contain duplicate labels, (2) it contains an instruction labeled
with 0, i.e., the initial instruction, and (3) it does not contain
branch instructions of the form n : beqz x, n + 1. In the
following we consider only well-formed programs.

We often treat programs p as partial functions from natural
numbers to instructions. Namely, given a program p and a
number n ∈ N, we denote by p(n) the instruction labelled
with n in p if it exists, and ⊥ otherwise.

Example 1. The SPECTRE v1 example from Figure 1 can be
expressed in µASM as follows:

0 : x← y < size

1 : beqz x,⊥
2 : load z, A+ y

3 : z ← z ∗ 512
4 : load w, B+ z

5 : temp← temp & w

Here, registers y, size, and temp store the respective vari-
ables. Similarly, registers A and B store the memory addresses
of the first elements of the arrays A and B. �

B. Non-speculative Semantics

The standard, non-speculative semantics models the
execution of µASM programs on a platform without
speculation. This semantics is formalized as a ternary relation
σ

o−→ σ′ mapping a configuration σ to a configuration σ′, while

3

producing an observation o. Observations are used to capture
what an adversary can see about a given execution trace. We
describe the individual components of the semantics below.
Configurations. A configuration σ is a pair 〈m, a〉 of a mem-
ory m ∈ Mem and a register assignment a ∈ Assgn , modeling
the state of the computation. Memories m are functions map-
ping memory addresses, represented by natural numbers, to
values in Vals . Register assignments a are functions mapping
register identifiers to values. We require that ⊥ can only be
assigned to the program counter pc, signaling termination. A
configuration 〈m, a〉 is initial (respectively final) if a(pc) = 0
(respectively a(pc) = ⊥). We denote the set Mem × Assgn
of all configurations by Conf .
Adversary model and observations. We consider an adver-
sary that observes the program counter and the locations of
memory accesses during computation. This adversary model
is commonly used to formalize timing side-channel free
code [14], [15], without requiring microarchitectural models.
In particular, it captures leakage through caches without re-
quiring an explicit cache model.

We model this adversary in our semantics by annotating
transactions with observations load n and store n, which
expose read and write accesses to an address n, and observa-
tions pc n, which expose the value of the program counter.
We denote the set of all observations by Obs .
Evaluation relation. We describe the execution of µASM pro-
grams using the evaluation relation −→⊆ Conf ×Obs×Conf .
Most of the rules defining −→ are fairly standard, which is
why Figure 5 presents only a selection. We refer the reader to
Appendix A for the remaining rules.

The rules LOAD and STORE describe the behavior of
instructions load x, e and store x, e respectively. The former
assigns to the register x the memory content at the address n
to which expression e evaluates; the latter stores the content
of x at that address. Both rules expose the address n using
observations and increment the program counter.

The rule CONDUPDATE-SAT describes the behavior of a
conditional update x

e′←− e whose condition e′ is satisfied.
It first checks that the condition e′ evaluates to true, written
Je′K(a) = 0. It then updates the register assignment a by
storing in x the value of e, and by incrementing pc.

The rule BEQZ-SAT describes the effect of the instruction
beqz x, n when the branch is taken. Under the condition that
x evaluates to 0, it sets the program counter to n and exposes
this change using the observation pc n.

Finally, the rule JMP executes jmp e instructions. The rule
stores the value of e in the program counter and records this
change using the observation pc n.
Runs and traces. The evaluation relation captures individual
steps in the execution of a program. Runs capture full execu-
tions of the program. We formalize them as triples 〈σ, τ, σ′〉
consisting of an initial configuration σ, a trace of observa-
tions τ , and a final configuration σ′. Given a program p, we
denote by LpM the set of all possible runs of the non-speculative
semantics, i.e., it contains all triples 〈σ, τ, σ′〉 corresponding

to executions σ
τ−→
∗
σ′. Finally, we denote by LpM(σ) the

trace τ such that there is a final configuration σ′ for which 〈σ,
τ, σ′〉 ∈ LpM. In this paper, we only consider terminating
programs. Extending the definitions and algorithms to non-
terminating programs is future work.

IV. SPECULATIVE SEMANTICS

This section introduces a model of speculation that captures
the execution of µASM programs on speculative in-order
microarchitectures. We first informally explain this model in
Section IV-A before formalizing it in the rest of the section.

A. Modeling Speculation

Non-branching instructions are executed as in the standard
semantics. Upon reaching a branching instruction, the predic-
tion oracle, which is a parameter of our model, is queried to
obtain a branch prediction that is used to decide which of the
two branches to execute speculatively.

To enable a subsequent rollback in case of a misprediction,
a snapshot of the current program configuration is taken,
before starting a speculative transaction. In this speculative
transaction, the program is executed speculatively along the
predicted branch for a bounded number of computation steps.
Computing the precise length w of a speculative transactions
would (among other aspects) require a detailed model of the
memory hierarchy. To abstract from this complexity, in our
model w is also provided by the prediction oracle.

At the end of a speculative transaction, the correctness of
the prediction is evaluated:
• If the prediction was correct, the transaction is committed

and the computation continues using the current configuration.
• If the prediction was incorrect, the transaction is aborted,

the original configuration is restored, and the computation
continues on the correct branch.

In the following we formalize the behavior intuitively de-
scribed above in the speculative semantics. The main technical
challenge lies in catering for nested branches and transactions.

B. Prediction Oracles

In our model, prediction oracles serve two distinct purposes:
(1) predicting branches, and (2) determining the speculative
transactions’ lengths. A prediction oracle O is a partial func-
tion that takes as input a program p, a branching history h,
and a label ` such that p(`) is a branching instruction, and
that returns as output a pair 〈`′, w〉 ∈ Vals × N, where `′

represents the predicted branch (i.e., `′ ∈ {` + 1, `′′} where
p(`) = beqz x, `′′) and w the speculative transaction’s length.

Taking into account the branching history enables us to
capture history-based branch predictors, a general class of
branch predictors that base their decisions on the sequence
of branches leading up to a branching instruction, Formally,
a branching history is a sequence of triples 〈`, id , `′〉, where
` ∈ Vals is the label of a branching instruction, `′ ∈ Vals is
the label of the predicted branch, and id ∈ N is the identifier
of the transaction in which the branch is executed.

A prediction oracle O has speculative window at most w if
the length of the transactions generated by its predictions is

4

LOAD
p(a(pc)) = load x, e x 6= pc n = JeK(a)

〈m,a〉 load n−−−−→ 〈m,a[pc 7→ a(pc) + 1, x 7→ m(n)]〉

STORE
p(a(pc)) = store x, e n = JeK(a)

〈m,a〉 store n−−−−→ 〈m[n 7→ a(x)], a[pc 7→ a(pc) + 1]〉

CONDUPDATE-SAT

p(a(pc)) = x
e′←− e Je′K(a) = 0 x 6= pc

〈m,a〉 −→ 〈m,a[pc 7→ a(pc) + 1, x 7→ JeK(a)]〉

BEQZ-SAT
p(a(pc)) = beqz x, ` a(x) = 0

〈m,a〉 pc `−−→ 〈m,a[pc 7→ `]〉

JMP
p(a(pc)) = jmp e ` = JeK(a)

〈m,a〉 pc `−−→ 〈m,a[pc 7→ `]〉

Fig. 5. Standard semantics for µASM program p – selected rules

at most w, i.e., for all programs p, branching histories h, and
labels `, O(p, h, `) = 〈`′, w′〉, for some `′ and with w′ ≤ w.

Example 2. The “backward taken forward not taken”
(BTFNT) branch predictor, implemented in early CPUs [18],
predicts the branch as taken if the target instruction address
is lower than the program counter. It can be formalized as
part of a prediction oracle BTFNT , for a fixed speculative
window w, as follows: BTFNT (p, h, `) = 〈min(` + 1, `′),
w〉, where p(`) = beqz x, `′. �

Dynamic branch predictors, such as simple 2-bit predictors
and more complex correlating or tournament predictors [18],
can also be formalized using prediction oracles.

C. Speculative Transactions

To manage each ongoing speculative transaction4, the specu-
lative semantics needs to remember a snapshot σ of the config-
uration prior to the start of the transaction, the length w of the
transaction (i.e., the number of instructions left to be executed
in this transaction), the branch prediction ` used at the start of
the transaction, and the transaction’s identifier id . We call such
a 4-tuple 〈σ, id , w, `〉 ∈ Conf × N× N× Vals , a speculative
state, and we denote by SpecS the set of all speculative states.

Nested transactions are represented by sequences of spec-
ulative states. We use standard notation for sequences: S∗ is
the set of all finite sequences over the set S, ε is the empty se-
quence, and s1 ·s2 is the concatenation of sequences s1 and s2.

We use the following two helper functions to manipulate
sequences of speculative states s ∈ SpecS∗:
• decr : SpecS∗ → SpecS∗ decrements by 1 the length of

all transactions in the sequence.
• zeroes : SpecS∗ → SpecS∗ sets to 0 the length of all

transactions in the sequence.
• The predicate enabled(s) holds if and only if none of the

transactions in s has remaining length 0.
In addition to branch and jump instructions, speculative

transactions can also modify the program counter: rolling back
a transaction results in resetting the program counter to the one
in the correct branch. To expose such changes to the adversary,
we extend the set Obs of observations with elements of the
form start id , commit id , and rollback id , to denote start,
commit, and rollback of a speculative transaction id . ExtObs
denotes the set of extended observations.

4Due to nesting, multiple transactions may be happening simultaneously.

D. Evaluation Relation

The speculative semantics operates on extended configura-
tions, which are 4-tuples 〈ctr , σ, s, h〉 ∈ ExtConf consisting
of a global counter ctr ∈ N for generating transaction
identifiers, a configuration σ ∈ Conf , a sequence s of specu-
lative states representing the ongoing speculative transactions,
and a branching history h. Along the lines of the standard
semantics, we describe the speculative semantics of µASM
programs under a prediction oracle O using the relation
 ⊆ ExtConf × ExtObs∗ × ExtConf . The rules are given
in Figure 6 and are explained below:

SE-NOBRANCH captures the behavior of non-branching
instructions as long as the length of all speculative states in s
is greater than 0, that is, as long as enabled(s). In this case,
 mimics the behavior of the non-speculative semantics −→.
If the instruction is not a speculation barrier, the lengths of
all speculative transactions are decremented by 1 using decr .
In contrast, if the instruction is a speculation barrier spbarr,
the length of all transactions is set to 0 using zeroes . In this
way, spbarr forces the termination (either with a commit or
with a rollback) of all ongoing speculative transactions.

SE-BRANCH models the behavior of branch instructions.
The rule (1) queries the prediction oracle O to obtain a
prediction 〈`, w〉 consisting of the predicted next instruction
address ` and the length of the transaction w, (2) sets the pro-
gram counter to `, (3) decrements the length of the transactions
in s, (4) increments the transaction counter ctr , (5) appends
a new speculative state with configuration σ, identifier ctr ,
transaction’s length w, and predicted instruction address `,
and (6) updates the branching history by appending an entry
〈a(pc), ctr , `〉 modeling the prediction. The rule also records
the start of the speculative execution and the change of the
program counter through observations.

SE-COMMIT captures a speculative transaction’s commit. It
is executed whenever a speculative state’s remaining length
reaches 0. Application of the rule requires that the prediction
made for the transaction is correct, which is checked by
comparing the predicted address n with the one obtained by
executing one step of the non-speculative semantics starting
from the configuration σ′. The rule records the transaction’s
commit through an observation, and it updates the branching
history according to the branch decision that has been taken.

SE-ROLLBACK captures a speculative transaction’s roll-
back. The rule checks that the prediction is incorrect (again by

5

comparing the predicted address n with the one obtained from
the non-speculative semantics), and it restores the configura-
tion stored in s. Rolling back a transaction also terminates the
speculative execution of all the nested transactions. This is
modeled by dropping the portion s′ of the speculative state
associated with the nested transactions. The rule also pro-
duces observations recording the transaction’s rollback and the
change of the program counter, and it updates the branching
history by recording the branch instruction’s correct outcome.

Runs and traces. Runs and traces are defined analogously to
the non-speculative case: Given a program p and an oracle O,
we denote by JpKO the set of all possible runs of the specu-
lative semantics. By JpKO(σ) we denote the trace τ such that
there is a final configuration σ′ for which 〈σ, τ, σ′〉 ∈ JpKO.

Example 3. For illustrating the speculative semantics, we
execute the program from Ex. 1 with the oracle from Ex. 2
and a configuration 〈0, 〈m, a〉, ε, ε〉 where a(y) ≥ a(size).

First, the rule SE-NOJUMP is applied to execute the
assignment x ← y < size. Then, the branch instruction
beqz x,⊥ is reached and so rule SE-JUMP applies. This
produces the observations start 0, modeling the beginning
of a speculative transaction with id 0, and pc 2, representing
the program counter’s change. Next, rule SE-NOJUMP
applies three times to execute the instructions 2–5, thereby
producing the observations load v1 and load v2 that record
the memory accesses. Finally, rule SE-ROLLBACK applies,
which terminates the speculative transaction and rolls back
its effects. This rule produces the observations rollback 0
and pc ⊥. Thus, executing the program produces the trace:

τ := start 0 · pc 2 · load v1 · load v2 · rollback 0 · pc ⊥ ,

where v1 = a(A) + a(y) and v2 = a(B) + v1 ∗ 512. �

E. Speculative and Non-speculative Semantics

We conclude this section by connecting the speculative
and non-speculative semantics. For this, we introduce two
projections of speculative traces τ :
• the non-speculative projection τ�nse is the trace obtained

by removing from τ (1) all substrings that correspond to
rolled-back transactions, i.e. all substrings start id · τ ′ ·
rollback id , and (2) all extended observations.
• the speculative projection τ�se is the trace produced by

rolled-back transactions, i.e. the complement of τ�nse.
We lift projections �se and �nse to sets of runs in the natural
way. Then, a program’s non-speculative behavior can be ob-
tained from its speculative behavior by dropping all speculative
observations, i.e., by applying τ�nse to all of its runs τ :

Proposition 1. Let p be a program and O be a prediction
oracle. Then, LpM = JpKO�nse.

V. SPECULATIVE NON-INTERFERENCE

This section introduces speculative non-interference (SNI),
a semantic notion of security characterizing those information
leaks that are introduced by speculative execution.

A. Security Policies

Speculative non-interference is parametric in a policy that
specifies which parts of the configuration are known or con-
trolled by an adversary, i.e., “public” or “low” data.

Formally, a security policy P is a finite subset of Regs ∪N
specifying the low register identifiers and memory addresses.
Two configurations σ, σ′ ∈ Conf are indistinguishable with
respect to a policy P , written σ ∼P σ′, iff they agree on all
registers and memory locations in P .

Example 4. A policy P for the program from Example 1
may state that the content of the registers y, size, A, and B

is non-sensitive, i.e., P = {y, size, A, B}. �

Policies need not be manually specified but can in principle
be inferred from the context in which a piece of code executes,
e.g., whether a variable is reachable from public input or not.

B. Speculative Non-interference

Speculative non-interference requires that executing a pro-
gram under the speculative semantics does not leak more
information than executing the same program under the non-
speculative semantics. Formally, whenever two indistinguish-
able configurations produce the same non-speculative traces,
then they must also produce the same speculative traces.

Definition 1. Program p satisfies speculative non-interference
for prediction oracle O and security policy P iff for all initial
configurations σ, σ′ ∈ InitConf , if σ ∼P σ′ and LpM(σ) =
LpM(σ′), then JpKO(σ) = JpKO(σ′).

Speculative non-interference is a variant of non-interference.
While non-interference compares what is leaked by a program
with a policy specifying the allowed leaks, speculative non-
interference compares the program leakage under two seman-
tics, the non-speculative and the speculative one. The security
policy and the non-speculative semantics, together, specify
what the program may leak under the speculative semantics.5

Example 5. The program p from Example 1 does not sat-
isfy speculative non-interference for the BTFNT oracle from
Example 2 and the policy P from Example 4. Consider two
initial configurations σ := 〈m, a〉, σ′ := 〈m′, a′〉 that agree on
the values of y, size, A, and B but disagree on the value of
B[A[y] ∗ 512]. Say, for instance, that m(a(A) + a(y)) = 0 and
m′(a′(A) + a′(y)) = 1. Additionally, assume that y ≥ size.

Executing the program under the non-speculative semantics
produces the trace pc ⊥ when starting from σ and σ′.
Moreover, the two initial configurations are indistinguishable
with respect to the policy P . However, executing p under
the speculative semantics produces two distinct traces τ =
start 0 ·pc 3 ·load v1 ·load (a′(B)+0) ·rollback 0 ·pc ⊥
and τ ′ = start 0·pc 3·load v1·load (a′(B)+1)·rollback 0·
pc ⊥, where v1 = a(A) + a(y) = a′(A) + a′(y). Therefore, p
does not satisfy speculative non-interference. �

5Conceptually, the non-speculative semantics can be seen as a declassifica-
tion assertion for the speculative semantics [19].

6

SE-NOBRANCH
p(σ(pc)) 6= beqz x, ` σ

τ−→ σ′ enabled(s)

s′ =

{
decr(s) if p(σ(pc)) 6= spbarr

zeroes(s) otherwise

〈ctr , σ, s, h〉 τ 〈ctr , σ′, s′, h〉

SE-BRANCH
p(σ(pc)) = beqz x, `′ O(p, h, σ(pc)) = 〈`, w〉 σ = 〈m,a〉

enabled(s) s′ = decr(s) · 〈σ, ctr , w, `〉 id = ctr

〈ctr , σ, s, h〉 start id·pc ` 〈ctr + 1, 〈m,a[pc 7→ `]〉, s′, h · 〈a(pc), id , `〉〉

SE-COMMIT
σ′

τ−→ 〈m,a〉 ` = a(pc) enabled(s′)
h′ = h · 〈σ′(pc), id , a(pc)〉

〈ctr , σ, s · 〈σ′, id , 0, `〉 · s′, h〉 commit id 〈ctr , σ, s · s′, h′〉

SE-ROLLBACK
σ′

τ−→ 〈m,a〉 ` 6= a(pc) enabled(s′)
h′ = h · 〈σ′(pc), id , a(pc)〉

〈ctr , σ, s · 〈σ′, id , 0, `〉 · s′, h〉 rollback id·pc a(pc) 〈ctr , 〈m,a〉, s, h′〉

Fig. 6. Speculative execution for µASM for a program p and a prediction oracle O

C. Always-mispredict Speculative Semantics

The speculative semantics and SNI are parametric in the
prediction oracle O. Often, it is desirable obtaining guarantees
w.r.t. any prediction oracle, since branch prediction models in
modern CPUs are unavailable and as different CPUs employ
different predictors. To this end, we introduce a variant of the
speculative semantics that facilitates such an analysis.

Intuitively, leakage due to speculative execution is maxi-
mized under a branch predictor that mispredicts every branch.
This intuition holds true unless speculative transactions are
nested, where a correct prediction of a nested branch some-
times yields more leakage than a misprediction.

Example 6. Consider the following variation of the SPECTRE
v1 example [2] from Figure 1, and assume that the function
benign() runs for longer than the speculative window and
does not leak any information.

1 if (y < size)
2 if (y-1 < size)
3 benign();
4 temp &= B[A[y] * 512];

Then, under a branch predictor that mispredicts every branch,
the speculative transaction corresponding to the outer branch
will be rolled back before reaching line 4. On the other hand,
given a correct prediction of the inner branch, line 4 would
be reached and a speculative leak would be present. �

A simple but inefficient approach to deal with this chal-
lenge would be to consider both cases, correct and incorrect
prediction, upon every branch. This, however, would result in
an exponential explosion of the number of paths to consider.

To avoid this, we introduce the always-mispredict semantics
that differs from the speculative semantics in three key ways:

(1) It mispredicts every branch, hence its name. In partic-
ular, it is not parametric in the prediction oracle.

(2) It initializes the length of every non-nested transaction
to w, and the length of every nested transaction to the remain-
ing length of its enclosing transaction decremented by 1.

(3) Upon executing instructions, only the remaining length
of the innermost transaction is decremented.

The consequence of these modifications is that nested trans-
actions do not reduce the number of steps that the semantics
may explore the correct path for, after the nested transactions
have been rolled back. In Example 6, after rolling back the
nested speculative transaction, the outer transaction continues
as if the nested branch had been correctly predicted in the first
place, and thus the speculative leak in line 4 is reached.

Modifications (1)-(3) are formally captured in the three rules
AM-NOBRANCH, AM-BRANCH, and AM-ROLLBACK given
in Appendix C. Similarly to JpKO(σ), we denote by {|p|}w(σ)
the trace of observations obtained by executing the program p,
starting from initial configuration σ according to the always-
mispredict evaluation relation with speculative window w.

Theorem 1 states that checking SNI w.r.t. the always-
mispredict semantics is sufficient to obtain security guarantees
w.r.t. all prediction oracles.

Theorem 1. Program p satisfies SNI for security policy P and
all prediction oracles O with speculative window at most w
iff for all initial configurations σ, σ′ ∈ InitConf , if σ ∼P σ′

and LpM(σ) = LpM(σ′), then {|p|}w(σ) = {|p|}w(σ′).

In our case studies in Sections VIII and IX, we use w = 200.
This is motivated by typical sizes of the reorder buffer [20],
which limits the lengths of speculative transactions in modern
microarchitectures.

VI. DETECTING SPECULATIVE INFORMATION FLOWS

We now present SPECTECTOR, an approach to detect
speculative leaks, or to prove their absence. SPECTECTOR
symbolically executes the program p under analysis to derive
a concise representation of p’s behavior as a set of symbolic
traces. It analyzes each symbolic trace using an SMT solver to
detect possible speculative leaks through memory accesses or
control-flow instructions. If neither memory nor control leaks
are detected, SPECTECTOR reports the program as secure.

A. Symbolically Executing µASM Programs

We symbolically execute programs w.r.t. the always mispre-
dict semantics, which enables us to derive security guarantees
that hold for arbitrary prediction oracles, see Theorem 1. Our
symbolic execution engine relies on the following components:

7

• A symbolic expression se is a concrete value n ∈ Vals ,
a symbolic value s ∈ SymbVals , an if-then-else expression
ite(se, se ′, se ′′), or the application of unary or binary opera-
tors to symbolic expressions.
• A symbolic memory is a term in the standard theory of

arrays [21]. A memory update write(sm, se, se ′) updates the
symbolic memory sm by assigning the symbolic value se ′ to
the symbolic address se . We extend symbolic expressions with
memory reads read(sm, se), which retrieve the value of the
symbolic address se from the symbolic memory sm.
• A symbolic trace τ is a sequence of symbolic observa-

tions of the form load se or store se , symbolic branching
conditions of the form symPc(se), and transaction-related
observations of the form start n and rollback n, for natural
numbers n and symbolic expressions se .
• The path condition pthCnd(τ)=

∧
symPc(se)∈τ se of trace τ

is the conjunction of all symbolic branching conditions in τ .
• The symbolic execution derives symbolic runs 〈σ, τ, σ′〉,

consisting of symbolic configurations σ, σ′ and a symbolic
trace τ . The set of all symbolic runs forms the symbolic
semantics, which we denote by {|p|}symb

w . The derivation rules
are fairly standard and are given in Appendix D.
• The value of an expression se depends on a valuation

µ : SymbVals → Vals mapping symbolic values to concrete
ones. The evaluation µ(se) of se under µ is standard and
formalized in Appendix D.
• A symbolic expression se is satisfiable, written µ |= se ,

if there is a valuation µ such that µ(se) 6= 0. Every valuation
that satisfies a symbolic run’s path condition maps the
run to a concrete run. We denote by γ(〈σ, τ, σ′〉) the set
{〈µ(σ), µ(τ), µ(σ′)〉 | µ |= pthCnd(τ)} of 〈σ, τ, σ′〉’s
concretizations, and we lift it to {|p|}symb

w . The concretization
of the symbolic runs yields the set of all concrete runs:

Proposition 2. Let p be a program and w ∈ N be a speculative
window. Then, {|p|}w = γ({|p|}symb

w).

Example 7. Executing the program from Example 1 under
the symbolic speculative semantics with speculative window 2
yields the following two symbolic traces: τ1 := symPc(y <
size) · start 0 · pc 2 · pc 10 · rollback 0 · pc 3 · load A+
y · load read(sm0, B+ (A+ y) ∗ 512), and τ2 := symPc(y ≥
size) ·start 0 ·pc 3 ·load A+y ·load read(sm0, B+(A+
y) ∗ 512) · rollback 0 · pc 2 · pc 10. �

B. Checking speculative non-interference

SPECTECTOR is given in Algorithm 1. It relies on two pro-
cedures: MEMLEAK and CTRLLEAK, to detect leaks resulting
from memory and control-flow instructions, respectively. We
start by discussing the SPECTECTOR algorithm and next
explain the MEMLEAK and CTRLLEAK procedures.
SPECTECTOR. SPECTECTOR takes as input a program p, a
policy P specifying the non-sensitive information, and a spec-
ulative window w. The algorithm iterates over all symbolic
runs produced by the symbolic speculative semantics (lines
2-4). For each run 〈σ, τ, σ′〉, the algorithm checks whether τ
speculatively leaks information through memory accesses or

Algorithm 1 SPECTECTOR

Input: A program p, a security policy P , a speculative
window w ∈ N.

Output: SECURE if p satisfies speculative non-interference
with respect to the policy P ; INSECURE otherwise

1: procedure SPECTECTOR(p, P, w)
2: for each symbolic run 〈σ, τ, σ′〉 ∈ {|p|}symb

w do
3: if MEMLEAK(τ, P) ∨ CTRLLEAK(τ, P) then
4: return INSECURE

5: return SECURE

6: procedure MEMLEAK(τ, P)
7: ψ ← pthCnd(τ)1∧2 ∧ polEqv(P)∧

obsEqv(τ�nse) ∧ ¬obsEqv(τ�se)
8: return SATISFIABLE(ψ)

9: procedure CTRLLEAK(τ, P)
10: for each prefix ν · symPc(se) of τ�se do
11: ψ ← pthCnd(τ�nse · ν)1∧2 ∧ polEqv(P)∧

obsEqv(τ�nse) ∧ ¬sameSymbPc(se)
12: if SATISFIABLE(ψ) then
13: return >
14: return ⊥

control-flow instructions. If this is the case, then SPECTECTOR
has found a witness of a speculative leak and it reports p as
INSECURE. If none of the traces contain speculative leaks, the
algorithms terminates returning SECURE (line 5).

Detecting leaks caused by memory accesses. The procedure
MEMLEAK takes as input a trace τ and a policy P , and
it determines whether τ leaks information through symbolic
load and store observations. The check is expressed as a
satisfiability check of a constraint ψ. The construction of ψ
is inspired by self-composition [22], which reduces reasoning
about pairs of program runs to reasoning about single runs by
replacing each symbolic variable x with two copies x1 and x2.
We lift the subscript notation to symbolic expressions.

The constraint ψ is the conjunction of four formulas:
• pthCnd(τ)1∧2 stands for pthCnd(τ)1 ∧ pthCnd(τ)2,

which ensures that both runs follow the path associated with τ .
• polEqv(P) introduces constraints x1 = x2 for each

register x ∈ P and read(sm1, n) = read(sm2, n) for each
location n ∈ P , which ensure that both runs agree on all
non-sensitive inputs.
• obsEqv(τ�nse) introduces a constraint se1 = se2 for

each load se or store se in τ�nse, which ensures that
the non-speculative observations associated with memory
accesses are the same in both runs.
• ¬obsEqv(τ�se) ensures that speculative observations

associated with memory accesses differ among the two runs.
If ψ is satisfiable, there are two P -indistinguishable config-

urations that produce the same non-speculative traces (since
pthCnd(τ)1∧2 ∧ polEqv(P)∧ obsEqv(τ�nse) is satisfied) and

8

whose speculative traces differ in a memory access observation
(since ¬obsEqv(τ�se) is satisfied), i.e. a violation of SNI.

Detecting leaks caused by control-flow instructions. To
detect leaks caused by control-flow instructions, CTRLLEAK
checks whether there are two traces in τ ’s concretization that
agree on the outcomes of all non-speculative branch and jump
instructions, while differing in the outcome of at least one
speculatively-executed branch or jump instruction.

In addition to pthCnd(τ), obsEqv(τ), and polEqv(P),
the procedure relies on the function sameSymbPc(se) that
introduces the constraint se1 ↔ se2 ensuring that se is
satisfied in one concretization iff it is satisfied in the other.

CTRLLEAK checks, for each prefix ν · symPc(se) in τ ’s
speculative projection τ�se, the satisfiability of the conjunction
of pthCnd(τ�nse · ν)1∧2, polEqv(P), obsEqv(τ�nse), and
¬sameSymbPc(se). Whenever the formula is satisfiable, there
are two P -indistinguishable configurations that produce the
same non-speculative traces, but whose speculative traces
differ on program counter observations, i.e. a violation of SNI.

Example 8. Consider the trace τ2 := symPc(y ≥ size) ·
start 0·pc 3·load A+y·load read(sm0, B+(A+y)∗512)·
rollback 0 ·pc 2 ·pc 10 from Example 7. MEMLEAK detects
a leak caused by the observation load read(sm0, B + (A +
y)∗512). Specifically, it detects that there are distinct symbolic
valuations that agree on the non-speculative observations but
disagree on the value of load read(sm0, B+ (A+ y) ∗ 512).
That is, the observation depends on sensitive information that
is not disclosed by τ2’s non-speculative projection. �

Soundness and completeness. Theorem 2 states that
SPECTECTOR deems secure only speculatively non-interferent
programs, and all detected leaks are actual violations of SNI.

Theorem 2. If SPECTECTOR(p, P, w) terminates, then
SPECTECTOR(p, P, w) = SECURE iff the program p satisfies
speculative non-interference w.r.t. the policy P and all predic-
tion oracles O with speculative window at most w.

The theorem follows from the soundness and completeness
of the always-mispredict semantics w.r.t. prediction oracles
(Theorem 1) and of the symbolic semantics w.r.t. to the
always-mispredict semantics (Proposition 2).

VII. TOOL IMPLEMENTATION

We implement our approach in our tool SPECTECTOR, avail-
able at https://spectector.github.io. The tool,
which is implemented on top of the CIAO logic programming
system [23], consists of three components: a front end that
translates x86 assembly programs into µASM, a core engine
implementing Algorithm 1, and a back end handling SMT
queries.

x86 front end. The front end translates AT&T/GAS and Intel-
style assembly files into µASM. It currently supports over 120
instructions: data movement instructions (mov, etc.), logical,
arithmetic, and comparison instructions (xor, add, cmp,
etc.), branching and jumping instructions (jae, jmp, etc.),

conditional moves (cmovae, etc.), stack manipulation (push,
pop, etc.), and function calls6 (call, ret).

It currently does not support privileged x86 instructions,
e.g., for handling model specific registers and virtual memory.
Further it does not support sub-registers (like eax, ah, and
al) and unaligned memory accesses, i.e., we assume that only
64-bit words are read/written at each address without overlaps.
Finally, the translation currently maps symbolic address names
to µASM instruction addresses, limiting arithmetic on code
addresses.

Core engine. The core engine implements Algorithm 1. It
relies on a concolic approach to implement symbolic execution
that performs a depth-first exploration of the symbolic runs.
Starting from a concrete initial configuration, the engine exe-
cutes the program under the always-mispredict speculative se-
mantics while keeping track of the symbolic configuration and
path condition. It discovers new runs by iteratively negating
the last (not previously negated) conjunct in the path condition
until it finds a new initial configuration, which is then used to
re-execute the program concolically. In our current implemen-
tation, indirect jumps are not included in the path conditions,
and thus new symbolic runs and corresponding inputs are only
discovered based on negated branch conditions.7. This process
is interleaved with the MEMLEAK and CTRLLEAK checks and
iterates until a leak is found or all paths have been explored.

SMT back end. The Z3 SMT solver [17] acts as a backend
for checking satisfiability and finding models of symbolic
expressions using the BITVECTOR and ARRAY theories, which
are used to model registers and memory. The implementation
currently does not rely on incremental solving, since it was
less efficient than one-shot solving for the selected theories.

VIII. CASE STUDY: COMPILER COUNTERMEASURES

This section reports on a case study in which we apply
SPECTECTOR to analyze the security of compiler-level coun-
termeasures against SPECTRE. We analyze a corpus of 240
assembly programs derived from the variants of the SPECTRE
v1 vulnerability by Kocher [16] using different compilers and
compiler options. This case study’s goals are: (1) to determine
whether speculative non-interference realistically captures
speculative leaks, and (2) to assess SPECTECTOR’s precision.

A. Experimental Setup

For our analysis, we rely on three state-of-the-art com-
pilers: Microsoft VISUAL C++ versions v19.15.26732.1 and
v19.20.27317.96, Intel ICC v19.0.0.117, and CLANG v7.0.0.

We compile the programs using two different optimization
levels (-O0 and -O2) and three mitigation levels: (a) UNP:
we compile without any SPECTRE mitigations. (b) FEN: we

6We model so-called “near calls”, where the callee is in the same code
segment as the caller.

7We plan to remove this limitation in a future release of our tool.

9

https://spectector.github.io

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 ◦ ◦ •◦ •◦ •◦ •◦ ◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ •◦ •◦
02 ◦ ◦ •◦ •◦ •◦ •◦ ◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ •◦ •◦
03 ◦ ◦ •◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ •◦ •◦
04 ◦ ◦ ◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ •◦ •◦
05 ◦ ◦ •◦ ◦ •◦ ◦ ◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ •◦ •◦
06 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ •◦ •◦
07 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ •◦ •◦
08 ◦ •◦ ◦ •◦ ◦ •◦ ◦ •◦ •◦ •◦ ◦ •◦ •◦ •◦ •◦ •◦
09 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ •◦ •◦
10 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ •◦ ◦
11 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ •◦ •◦
12 ◦ ◦ ◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ •◦ •◦
13 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ •◦ •◦
14 ◦ ◦ ◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ •◦ •◦
15 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ ◦ •◦

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
◦ denotes that SPECTECTOR detects a speculative leak, whereas •◦ indicates that SPECTECTOR proves the program secure.

compile with automated injection of speculation barriers.8

(c) SLH: we compile using speculative load hardening.9

Compiling each of the 15 examples from [16] with each of
the 3 compilers, each of the 2 optimization levels, and each of
the 2-3 mitigation levels, yields a corpus of 240 x64 assembly
programs.10 For each program, we specify a security policy
that flags as “low” all registers and memory locations that can
either be controlled by the adversary or can be assumed to
be public. This includes variables y and size, and the base
addresses of the arrays A and B as well as the stack pointer.

B. Experimental Results

Figure 7 depicts the results of applying SPECTECTOR to the
240 examples. We highlight the following findings:
• SPECTECTOR detects the speculative leaks in almost

all unprotected programs, for all compilers (see the UNP
columns). The exception is Example #8, which uses a con-
ditional expression instead of the if statement of Figure 1:

1 temp &= B[A[y<size?(y+1):0]*512];

At optimization level -O0, this is translated to a (vulnerable)
branch instruction by all compilers, and at level -O2 to a (safe)
conditional move, thus closing the leak. See Appendix E-A for
the corresponding CLANG assembly.

8Fences are supported by CLANG with the flag -x86-speculative-
load-hardening-lfence, by ICC with -mconditional-
branch=all-fix, and by VISUAL C++ with /Qspectre.

9Speculative load hardening is supported by CLANG with the flag
-x86-speculative-load-hardening.

10The resulting assembly files are available at https://spectector.
github.io.

• The CLANG and Intel ICC compilers defensively insert
fences after each branch instruction, and SPECTECTOR can
prove security for all cases (see the FEN columns for CLANG
and ICC). In Example #8 with options -O2 and FEN, ICC
inserts an lfence instruction, even though the baseline relies
on a conditional move, see line 10 below. This lfence is
unnecessary according to our semantics, but may close leaks
on processors that speculate over conditional moves.

1 mov y, %rdi
2 lea 1(%rdi), %rdx
3 mov size, %rax
4 xor %rcx, %rcx
5 cmp %rax, %rdi
6 cmovb %rdx, %rcx
7 mov temp, %r8b
8 mov A(%rcx), %rsi
9 shl $9, %rsi

10 lfence
11 and B(%rsi), %r8b
12 mov %r8b, temp

• For the VISUAL C++ compiler, SPECTECTOR
automatically detects all leaks pointed out in [16] (see
the FEN 19.15 -O2 column for VCC). Our analysis differs
from Kocher’s only on Example #8, where the compiler
v19.15.26732.1 introduces a safe conditional move, as
explained above. Moreover, without compiler optimizations
(which is not considered in [16]), SPECTECTOR establishes the
security of Examples 3 and 5 (see the FEN 19.15 -O0 column).
The latest VCC compiler additionally mitigates the leaks in

10

https://spectector.github.io
https://spectector.github.io

Examples #4, #12, and #14 (see the FEN 19.20 column).
• SPECTECTOR can prove the security of speculative load

hardening in Clang (see the SLH column for CLANG), except
for Example #10 with -O2 and Example #15 with -O0.

Example 10 with Speculative Load Hardening: Example
#10 differs from Figure 1 in that it leaks sensitive information
into the microarchitectural state by conditionally reading the
content of B[0], depending on the value of A[y].

1 if (y < size)
2 if (A[y] == k)
3 temp &= B[0];

SPECTECTOR proves the security of the program produced
with CLANG -O0, and speculative load hardening.

However, at optimization level -O2, CLANG outputs the
following code that SPECTECTOR reports as insecure.

1 mov size, %rdx
2 mov y, %rbx
3 mov $0, %rax
4 cmp %rbx, %rdx
5 jbe END
6 cmovbe $-1, %rax
7 or %rax, %rbx
8 mov k, %rcx
9 cmp %rcx, A(%rbx)

10 jne END
11 cmovne $-1, %rax
12 mov B, %rcx
13 and %rcx, temp
14 jmp END

The reason for this is that CLANG masks only the register
%rbx that contains the index of the memory access A[y],
cf. lines 6–7. However, it does not mask the value that
is read from A[y]. As a result, the comparison at line 9
speculatively leaks (via the jump target) whether the content of
A[0xFF...FF] is k. SPECTECTOR detects this subtle leak
and flags a violation of speculative noninterference.

While this example nicely illustrates the scope of SPEC-
TECTOR, it is likely not a problem in practice. First, the
adversary can only determine one bit of information about
the content of a fixed memory location. Second, the leak may
be mitigated by how data dependencies are handled in modern
out-of-order CPUs. Specifically, the conditional move in line 6
relies on the comparison in line 4. If executing the conditional
move effectively terminates speculation, the reported leak is
spurious. Example #15 (discussed in Appendix E-B) follows
a similar pattern (albeit with -O2 and -O0 exchanged).

C. Performance

We run all experiments on a Linux machine (kernel 4.9.0-8-
amd64) with Debian 9.0, a Xeon Gold 6154 CPU, and 64 GB
of RAM. We use CIAO version 1.18 and the Z3 version 4.8.4.

SPECTECTOR terminates within less than 30 seconds on all
examples, with several examples being analyzed in about 0.1
seconds, except for Example #5 in mode SLH -O2. In this

exceptional case, SPECTECTOR needs 2 minutes for proving
security. This is due to Example #5’s complex control-flow,
which leads to loops involving several branch instructions.

IX. CASE STUDY: XEN PROJECT HYPERVISOR

This section reports on a case study in which we apply
SPECTECTOR on the Xen Project hypervisor [24]. This case
study’s goal is to understand the challenges in scaling the tool
to a significant real-world code base. It forms a snapshot of
our ongoing effort towards the comprehensive side-channel
analysis of the Xen hypervisor.

A. Challenges for Scaling-up

There are three main challenges for scaling SPECTECTOR
to a large code base such as the Xen hypervisor:

ISA support: Our front end currently supports only a
fraction of the x64 ISA (cf. §VII). Supporting the full x64
ISA is conceptually straightforward but out of the scope of this
paper. For this case study, we treat unsupported instructions
as skip, sacrificing the analysis’s correctness.

Policies: SPECTECTOR uses policies specifying the public
and secret parts of configurations. The manual specification
of precise policies (as in §VIII) is infeasible for large code
bases, and their automatic inference from the calling context
is not yet supported by SPECTECTOR. For this case study,
we use a policy that treats registers as “low” and memory
locations as “high”, which may introduce false alarms. For
instance, the policy treats as “high” all function parameters
that are retrieved from memory (e.g., popped from the stack),
which is why SPECTECTOR flags their speculative uses in
memory or branching instructions as leaks.

Path explosion and nontermination: SPECTECTOR is based
on symbolic execution, which suffers from path explosion
and nontermination when run on programs with loops and
indirect jumps. In the future, we plan to address this chal-
lenge by employing approximative but sound static analysis
techniques, such as abstract interpretation. Such techniques
can be employed both to efficiently infer loop invariants, and
jump targets, but also to directly address the question whether
a given program satisfies SNI or not. A systematic study of
techniques to soundly approximate SNI is out of scope of
this paper. For this case study, as discussed in the following
section, we bound the number and the lengths of symbolic
paths that are explored, thereby sacrificing analysis soundness.

B. Evaluating Scalability

Approach: To perform a meaningful evaluation of SPEC-
TECTOR’s scalability despite the incomplete path coverage,
we compare the time spent on discovering new symbolic
paths with the time spent on checking SNI. Analyzing paths
of different lengths enables us to evaluate the scalability of
checking SNI relative to that of symbolic execution, which
factors out the path explosion problem from the analysis.

We stress that we sacrifice soundness and completeness
of the analysis for running SPECTECTOR on the full Xen
codebase (see §IX-A). This is why in this section we do not
make statements about the security of the hypervisor.

11

(a) Checking non-interference with MEMLEAK (b) Checking non-interference with CTRLLEAK

(c) Symbolic execution engine (d) Symbolic execution versus SNI check

Fig. 8. Scalability analysis for the Xen Project hypervisor. In (a) and (b), green denotes secure traces, red denotes insecure traces, and blue denotes traces
producing timeouts. In (c) and (d), yellow denotes the first trace discovered for each function, while blue denotes all discovered further traces. The vertical
lines in (d) represent traces where either MEMLEAK times out and CTRLLEAK succeed or both time out.

Setup: We analyze the Xen Project hypervisor version
4.10, which we compile using CLANG v7.0.0. We identify
3 959 functions in the generated assembly. For each function,
we explore at most 25 symbolic paths of at most 10 000
instructions each, with a global timeout of 10 minutes.11

We record execution times as a function of the trace
length, i.e., the number of load se, store se, and symPc(se)
observations, rather than path length, since the former is more
relevant for the size of the resulting SMT formulas. We execute
our experiments on the machine described in §VIII-C.

C. Experimental Results

Cost of Symbolic Execution: We measure the time taken for
discovering symbolic paths (cf. §VII). In total, SPECTECTOR
discovers 24 701 symbolic paths. Figure 8(c) depicts the time
for discovering paths. We highlight the following findings:

11The sources and scripts needed for reproducing our results are available
at https://spectector.github.io.

• As we apply concolic execution, discovering the first
symbolic path does not require any SMT queries and is hence
cheap. These cases are depicted by yellow dots in Fig. 8(c).
• Discovering further paths requires SMT queries. This

increases execution time by approximately two orders of mag-
nitude. These cases correspond to the blue dots in Fig. 8(c).
• For 48.3% of the functions we do not reach the limit of 25

paths, for 35.4% we do not reach the limit of 10 000 instruc-
tions per path, and for 18.7% we do not encounter unsupported
instructions. 13 functions satisfy all three conditions.

Cost of Checking SNI: We apply MEMLEAK and CTRL-
LEAK to the 24 701 traces (derived from the discovered paths),
with a timeout of 1 minute each. Figure 8(a) and 8(b) depict
the respective analysis runtimes; Figure 8(d) relates the time
required for discovering a new trace with the time for checking
SNI, i.e., for executing lines 3–4 in Algorithm 1.

We highlight the following findings:
• MEMLEAK and CTRLLEAK can analyze 93.8% and

94.7%, respectively, of the 24 701 traces in less than 1 minute.
The remaining traces result in timeouts.

12

https://spectector.github.io

• For 41.9% of the traces, checking SNI is at most 10x
faster than discovering the trace, and for 20.2% of the traces
it is between 10x and 100x faster. On the other hand, for 26.9%
of the traces, discovering the trace is at most 10x faster than
checking SNI, and for 7.9% of the traces, discovering the trace
is between 10x and 100x faster than checking SNI.

Our data indicates that the cost of checking SNI is com-
parable to that of discovering symbolic paths. This may be
surprising since SNI is a relational property, which requires
comparing executions. However, we only compare executions
that follow the same symbolic path. This is sufficient because
the program counter is observable, i.e., it is never necessary
to consider two executions that disagree on path conditions.
Hence, our approach does not exhibit fundamental bottlenecks
beyond those inherited from symbolic execution.

X. DISCUSSION

A. Exploitability

Exploiting speculative execution attacks requires an adver-
sary to (1) prepare the microarchitectural state, (2) run victim
code—partially speculatively—to encode information into the
microarchitectural state, and (3) extract the leaked information
from the microarchitectural state. SPECTECTOR analyzes the
victim code to determine whether it may speculatively leak
information into the microarchitectural state in any possi-
ble attack context. Following the terminology of [25], [26],
speculative non-interference is a semantic characterization of
disclosure gadgets enabled by speculative execution.

B. Scope of Model

The results obtained by SPECTECTOR are only valid to
the extent that the speculative semantics in conjunction with
the observer model accurately captures the additional leakage
induced by speculative execution.

In particular, SPECTECTOR may incorrectly classify a pro-
gram as secure if the speculative semantics does not implic-
itly12 capture all additional observations an adversary may
make due to speculative execution on an actual microar-
chitecture. For example, microarchitectures could potentially
speculate on the condition of a conditional update, which our
speculative semantics currently does not permit.

Similarly, a secure program could be classified as insecure
if the speculative semantics admits speculative executions that
are not actually possible on an actual microarchitecture. This
might be the case under speculative load hardening in Paul
Kocher’s Examples 10 and 15, as discussed in §VIII.

The speculative semantics, however, can always be adapted
to more accurately reflect reality, once better documentation
of processor behavior becomes available. In particular, it
would be relatively straightforward to extend the speculative
semantics with models of indirect jump predictors [2], return
stack buffers [1], and memory disambiguation predictors [27].

12Implicitly, because we take the memory accesses performed by the
program and the flow of control as a proxy for the observations an adversary
might make, e.g., through the cache.

The notion of SNI itself is robust to such changes, as it is
defined relative to the speculative semantics.

We capture “leakage into the microarchitectural state” using
the relatively powerful observer of the program execution
that sees the location of memory accesses and the jump
targets. This observer could be replaced by a weaker one,
which accounts for more detailed models of a CPU’s memory
hierarchy, and SPECTECTOR could be adapted accordingly,
e.g. by adopting the cache models from CacheAudit [28]. We
believe, however, that highly detailed models are not actually
desirable for several reasons: (a) they encourage brittle designs
that break under small changes to the model, (b) they have to
be adapted frequently, and (c) they are hard to understand and
reason about for compiler developers and hardware engineers.
The “constant-time” observer model adopted in this paper
has proven to offer a good tradeoff between precision and
robustness [14], [15].

XI. RELATED WORK

Speculative execution attacks. These attacks exploit specula-
tively executed instructions to leak information. After SPEC-
TRE [2], [4], [6], many speculative execution attacks have been
discovered that differ in the exploited speculation sources [1],
[5], [27], the covert channels [29], [3], [30] used, or the target
platforms [31]. We refer the reader to [26] for a survey of
speculative execution attacks and their countermeasures.

Here, we overview only SPECTRE v1 software-level coun-
termeasures. AMD and Intel suggested inserting lfence in-
structions after branches [7], [32]. These instructions effec-
tively act as speculation barriers, and prevent speculation
leaks. The Intel C++ compiler [10], the Microsoft Visual C++
compiler [11], and CLANG [12] can automatically inject this
countermeasure at compile time. Taram et al. [33] propose
context-sensitive fencing, a hardware-level defense mechanism
that dynamically injects fences where necessary, as determined
by a hardware-level dynamic information-flow tracker. An
alternative technique to injecting fences is to introduce artifi-
cial data dependencies [34], [9]. Speculative Load Hardening
(SLH) [9], implemented in the CLANG compiler [12], employs
carefully injected data dependencies and masking operations to
prevent the leak of sensitive information into the microarchi-
tectural state. A third software-level countermeasure consists
in replacing branching instructions by other computations, like
bit masking, that do not trigger speculative execution [35].

Detecting speculative leaks. oo7 [13] is a binary analysis
tool for detecting speculative leaks. The tool looks for specific
syntactic code patterns and it can analyze large code bases.
However, it misses some speculative leaks, like Example 4
from Section VIII. oo7 would also incorrectly classify all the
programs patched by SLH in our case studies as insecure,
since they still match oo7’s vulnerable patterns. In contrast,
SPECTECTOR builds on a semantic notion of security and is
thus not limited to particular syntactic code patterns.

Disselkoen et al. [36] and McIlroy et al. [37] develop models
for capturing speculative execution, which they use to illustrate

13

several known Spectre variants. Neither approach provides
a security notion or a detection technique. Compared with
our speculative semantics, the model of [37] more closely
resembles microarchitectural implementations by explicitly
modeling the reorder buffer, caches, and branch predictors,
which we intentionally abstract away.

In work concurrent to ours, Cheang et al. [38] attempt to
formally capture the new leaks introduced by the interaction
of microarchitectural side channels with speculative execution.
To this end, similarly to our speculative semantics, they
introduce a speculative operational semantics for an assembly
intermediate representation, and similarly to our notion of
SNI, they introduce the notion of trace property-dependent
observational determinism (TPOD) and instantiate it to capture
speculative execution vulnerabilities. As TPOD is a 4-safety
property it can be checked using 4-way self composition. In
contrast, SNI can be checked by 2-way self composition thanks
to Proposition 1, which is likely to be more efficient.

Formal architecture models. Armstrong et al. [39] present
formal models for the ARMv8-A, RISC-V, MIPS, and CHERI-
MIPS instruction-set architectures. Degenbaev [40] and Goel
et al. [41] develop formal models for parts of the x86 ar-
chitecture. Such models enable e.g. the formal verification
of compilers, operating systems, and hypervisors. However,
ISA models naturally abstract from microarchitectural aspects
such as speculative execution or caches, which are required to
reason about side-channel vulnerabilities.

Zhang et al. [42] present Coppelia, a tool to automatically
generate software exploits for hardware designs. However,
the processor designs they consider, OR1200, PULPino, and
Mor1kx, do not feature speculative execution.

Static detection of side-channel vulnerabilities. Several
approaches have been proposed for statically detecting side-
channel vulnerabilities in programs [28], [43], [44]. These dif-
fer from our work in that (1) they do not consider speculative
execution, while (2) we exclusively target speculation leaks,
i.e., we ignore leaks from the standard semantics. However,
we note that our tool could easily be adapted to also detect
leaks from the standard semantics.

XII. CONCLUSIONS

We introduce speculative non-interference, the first semantic
notion of security against speculative execution attacks. Based
on this notion we develop SPECTECTOR, a tool for automat-
ically detecting speculative leaks or proving their absence,
and we show how it can be used to detect subtle leaks—
and optimization opportunities—in the way state-of-the-art
compilers apply SPECTRE mitigations.

Acknowledgments: We thank Roberto Giacobazzi, Matt
Miller, Matthew Parkinson, Niki Vazou, and the anonymous
reviewers for helpful discussions and comments. This work
was supported by a grant from Intel Corporation, Ramón y
Cajal grant RYC-2014-16766, Atracción de Talento Investi-
gador grant 2018-T2/TIC-11732A, Spanish projects TIN2015-
70713-R DEDETIS, TIN2015-67522-C3-1-R TRACES, and

RTI2018-102043-B-I00 SCUM, and Madrid regional projects
S2013/ICE-2731 N-GREENS and S2018/TCS-4339 BLO-
QUES.

REFERENCES

[1] G. Maisuradze and C. Rossow, “Ret2spec: Speculative execution using
return stack buffers,” in Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security. ACM, 2018.

[2] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in 40th IEEE Sym-
posium on Security and Privacy (S&P’19), 2019.

[3] M. Schwarz, M. Schwarzl, M. Lipp, and D. Gruss, “Netspectre: Read
arbitrary memory over network,” 2018.

[4] G. Maisuradze and C. Rossow, “Speculose: Analyzing the security
implications of speculative execution in CPUs,” 2018.

[5] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre returns! speculation attacks using the return stack buffer,”
in 12th USENIX Workshop on Offensive Technologies (WOOT 18).
Baltimore, MD: USENIX Association, 2018. [Online]. Available:
https://www.usenix.org/conference/woot18/presentation/koruyeh

[6] V. Kiriansky and C. Waldspurger, “Speculative buffer overflows: Attacks
and defenses,” 2018.

[7] Intel, “Intel analysis of speculative execution side channels,”
https://software.intel.com/sites/default/files/managed/b9/f9/
336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.
pdf, 2018.

[8] “What spectre and meltdown mean for webkit,” https://webkit.org/blog/
8048/what-spectre-and-meltdown-mean-for-webkit/, 2018.

[9] C. Carruth, “Speculative load hardening,” 2018.
[10] Intel, “Using intel compilers to mitigate speculative execution

side-channel issues,” https://software.intel.com/en-us/articles/
using-intel-compilers-to-mitigate-speculative-execution-side-channel-issues,
2018.

[11] A. Pardoe, “Spectre mitigations in msvc,” https://blogs.msdn.microsoft.
com/vcblog/2018/01/15/spectre-mitigations-in-msvc/, 2018.

[12] “rl336990 - [slh] introduce a new pass to do speculative load hard-
ening to mitigate spectre variant #1 for x86,” https://reviews.llvm.org/
rL336990, 2018.

[13] G. Wang, S. Chattopadhyay, I. Gotovchits, T. Mitra, and
A. Roychoudhury, “oo7: Low-overhead defense against spectre attacks
via binary analysis,” CoRR, vol. abs/1807.05843, 2018. [Online].
Available: http://arxiv.org/abs/1807.05843

[14] D. Molnar, M. Piotrowski, D. Schultz, and D. A. Wagner, “The program
counter security model: Automatic detection and removal of control-flow
side channel attacks,” in ICISC, 2005, pp. 156–168.

[15] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi,
“Verifying constant-time implementations,” in 25th USENIX Security
Symposium, 2016.

[16] P. Kocher, “Spectre mitigations in Microsoft’s C/C++ compiler,” https:
//www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html,
2018.

[17] L. M. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in
Tools and Algorithms for the Construction and Analysis of Systems, 14th
International Conference, TACAS 2008, ser. Lecture Notes in Computer
Science, C. R. Ramakrishnan and J. Rehof, Eds., vol. 4963. Springer,
2008, pp. 337–340.

[18] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantita-
tive approach. Elsevier, 2011.

[19] A. Sabelfeld and D. Sands, “Declassification: Dimensions and princi-
ples,” Journal of Computer Security, vol. 17, no. 5, pp. 517–548, 2009.

[20] I. Anati, D. Blythe, J. Doweck, H. Jiang, W. Kao, J. Mandelblat,
L. Rappoport, E. Rotem, and A. Yasin, “Inside 6th gen intel core: New
microarchitecture code named Skylake,” in 2016 IEEE Hot Chips 28
Symposium (HCS), Aug 2016, pp. 1–39.

[21] A. R. Bradley and Z. Manna, The calculus of computation: decision
procedures with applications to verification. Springer Science &
Business Media, 2007.

[22] G. Barthe, P. R. D’Argenio, and T. Rezk, “Secure information flow
by self-composition,” in Proceedings. 17th IEEE Computer Security
Foundations Workshop, 2004. IEEE, 2004, pp. 100–114.

14

https://www.usenix.org/conference/woot18/presentation/koruyeh
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://software.intel.com/en-us/articles/using-intel-compilers-to-mitigate-speculative-execution-side-channel-issues
https://software.intel.com/en-us/articles/using-intel-compilers-to-mitigate-speculative-execution-side-channel-issues
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
https://reviews.llvm.org/rL336990
https://reviews.llvm.org/rL336990
http://arxiv.org/abs/1807.05843
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

[23] M. V. Hermenegildo, F. Bueno, M. Carro, P. López, E. Mera, J. Morales,
and G. Puebla, “An Overview of Ciao and its Design Philosophy,” TPLP,
vol. 12, no. 1–2, pp. 219–252, 2012, http://arxiv.org/abs/1102.5497.

[24] “Xen Project,” https://xenproject.org.
[25] M. Miller, “Mitigating speculative execution side channel hardware

vulnerabilities,” https://blogs.technet.microsoft.com/srd/2018/03/15/
mitigating-speculative-execution-side-channel-hardware-vulnerabilities/,
2018.

[26] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A Systematic Evaluation of
Transient Execution Attacks and Defenses,” ArXiv e-prints, Nov. 2018.

[27] J. Horn, “CVE-2018-3639 - speculative store bypass,” https://cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2018-3639, 2018.

[28] G. Doychev, B. Köpf, L. Mauborgne, and J. Reineke, “CacheAudit: A
tool for the static analysis of cache side channels,” ACM Transactions
on Information and System Security (TISSEC), vol. 18, no. 1, p. 4, 2015.

[29] C. Trippel, D. Lustig, and M. Martonosi, “MeltdownPrime and Spec-
trePrime: Automatically-synthesized attacks exploiting invalidation-
based coherence protocols,” 2018.

[30] J. Stecklina and T. Prescher, “LazyFP: Leaking FPU register state using
microarchitectural side-channels,” 2018.

[31] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “Sgx-
Pectre attacks: Stealing intel secrets from SGX enclaves via speculative
execution,” 2018.

[32] ADVANCED MICRO DEVICES, INC., “Software techniques for managing
speculation on amd processors,” https://developer.amd.com/wp-content/
resources/90343-B SotwareTechniquesforManagingSpeculation WP
7-18Update FNL.pdf, 2018.

[33] M. Taram, A. Venkat, and D. M. Tullsen, “Context-sensitive fencing:
Securing speculative execution via microcode customization,” in
Proceedings of the 24th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
2019, Providence, RI, USA, April 13-17, 2019, 2019, pp. 395–410.
[Online]. Available: https://doi.org/10.1145/3297858.3304060

[34] O. Oleksenko, B. Trach, T. Reiher, M. Silberstein, and C. Fetzer,
“You shall not bypass: Employing data dependencies to prevent bounds
check bypass,” CoRR, vol. abs/1805.08506, 2018. [Online]. Available:
http://arxiv.org/abs/1805.08506

[35] F. Pizlo, “What spectre and meltdown mean for webkit,” https://webkit.
org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/, 2018.

[36] “Code that never ran: modeling attacks on speculative evaluation,” https:
//github.com/chicago-relaxed-memory/spec-eval, 2018.

[37] R. Mcilroy, J. Sevcik, T. Tebbi, B. L. Titzer, and T. Verwaest, “Spectre
is here to stay: An analysis of side-channels and speculative execution,”
arXiv e-prints, p. arXiv:1902.05178, Feb 2019.

[38] K. Cheang, C. Rasmussen, S. A. Seshia, and P. Subramanyan, “A formal
approach to secure speculation,” IACR Cryptology ePrint Archive, vol.
2019, p. 310, 2019. [Online]. Available: https://eprint.iacr.org/2019/310

[39] A. Armstrong, T. Bauereiss, B. Campbell, A. Reid, K. E. Gray, R. M.
Norton, P. Mundkur, M. Wassell, J. French, C. Pulte, S. Flur, I. Stark,
N. Krishnaswami, and P. Sewell, “ISA semantics for ARMv8-A, RISC-
V, and CHERI-MIPS,” in Proc. 46th ACM SIGPLAN Symposium on
Principles of Programming Languages, vol. 3, no. POPL. New York,
NY, USA: ACM, January 2019, pp. 71:1–71:31.

[40] U. Degenbaev, “Formal specification of the x86 instruction set architec-
ture,” Ph.D. dissertation, Universität des Saarlandes, 2012.

[41] S. Goel, W. A. Hunt, and M. Kaufmann, Engineering a Formal,
Executable x86 ISA Simulator for Software Verification. Cham:
Springer International Publishing, 2017, pp. 173–209. [Online].
Available: https://doi.org/10.1007/978-3-319-48628-4 8

[42] R. Zhang, C. Deutschbein, P. Huang, and C. Sturton, “End-to-end
automated exploit generation for validating the security of processor
designs,” in Proceedings of the International Symposium on Microar-
chitecture (MICRO). IEEE/ACM, 2018.

[43] R. Brotzman, S. Liu, D. Zhang, G. Tan, and M. Kandemir, “CaSym:
Cache aware symbolic execution for side channel detection and mitiga-
tion,” in IEEE Symposium on Security and Privacy (SP), 2019.

[44] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and
M. Emmi, “Verifying constant-time implementations,” in 25th USENIX
Security Symposium (USENIX Security 16). Austin, TX: USENIX
Association, 2016, pp. 53–70. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity16/technical-sessions/presentation/almeida

APPENDIX A: NON-SPECULATIVE SEMANTICS

Given a program p, we formalize its non-speculative seman-
tics using the relation −→⊆ Conf ×Obs × Conf in Figure 9.

APPENDIX B: TRACE PROJECTIONS

Here, we formalize the speculative projection τ�se and the
non-speculative projection τ�nse.

Non-speculative projection. Given a trace τ , its non-
speculative projection contains only the observations that are
produced by committed transactions; in other words, rolled-
back transactions are removed in the projection. Formally,
τ�nse is defined as follows: ε�nse = ε, (o · τ)�nse = o · τ�nse
if o is load se , store se , pc n, or symPc(se), (start i ·
τ)�nse = τ�nse if rollback i is not in τ , (commit i·τ)�nse =
τ�nse, (start i · τ · rollback i · τ ′)�nse = τ ′�nse, and
τ�nse = ε otherwise.

Speculative projection. Given a speculative trace τ , its spec-
ulative projection contains only the observations produced
by rolled-back transactions. Formally, τ�se is defined as:
ε�se = ε, (o · τ)�se = τ�se if o is load se , store se , pc n,
or symPc(se), (start i · τ)�se = τ�se if rollback i is not
in τ , (commit i · τ)�se = τ�se, (start i · τ · rollback i ·
τ ′)�se = filter(τ) · τ ′�nse, and τ�nse = ε otherwise, where
filter(τ) denotes the trace obtained by dropping all extended
observations start id , commit id , and rollback id from τ .

APPENDIX C: ALWAYS-MISPREDICT SEMANTICS

We describe the execution of µASM programs under the
always-mispredict oracle with speculative window w as a
ternary evaluation relation 〈ctr , σ, s〉 τ

==⇒ 〈ctr ′, σ′, s′〉 map-
ping a configuration 〈ctr , σ, s〉 to a configuration 〈ctr ′, σ′,
s′〉 while producing the observations τ . Differently from the
speculative semantics, the always-mispredict semantics does
not require a branching history h, since its prediction only
depends on the branch outcome. The rules formalizing the
always-mispredict semantics are given in Figure 10.

AM-NOBRANCH captures the behavior of non-branching
instructions. Similar to its counterpart SE-NOBRANCH, the
rule acts as a simple wrapper for the standard semantics.
The difference lies in the the auxiliary predicate enabled ′(s)
and the auxiliary functions decr ′(s), and zeroes ′(s), which
apply their non-primed counterpart only to the last trans-
action in the speculative state. E.g., enabled ′(s · 〈id , w, `,
σ〉) = enabled(〈id , w, `, σ〉). This ensures that upon rolling
back a nested transaction, its enclosing transaction can explore
the other alternative branch to the full depth of the speculative
window (corresponding to the case of a correct prediction).

AM-BRANCH models the behavior of branching instructions
beqz x, `′. The rule mispredicts the outcome of the branch
instruction by setting the program counter to `′ only when the
condition is not satisfied. The length of the new transaction
is set to the minimum of the oracle’s speculative window w
and wndw(s)− 1, where wndw(s) is the remaining length of
the last speculative transaction in s. This ensures that nested
transactions are not explored for longer than permitted by

15

https://xenproject.org
https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/
https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3639
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3639
https: //developer.amd.com/wp- content/resources/90343-B_SotwareTechniquesforManagingSpeculation_WP_7- 18Update_FNL.pdf
https: //developer.amd.com/wp- content/resources/90343-B_SotwareTechniquesforManagingSpeculation_WP_7- 18Update_FNL.pdf
https: //developer.amd.com/wp- content/resources/90343-B_SotwareTechniquesforManagingSpeculation_WP_7- 18Update_FNL.pdf
https://doi.org/10.1145/3297858.3304060
http://arxiv.org/abs/1805.08506
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://github.com/chicago-relaxed-memory/spec-eval
https://github.com/chicago-relaxed-memory/spec-eval
https://eprint.iacr.org/2019/310
https://doi.org/10.1007/978-3-319-48628-4_8
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida

Expression evaluation
JnK(a) = n JxK(a) = a(x) J	eK(a) = 	JeK(a) Je1 ⊗ e2K(a) = Je1K(a)⊗ Je2K(a)

Instruction evaluation
SKIP

p(a(pc)) = skip

〈m,a〉 −→ 〈m,a[pc 7→ a(pc) + 1]〉

BARRIER
p(a(pc)) = spbarr

〈m,a〉 −→ 〈m,a[pc 7→ a(pc) + 1]〉

ASSIGN
p(a(pc)) = x← e x 6= pc

〈m,a〉 −→ 〈m,a[pc 7→ a(pc) + 1, x 7→ JeK(a)]〉

CONDITIONALUPDATE-SAT

p(a(pc)) = x
e′←− e Je′K(a) = 0 x 6= pc

〈m,a〉 −→ 〈m,a[pc 7→ a(pc) + 1, x 7→ JeK(a)]〉

CONDITIONALUPDATE-UNSAT

p(a(pc)) = x
e′←− e Je′K(a) 6= 0 x 6= pc

〈m,a〉 −→ 〈m,a[pc 7→ a(pc) + 1]〉

TERMINATE
p(a(pc)) = ⊥

〈m,a〉 −→ 〈m,a[pc 7→ ⊥]〉

LOAD
p(a(pc)) = load x, e x 6= pc n = JeK(a)

〈m,a〉 load n−−−−→ 〈m,a[pc 7→ a(pc) + 1, x 7→ m(n)]〉

STORE
p(a(pc)) = store x, e n = JeK(a)

〈m,a〉 store n−−−−→ 〈m[n 7→ a(x)], a[pc 7→ a(pc) + 1]〉

BEQZ-SAT
p(a(pc)) = beqz x, ` a(x) = 0

〈m,a〉 pc `−−→ 〈m,a[pc 7→ `]〉

BEQZ-UNSAT
p(a(pc)) = beqz x, ` a(x) 6= 0

〈m,a〉 pc a(pc)+1−−−−−−−→ 〈m,a[pc 7→ a(pc) + 1]〉

JMP
p(a(pc)) = jmp e ` = JeK(a)

〈m,a〉 pc `−−→ 〈m,a[pc 7→ `]〉
Fig. 9. µASM semantics for a program p

their enclosing transactions, whose remaining lengths are not
decremented during the execution of the nested transaction.

AM-ROLLBACK models the rollback of speculative transac-
tions. Different from SE-ROLLBACK, and by design of AM-
NOBRANCH, the rule applies only to the last transaction in s.
Since the semantics always-mispredicts the outcome of branch
instructions, SE-ROLLBACK is always applied, i.e there is no
need for a rule that handles committed transactions.

Similarly to Proposition 1, a program’s non-speculative be-
havior can be recovered from the always-mispredict semantics.

Proposition 3. Let p be a program and w be a speculative
window. Then, LpM = {|p|}w�nse.

Proposition 4 states that the always-mispredict semantics
yields the worst-case leakage.

Proposition 4. Let p be a program, w ∈ N be a speculative
window, and σ, σ′ ∈ InitConf be initial configurations.
{|p|}w(σ) = {|p|}w(σ′) iff JpKO(σ) = JpKO(σ′) for all pre-
diction oracles O with speculative window at most w.

APPENDIX D: SYMBOLIC SEMANTICS

Here, we formalize the symbolic semantics.

Symbolic expressions. Symbolic expressions represent com-
putations over symbolic values. A symbolic expression se is a
concrete value n ∈ Vals , a symbolic value s ∈ SymbVals , an
if-then-else expression ite(se, se ′, se ′′), or the application of
a unary 	 or a binary operator ⊗.

se := n | s | ite(se, se ′, se ′′) | 	se | se ⊗ se ′

Symbolic memories. We model symbolic memories as sym-
bolic arrays using the standard theory of arrays [21]. That is,
we model memory updates as triples of the form write(sm,
se, se ′), which updates the symbolic memory sm by assigning
the symbolic value se ′ to the symbolic location se , and

memory reads as read(sm, se), which denote retrieving the
value assigned to the symbolic expression se .

A symbolic memory sm is either a function mem : N →
SymbVals mapping memory addresses to symbolic values or
a term write(sm, se, se ′), where sm is a symbolic memory
and se, se ′ are symbolic expressions. To account for symbolic
memories, we extend symbolic expressions with terms of the
form read(sm, se), where sm is a symbolic memory and se
is a symbolic expression, representing memory reads.

sm := mem | write(sm, se, se ′)

se := . . . | read(sm, se)

Evaluating symbolic expressions. The value of a symbolic
expression se depends on a valuation µ : SymbVals → Vals
mapping symbolic values to concrete ones:

µ(n) = n if n ∈ Vals

µ(s) = µ(s) if s ∈ SymbVals

µ(ite(se, se ′, se ′′)) = µ(se ′) if µ(se) 6= 0

µ(ite(se, se ′, se ′′)) = µ(se ′′) if µ(se) = 0

µ(se) = 	µ(se)

µ(se ⊗ se ′) = µ(se)⊗ µ(se ′)

µ(mem) = µ ◦mem
µ(write(sm, se, se ′)) = µ(sm)[µ(se) 7→ µ(se ′)]

µ(read(sm, se)) = µ(sm)(µ(se))

An expression se is satisfiable if there is a valuation µ
satisfying it, i.e., µ(se) 6= 0.

Symbolic assignments. A symbolic assignment sa is a func-
tion mapping registers to symbolic expressions sa : Regs →
SymbExprs . Given a symbolic assignment sa and a valuation
µ, µ(sa) denotes the assignment µ ◦ sa. We assume the pro-
gram counter pc to always be concrete, i.e., sa(pc) ∈ Vals .

16

AM-NOBRANCH
p(σ(pc)) 6= beqz x, ` σ

τ−→ σ′ enabled ′(s)

s′ =

{
decr ′(s) if p(σ(pc)) 6= spbarr

zeroes ′(s) otherwise

〈ctr , σ, s〉 τ
==⇒ 〈ctr , σ′, s′〉

AM-BRANCH
p(σ(pc)) = beqz x, `′ enabled ′(s)

` =

{
σ(pc) + 1 if σ(x) = 0

`′ if σ(x) 6= 0
id = ctr

s′ = decr ′(s) · 〈σ, ctr ,min(w,wndw(s)− 1), `〉

〈ctr , σ, s〉 start id·pc `
========⇒ 〈ctr + 1, σ[pc 7→ `], s′〉

AM-ROLLBACK
σ′

τ−→ σ′′

〈ctr , σ, s · 〈σ′, id , 0, `〉〉 rollback id·pc σ′′(pc)
==============⇒ 〈ctr , σ′′, s〉

Fig. 10. Always-mispredict speculative semantics for a program p and speculative window w

Symbolic configurations. A symbolic configuration is a pair
〈sm, sa〉 consisting of a symbolic memory sm and a sym-
bolic assignment sa. We lift speculative states to symbolic
configurations. A symbolic extended configuration is a triple
〈ctr , σ, s〉 where ctr ∈ N is a counter, σ ∈ Conf is a symbolic
configuration, and s is a symbolic speculative state.

Symbolic observations. When symbolically executing a pro-
gram, we may produce observations whose value is sym-
bolic. To account for this, we introduce symbolic observations
of the form load se and store se , which are produced
when symbolically executing load and store commands, and
symPc(se), produced when symbolically evaluating branch-
ing instructions, where se is a symbolic expression. In our
symbolic semantics, we use the observations symPc(se) to
represent the symbolic path condition indicating when a path
is feasible. Given a sequence of symbolic observations τ and
a valuation µ, µ(τ) denotes the trace obtained by evaluating
all symbolic observations different from symPc(se) under µ.

Symbolic semantics. The non-speculative semantics is cap-
tured by the relation −→s in Fig. 11, while the speculative
semantics is captured by the relation ==⇒s in Fig. 12.

Computing symbolic runs and traces. We now fix the
symbolic values. The set SymbVals consists of a symbolic
value xs for each register identifier x and of a symbolic value
memn

s for each memory address n. We also fix the initial
symbolic memory sm0 = λn ∈ N. mn

s and the symbolic
assignment sa0 such that sa0(pc) = 0 and sa0(x) = xs.

The set {|p|}symb
w contains all runs that can be derived using

the symbolic semantics (with speculative window w) starting
from the initial configuration 〈sm0, sa0〉. That is, {|p|}symb

w

contains all triples 〈〈sm0, sa0〉, τ, σ′〉, where τ is a symbolic
trace and σ′ is a final symbolic configuration, corresponding
to symbolic computations 〈0, 〈sm0, sa0〉, ε〉

τ
==⇒

∗
s 〈ctr , σ′, ε〉

where the path condition
∧

symPc(se)∈τ se is satisfiable.
We compute {|p|}symb

w in the standard way. We keep track of
a path constraint PC and we update it whenever the semantics
produces an observation symPc(se). We start the computation
from 〈0, 〈sm0, sa0〉, ε〉 and PC = >. When executing branch
and jump instructions, we explore all branches consistent with
the current PC, and, for each of them, we update PC.

APPENDIX E: CODE FROM CASE STUDIES

A. Example #8

In Example #8, the bounds check of Figure 1 is imple-
mented using a conditional operator:

1 temp &= B[A[y<size?(y+1):0]*512];

When compiling the example without countermeasures or
optimizations, the conditional operator is translated to a branch
instruction (cf. line 4), which is a source of speculation.
Hence, the resulting program contains a speculative leak,
which SPECTECTOR correctly detects.

1 mov size, %rcx
2 mov y, %rax
3 cmp %rcx, %rax
4 jae .L1
5 add $1, %rax
6 jmp .L2
7 .L1:
8 xor %rax, %rax
9 jmp .L2

10 .L2:
11 mov A(%rax), %rax
12 shl $9, %rax
13 mov B(%rax), %rax
14 mov temp, %rcx
15 and %rax, %rcx
16 mov %rcx, temp

In the UNP -O2 mode, the conditional operator is translated
as a conditional move (cf. line 6), for which SPECTECTOR can
prove security.

1 mov size, %rax
2 mov y, %rdx
3 xor %rcx, %rcx
4 cmp %rdx, %rax
5 lea 1(%rdx), %rax
6 cmova %rax, %rcx
7 mov A(%rcx), %rax
8 shl $9, %rax
9 mov B(%rax), %rax

10 and %rax, temp

B. Example #15 in SLH mode

Here, the adversary provides the input via the pointer *y:
1 if (*y < size)
2 temp &= B[A[*y] * 512];

17

Expression evaluation
JnK(a) = n if n ∈ Vals
JseK(a) = se if sa ∈ SymbExprs \Vals
JxK(a) = a(x) if x ∈ Regs
J	eK(a) = apply(, JeK(a)) if JeK(a) ∈ Vals
J	eK(a) = 	JeK(a) if JeK(a) ∈ SymbExprs \Vals
Je1 ⊗ e2K(a) = apply(⊗, Je1K(a), Je2K(a)) if Je1K(a), Je2K(a) ∈ Vals
Je1 ⊗ e2K(a) = Je1K(a)⊗ Je2K(a) if Je1K(a) ∈ SymbExprs \Vals
Je1 ⊗ e2K(a) = Je1K(a)⊗ Je2K(a) if Je2K(a) ∈ SymbExprs \Vals

Instruction evaluation

SKIP
p(sa(pc)) = skip

〈sm, sa〉 −→s 〈sm, sa[pc 7→ sa(pc) + 1]〉

BARRIER
p(sa(pc)) = spbarr

〈sm, sa〉 −→s 〈sm, sa[pc 7→ sa(pc) + 1]〉

ASSIGN
p(sa(pc)) = x← e x 6= pc

〈sm, sa〉 −→s 〈sm, sa[pc 7→ sa(pc) + 1, x 7→ JeK(sa)]〉

CONDITIONALUPDATE-CONCR-SAT

p(sa(pc)) = x
e′←− e Je′K(sa) = 0 x 6= pc

〈sm, sa〉 −→s 〈sm, sa[pc 7→ sa(pc) + 1, x 7→ JeK(sa)]〉

CONDITIONALUPDATE-CONCR-UNSAT

p(sa(pc)) = x
e′←− e Je′K(sa) = n n ∈ Vals
n 6= 0 x 6= pc

〈sm, sa〉 −→s 〈sm, sa[pc 7→ sa(pc) + 1]〉

CONDITIONALUPDATE-SYMB

p(sa(pc)) = x
e′←− e Je′K(sa) = se se 6∈ Vals x 6= pc

〈sm, sa〉 −→s 〈sm, sa[pc 7→ sa(pc) + 1, x 7→ ite(se = 0, JeK(sa), sa(x))]〉

LOAD-CONCR
p(sa(pc)) = load x, e x 6= pc

n = JeK(sa) n ∈ Vals

〈sm, sa〉 load n−−−−→s 〈sm, sa[pc 7→ sa(pc) + 1, x 7→ sm(n)]〉

LOAD-SYMB
p(sa(pc)) = load x, e x 6= pc se = JeK(sa)

se 6∈ Vals se ′ = read(sm, se)

〈sm, sa〉 load se−−−−→s 〈sm, sa[pc 7→ sa(pc) + 1, x 7→ se ′]〉

STORE-CONCR
p(sa(pc)) = store x, e n = JeK(sa) n ∈ Vals

〈sm, sa〉 store n−−−−→s 〈sm[n 7→ sa(x)], sa[pc 7→ sa(pc) + 1]〉

STORE-SYMB
p(sa(pc)) = store x, e se = JeK(sa)
se 6∈ Vals sm′ = write(sm, se, sa(x))

〈sm, sa〉 store se−−−−−→s 〈sm′, sa[pc 7→ sa(pc) + 1]〉

BEQZ-CONCR-SAT
p(sa(pc)) = beqz x, ` sa(x) = 0 sa(x) ∈ Vals

〈sm, sa〉 symPc(>)·pc `−−−−−−−−→s 〈sm, sa[pc 7→ `]〉

BEQZ-SYMB-SAT
p(sa(pc)) = beqz x, ` sa(x) 6∈ Vals

〈sm, sa〉 symPc(sa(x)=0)·pc `−−−−−−−−−−−−→s 〈sm, sa[pc 7→ `]〉

BEQZ-CONCR-UNSAT
p(sa(pc)) = beqz x, ` sa(x) 6= 0 sa(x) ∈ Vals

〈sm, sa〉 symPc(>)·pc sa(pc)+1−−−−−−−−−−−−−−→s 〈sm, sa[pc 7→ sa(pc) + 1]〉

BEQZ-SYMB-2
p(sa(pc)) = beqz x, ` sa(x) 6∈ Vals

〈sm, sa〉 symPc(sa(x)6=0)·pc sa(pc)+1−−−−−−−−−−−−−−−−−−→s 〈sm, sa[pc 7→ sa(pc) + 1]〉

JMP-CONCR
p(sa(pc)) = jmp e ` = JeK(sa) ` ∈ Vals

〈sm, sa〉 symPc(>)·pc `−−−−−−−−→s 〈sm, sa[pc 7→ `]〉

JMP-SYMB-1
p(sa(pc)) = jmp e JeK(sa) 6∈ Vals ` ∈ {`′ ∈ Vals | p(`′) 6= ⊥}

〈sm, sa〉 symPc(JeK(sa)=`)·pc `−−−−−−−−−−−−−→s 〈sm, sa[pc 7→ `]〉

JMP-SYMB-2
p(sa(pc)) = jmp e JeK(sa) 6∈ Vals se =

∧
`∈{`′∈Vals|p(`′)6=⊥}

JeK(sa) 6= `

〈sm, sa〉 symPc(se)·pc ⊥−−−−−−−−−→s 〈sm, sa[pc 7→ ⊥]〉

TERMINATE
p(sa(pc)) = ⊥

〈sm, sa〉 −→s 〈sm, sa[pc 7→ ⊥]〉

Fig. 11. µASM symbolic non-speculative semantics for a program p

18

SE-NOBRANCH
p(σ(pc)) 6= beqz x, ` σ

τ−→s σ
′ enabled ′(s)

s′ =

{
decr ′(s) if p(σ(pc)) 6= spbarr

zeroes ′(s) otherwise

〈ctr , σ, s〉 τ
==⇒s 〈ctr , σ′, s′〉

SE-BRANCH-SYMB
p(σ(pc)) = beqz x, `′′ enabled ′(s)

σ
symPc(se)·pc `′−−−−−−−−−→s σ

′ ` =

{
σ(pc) + 1 if `′ 6= σ(pc) + 1

`′′ if `′ = σ(pc) + 1

s′ = decr ′(s) · 〈σ, ctr ,min(w,wndw(s)− 1), `〉 id = ctr

〈ctr , σ, s〉 symPc(se)·start id·pc `
==============⇒s 〈ctr + 1, σ[pc 7→ `], s′〉

SE-ROLLBACK
σ′

τ−→s σ
′′

〈ctr , σ, s · 〈σ′, id , 0, `〉〉 rollback id·pc σ′′(pc)
==============⇒s 〈ctr , σ′′, s〉

Fig. 12. Symbolic always-mispredict speculative semantics for a program p and speculative window w

In the -O0 SLH mode, CLANG hardens the address used for
performing the memory access A[*y] in lines 8–12, but not the
resulting value, which is stored in the register %cx. However,
the value stored in %cx is used to perform a second memory
access at line 14. An adversary can exploit the second memory
access to speculatively leak the content of A[0xFF...FF]. In
our experiments, SPECTECTOR correctly detected such leak.

1 mov $0, %rax
2 mov y, %rdx
3 mov (%rdx), %rsi
4 mov size, %rdx
5 cmp %rdx, %rsi
6 jae END
7 cmovae $-1, %rax
8 mov y, %rcx
9 mov (%rcx), %rcx

10 mov %rax, %rdx
11 or %rcx, %rdx
12 mov A(%rdx), %rcx
13 shl $9, %rcx
14 mov B(%rcx), %rcx
15 mov temp, %rdx
16 and %rcx, %rdx
17 mov %rdx, temp

In contrast, when Example #15 is compiled with the -O2
flag, CLANG correctly hardens A[*y]’s result (cf. line 10).
This prevents information from flowing into the microarchitec-
tural state during speculative execution. Indeed, SPECTECTOR
proves that the program satisfies speculative non-interference.

1 mov $0, %rax
2 mov y, %rdx
3 mov (%rdx), %rdx
4 mov size, %rsi
5 cmp %rsi, %rdx
6 jae END
7 cmovae $-1, %rax
8 mov A(%rdx), %rcx
9 shl $9, %rcx

10 or %rax, %rcx
11 mov B(%rcx), %rcx
12 or %rax, %rcx
13 and %rcx, temp

19

	Introduction
	Illustrative Example
	Language and Semantics
	Syntax
	Non-speculative Semantics

	Speculative semantics
	Modeling Speculation
	Prediction Oracles
	Speculative Transactions
	Evaluation Relation
	Speculative and Non-speculative Semantics

	Speculative Non-interference
	Security Policies
	Speculative Non-interference
	Always-mispredict Speculative Semantics

	Detecting speculative information flows
	Symbolically Executing Asm Programs
	Checking speculative non-interference

	Tool Implementation
	Case study: Compiler countermeasures
	Experimental Setup
	Experimental Results
	Performance

	Case study: Xen Project Hypervisor
	Challenges for Scaling-up
	Evaluating Scalability
	Experimental Results

	Discussion
	Exploitability
	Scope of Model

	Related work
	Conclusions
	References
	Appendix A: Non-speculative semantics
	Appendix B: Trace projections
	Appendix C: Always-mispredict Semantics
	Appendix D: Symbolic semantics
	Appendix E: Code from Case Studies
	Example #8
	Example #15 in Slh mode

