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Abstract. Secure computation has the potential to completely reshape the cyber-
secruity landscape, but this will happen only if we can make it practical. Despite
significant improvements recently, secure computation is still orders of magni-
tude slower than computation in the clear. Even with the latest technology, run-
ning the killer apps, which are often data intensive, in secure computation is still
a mission impossible. In this paper, I present two approaches that could lead to
practical data intensive secure computation. The first approach is by designing
data structures. Traditionally, data structures have been widely used in computer
science to improve performance of computation. However, in secure computa-
tion they have been largely overlooked in the past. I will show that data structures
could be effective performance boosters in secure computation. Another approach
is by using fully homomorphic encryption (FHE). A common belief is that FHE
is too inefficient to have any practical applications for the time being. Contrary to
this common belief, I will show that in some cases FHE can actually lead to very
efficient secure computation protocols. This is due to the high degree of inter-
nal parallelism in recent FHE schemes. The two approaches are explained with
Private Set Intersection (PSI) as an example. I will also show the performance
figures measured from prototype implementations.

1 Introduction

In the past a few years, we have seen a dramatic increase in the scale and financial
damage caused by cyber attacks. Data security is now of paramount importance for
most organizations. Compounding the problem, changes in computing — particularly
the booming of Cloud computing and collaborative data analysis — has added another
layer of complexity to the security landscape. Traditionally, an organization can lock
their data in secure storage and process it within an in-house facility operated by trusted
staff. But increasingly, data processing is moving out of the trusted zone and security
mechanisms that used to be effective do not work any more. A promising solution to
solve this problem is secure computation. Secure computation allows for computation
of arbitrary functions directly on encrypted data and hides all information about the data
against untrusted parties, even if the untrusted parties are involved in the computation.
It is a transformative technology that will completely change the game. One prediction
says that within 15 years, the secure computation sector will be bigger than the anti-
malware sector which currently has the largest share of the IT security industry [1].



Secure computation research started in the 1980s. Yao first defined the concept of
secure computation in his seminal paper [2]. The goal of secure computation is to allow
multiple parties to jointly compute a function over their inputs, and keeping these inputs
private. There are several different approaches for achieving this goal. One prominent
secure computation technique is Yao’s garbled circuits protocol [3]. In this protocol, a
function converted into an encrypted Boolean circuit and the parties evaluate the circuit
with encrypted inputs. Another Boolean circuit based technique is the GMW proto-
col by Goldreich et al. [4]. Also Cramer et al. showed that secure computation can be
done with arithmetic circuits and secret shared inputs [5]. Gordon et al. proposed a tech-
nique for secure computation in a von Neumann-style Random Access Machine (RAM)
model by using an Oblivious RAM [6]. Recently, the development of Fully Homomor-
phic Encryption (FHE) provided a new direction in secure computation [7]. Apart from
those generic secure computation techniques, there are also many special-purpose pro-
tocols that are designed for specific secure computation problems, e.g. private set inter-
section [8] and oblivious polynomial evaluation [9]. Secure computation is an obvious
solution for a class of problems in which parties must provide input to a computation,
but no party trusts any other party with that data. Examples include e-voting, auctions,
information retrieval, data sharing, data mining and many more. Despite the fact that it
has so many potential applications, secure computation has remained purely theoretical
for many years. Efficiency is one of the main reasons.

Recently there have been a few efforts aiming to turn secure computation from
a theorists’ toy to a real world tool. Significant progress has been made in the last five
years to improve the efficiency of secure computation by algorithmic advancements. For
example, various protocols designed to efficiently compute a specific function securely;
improvements on garbled circuits including free XOR [10], efficient OT extension [11]
and fast cut-and-choose [12]; more efficient share-based multiparty secure computation
protocols including Sharemind [13] and SPDZ [14]; more efficient RAM program based
secure computation [15]; optimizations for FHE including SIMD operations [16] and
polylog FHE [16]. The improvement is significant. Taking garbled circuit based secure
computation as an example, after integrating many optimizations to date, the FastGC
framework [17] is 10* times faster than FairPlay [18] which was implemented in 2004.

That said, secure computation is still far from being practical. Despite all the im-
provements, secure computation is still tens of thousand to billions times slower than
computation in the clear. The overhead might be acceptable if the data to be processed
were small, but can be prohibitive when the data is big. Imagine we have a secure com-
putation mechanism which slows down the computation by 10,000 times, then what we
can do in the clear in 10 seconds now needs more than 1 day to complete, and what
we can do in the clear in 10 hours now needs more than 10 years! Paradoxically, when
talking about the killer apps of secure computation, people often use examples such as
companies having so much data that they do not have resources to process and have to
process it in untrusted clouds, or two mutually untrusted parties have to mine their mas-
sive datasets together. Although the examples show the necessity of secure computation,
current secure computation technology is incapable of handling such data-intensive ap-
plications. This becomes a major impediment to widespread use of secure computation.



How to make data intensive secure computation practical? In the rest of this paper,
I will show two new approaches that have great potential: by designing data structures
and by using newly developed FHE techniques. I will present the ideas using Private
Set Intersection (PSI) protocols as an example.

2 Private Set Intersection: Background

A PSI protocol is a two-party protocol in which a client and a server want to jointly
compute the intersection of their private input sets in a manner that at the end the client
learns the intersection and the server learns nothing. PSI protocols have many practical
applications. For example, PSI has been proposed as a building block in applications
such as privacy preserving data mining [19,20], human genome research [21], home-
land security [22], Botnet detection [23], social networks [24], location sharing [25] and
cheater detection in online games [26]. Many applications requires massive datasets as
inputs. The first PSI protocol was proposed by Freedman et al. [8]. There are several
approaches for PSI protocols. Some of them are based on oblivious polynomial evalua-
tion [8, 27, 28], some are based on oblivious pseudorandom function (OPRF) evaluation
[29,30,22,31], and some are based on generic garbled circuits [32].

3 Data Structural Approach

In computer science, traditionally an effective approach to improve the efficiency of
data intensive computation is by using an appropriate data structure, but in secure com-
putation, the power of data structures has been largely overlooked. The reason for that
is probably because in the past secure computation research focused on showing feasi-
bility and the use cases were limited to those with small data input. But when we are
moving towards real world applications in which data plays the central role and drives
the computation, data structural design will become an indispensable part of secure
computation. A good example of this data structural approach is the garbled Bloom
Filter and the PSI protocol based on this data structure [33].

3.1 From Bloom Filter to Garbled Bloom Filter

A Bloom filter [34] is a compact data structure for probabilistic set membership testing.
It is an array of m bits that can represent a set .S of at most n elements. A Bloom filter
comes with a set of k independent uniform hash functions H = {ho, ..., hx_1 } that
each h; maps elements to index numbers over the range [0, m — 1] uniformly. Let us use
BFg to denote a Bloom filter that encodes the set S, and use BFg[i] to denote the bit
at index ¢ in B Fg. Initially, all bits in the array are set to 0. To insert an element x € S
into the filter, the element is hashed using the %k hash functions to get k index numbers.
The bits at all these indexes in the bit array are set to 1, i.e. set BFs[h;(x)] = 1 for
0 < i < k — 1. To check if an item y is in S, y is hashed by the k& hash functions, and
all locations y hashes to are checked. If any of the bits at the locations is 0 , y is not in
S, otherwise y is probably in S.
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Fig. 1: The Naive PSI protocol Based on Bloom Filters

A standard Bloom filter trick is that if there are two Bloom filters, each encodes
a set S7 and S5, and both are of the same size and built using the same set of hash
functions, we can obtain another Bloom filter BFs, g, by bit-wisely ANDing BFg,
and BFg,. The resulting Bloom filter BFg,ns, encodes the set intersection S7 N Sa.
It seems that we can obtain an efficient PSI protocol (Fig. 1) immediately from this
trick. However, this naive protocol is not secure. The reason is that due to collisions, the
resulting Bloom filter B Fong usually contains more 1 bits than the Bloom filter built
from scratch using C' N S. This means BFng leaks information about elements in S.

To avoid information leakage, we designed the garbled Bloom filters (GBF). A gar-
bled Bloom filter is much like a Bloom filter: it is an array of size m with k hash func-
tions. The difference is that at each position in the array, it holds a A-bit string rather than
a bit, where ) is the secure parameter. The bit string is either a share of a set element or
a random string. To encode a set .S, each element s € S is inserted as follows: initially
all positions in the GBF is set to NULL. We then hash the element using the k£ hash
functions. For 0 < j < k — 2, If GBF[h;(s)] = NULL then we put an A\-bit random
string at this position, and then we set GBF[h;_1(s)] = s ® (@5;3 GBF[h;j(s)]).
We can see that each of the k position GBF[h;(s)] holds a share of s. The shares has
the property that if all k£ shares are present, we can reconstruct the element from the
shares s = EB?;& GBFhj(s)]); however any subset that has less than k shares reveals
no information about the element. After inserting all elements in s to the GBF, we put
a A-bit random string at each position that is still NULL. To query an element y, y is

hashed by the % hash functions and we test @I;;é GBF[h;(y)] L y. If the test is true,
then y is in the set .S.

A secure PSI protocol can then be built using a Bloom filter and a garbled Bloom
filter (Fig. 2). In the protocol, the client encodes its set into a Bloom filter BF, the
server encodes its set into a garbled Bloom filter G B Fs. The server also generates an
array contains m random bit strings of length A. For each position 0 < i < m — 1,
the client and server run a (2,1)-Oblivious Transfer protocol [35] such that if the bit
BFYi] = 1, the client receives GBFi], if the bit BF[i] = 0, the client receives the ith
string from the random string array. At the end of the protocol, the result is a garbled
Bloom filter GB Fng that encodes the intersection.

By using a garbled Bloom filter, we fix the information leakage problem. In the
intersection garbled Bloom filter GBFng, there might still exist residue shares that
belong to elements not in the intersection. However, if an element s is not in C' N S,
then the probability of all its shares remain in GBFgng is negligible. Then by the
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Fig.2: The Oblivious Bloom Intersection Protocol

property of the shares, the residue shares of s in G BFng leak no information about s.
For example, in Fig 3, s% in GBFcng is a share of x9 which is not in the intersection.
The element x5 has 3 shares and one of the share s3 is not transferred to the client in the
protocol. Then the other two shares remain in G B Fcng look uniformly random and do
not leak information about x5.

* Si * | * S% * * | * 8[1‘3 * | x| x GBF{Il}
* S% * | % S% * Sé * S? * | x| GBFC(‘]S
“Ast| = | *|s2| * [sk| * | s3] * |s2| * | GBFs
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Fig. 3: Indistinguishability of the Intersection Garbled Bloom Filter

3.2 Performance Comparison

The PSI protocol obtained from garbled Bloom filter has many advantages: it has lin-
ear complexity, is easy to parallelize, relies mainly on symmetric key operations and
it is much efficient than previous best protocols. We compared the performance with
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Fig. 4: Performance Comparison

the previous best protocols. One protocol is by Huang et al based the garbled circuits
approach [32], and another is by De Cristofaro et al based on ORPF evaluation[22]. Fig
4 shows the performance improvement at 128-bit security. The numbers displayed in
the figure are ratios of running time (previous protocol to our protocol).

4 Fully Homomorphic Encryption Approach

FHE is a newly established area in cryptography. An FHE scheme allows (any) com-
putation to be carried out on encrypted data directly. FHE is a powerful tool and at
the same time is notorious for its inefficiency. It is a common belief that FHE is too
inefficient to be practical yet. However, this common belief is not always true. In this
section I will show how to build a more efficient PSI protocol using fully homomorphic
encryption.

4.1 The BGV FHE Scheme

In 2009, Gentry [7] developed the first FHE scheme. Following the breakthrough,
several FHE schemes based on different hardness assumptions have been proposed,
e.g. [36,37].

The RLWE variant of BGV [37] is among the most efficient FHE schemes; it op-
erates in certain polynomial rings. Namely, let @,,,(z) be the m-th cyclotomic poly-
nomial with degree ¢(m), then we have a polynomial ring A = Z[z]/®,,(z), i.e. the
set of integer polynomials of degree up to ¢(m) — 1. Here ¢(-) is the Euler’s totient
function. The ciphertext space of the BGV encryption scheme consists of polynomials
over A, = A/qA, i.e. elements in A reduced modulo ¢ where ¢ is an odd integer!.
The plaintext space is usually the ring A, = A/pA, i.e. polynomials of degree up to
@(m) — 1 with coefficients in Z,, for some prime number p < q.

There are three basic algorithms in the BGV scheme:

"In the BGV encryption scheme, there are actually a chain of moduli go < ¢1 < --- < ¢r,
defined for modulus switching. But for simplicity we just use g throughout the paper.



— G(p, A\, L): The key generation algorithm. Given p, A and L such that p is the prime
number that defines the plaintext space, A is the security parameter and L is the
depth of the arithmetic circuit to be evaluated, generate a secret key, the corre-
sponding public key and a set of public parameters.

— E,,(m): The encryption algorithm. Given a public key pk, encrypt an element
me Ap.

— Dgi(c): The decryption algorithm. Given the secret key sk, decrypt a ciphertext c.

Being a fully homomorphic encryption scheme, the BGV scheme supports both
multiplication and addition operations over ciphertexts. Let us denote homomorphic
addition by H and homomorphic multiplication by X. We can homomorphically add
or multiply two ciphertexts together. We can also homomorphically add or multiply a
ciphertext with a plaintext.

4.2 Polynomial Representation of a Set

Freedman et al [8] first proposed to use a polynomial for representing a set in PSI. Given
a set .S, we can map each element in S to an element in a sufficiently large field R.
Then S can be represented as a polynomial (in a ring R[z]). The polynomial is defined
as p(x) = [[,,cg(x — si). The polynomial p(x) has the property that every element
s; € Sis aroot of p(x). For two polynomials p, and p, that represent the two sets Sy
and S respectively, the the greatest common divisor of the two polynomials gcd(p,, p.)
represents the set intersection S1M.S2. Based on this, we can design protocols to securely
obtain the set intersection. Without loss of generality, let both p, and p, to be of degree
4 and let , and 7, to be two uniformly random degree § polynomials in R[x], Kissner
and Song proved in [27] that 7, - p, + 7, - po = - ged(py, p2) such that y is a uniformly
random polynomial. This means if p, and p, are polynomials representing sets S7 and
S, then the polynomial ~, - p; + 7, - p, contains only information about S7 N S and no
information about other elements in S or S3. This forms the basis of their PSI protocol
in which a party obtains v, - p, +, - p, to find the set intersection but learns nothing more
about elements in the other party’s set. However, Kissner’s protocol is not practical due
to the facts that it uses expensive Paillier encryption and the computational complexity
is quadratic in the size of the sets.

4.3 The Private Set Intersection Protocol Based on FHE

We parallelize computation by utilizing the native plaintext space of BGV to load mul-
tiple data items. The native plaintext space of BGV is a polynomial ring, therefore a set
can be easily represented in the plaintext space. To simplify the description, I will start
from the case where |C| = |S| = @ — 1. In the protocol, the client has a BGV key
pair (pk, sk) and a set C. The server has a set S. The two parties encode their sets into
pe and pg that are polynomials in A,. The protocol is shown in Figure 5:

1. The client encrypts its set polynomial p. and sends the ciphertext c to the server.
2. The server chooses random polynomial . and ~ in A, each of degree @ -1
then the server computes homomorphically ¢’ = (¢ K ) B (ps - vs). The server

b}
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Fig. 5: The PSI protocol

sends ¢’ to the client, who then decrypts the ciphertext and obtains the polynomial
Pc Yot PsVs-

3. The client then evaluates the polynomial obtained in the last step with elements in C.
For each element, if it is a root then it is in the intersection. The client then outputs
the intersection C' N S.

To compute the intersection of sets whose sizes are larger than ¢( ) — 1, we can
use bucketization. Bucketization is a process to partition a large set into dls]oint subsets
(buckets). The two parties use a public uniform hash function H : {1,0}* — [1,k]
to map their set elements into k& buckets. This is done by hashing each element to get
a bucket number and putting the element into the bucket with this number. If the size
of the set to be bucketized is n, then each bucket will have around n/k elements. The
two parties can choose k so that with a high probability, each bucket has no more than
M — 1 elements. To prevent information leakage through bucket size, the two parties

pad each bucket with random elements so that all buckets have the same size d)(z m 1,
They then run the PSI protocol k times. In the ith run, each party uses its ith bucket as
the input to the PSI protocol. The union of outputs is the intersection of the two sets.

4.4 Efficiency

The protocol is very efficient. This is due to the high degree of parallelism provided
by the BGV scheme. In the protocol, we process a set of @ — 1 elements in one
go, rather than processing them individually. Therefore the total computational cost is
amortized by Mm)
small.

— 1. The parameter ¢(m) is large, therefore the amortized cost is

SI0[5IZ[9I& [ 516 [ 518 [ 520
GBF-PSI |0.67(1.99(8.21(32.41{130.42|530.36
FHE-PSI |0.11]0.14/0.45| 1.55| 5.91 |23.48

Improvement| 6X |14X|18X| 21X | 22X | 23X

* Running Time in seconds

Table 1: Performance of PSI Protocols




Table 1 shows the performance comparison of the GBF based and the FHE based
PSI protocols. In the experiment, security parameter is set to 128-bit. The parameters
for the BGV keys were |p| = 32, L = 1,|q| = 124, $(m) = 5002. The set size varied
from 210 (1024) to 22° (1,048,576). As we can see, the FHE based PSI protocol is much
faster. For two 1 million elements input sets, the running time is less than half a minute,
which is only 1 - 2 orders of magnitude slower than the computation in the clear.

5 Conclusion

In this paper, I presented two approaches that could lead to practical data intensive
secure computation. One approach is by designing better data structures. The rationale
behind this approach is that when the data to be processed is big, arranging it into certain
data structures may make it more amendable for computation. Another approach is by
using fully homomorphic encryption. Recent fully homomorphic encryption schemes
provide us facilities to parallelize computation, which can greatly reduce the overall
cost if the computation task is data parallel. The two approaches can be combined. For
example, when using bucketization in the PSI protocol, the list of buckets is essentially
a hash table data structure. The research along these two lines is still in an early stage,
but further investigation will lead to fruitful results.
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