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Abstract— As data marketplaces are becoming ubiquitous,
it is also becoming clear that data streams generated from
Internet of Things (IoT) devices hold value for potential third
party consumers. We envision a marketplace for IoT data
streams that can unlock such potential value in a scalable
way, by enabling any pairs of data providers and consumers
to engage in data exchange transactions without any prior
assumption of mutual trust. We present a marketplace model
and architecture to support trading of streaming data, from
the advertising of data assets to the stipulation of legally
binding trading agreements, to their fulfilment and payment
settlement. We show that by using blockchain technology and
Smart Contracts in particular, we can offer participants a trade-
off between the cost of transactional data exchange, and the
risk of data loss when trading with untrusted third parties.
We experimentally assess such trade-offs on a testbed using
Ethereum Smart Contracts.

I. INTRODUCTION

Data streams that originate from Internet of Things (IoT)

devices are increasingly viewed as tradeable assets with value

not only to the device owners, but also with resell value,

i.e., to third party buyers. New forms of dedicated data

marketplaces are emerging to help unlock such value [1],

but these are comparatively less mature than more traditional

data marketplaces for static data, cf. eg [2], [3], [4] for

surveys on these. Unlike static data, IoT data streams tend

to lose their value if they are not consumed in near-real time,

and data transmission and delivery may be unreliable. On the

other hand, data exchange architectures based on message

brokers systems such as MQTT allow a single data stream

to be delivered to multiple parties, potentially enabling large-

scale open marketplaces where data owners may resell their

streams in real-time multiple times. While the IoT network

and message-passing infrastructure can support a scalable

marketplace, this inevitably leads to issues of mutual trust

amongst participants, especially when those have no prior

reputation within the marketplace. Also, the short-lived na-

ture of streams requires efficient, automated mechanisms to

create legally binding trade agreements, including payment

arrangements, and to enforce such agreements throughout

data transmission.

New generation blockchain technology that supports

Smart Contracts is a natural choice to address all of these

requirements, as Smart Contracts can act as a trusted in-

termediary within an untrusted community of marketplace
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participants, by adding transactionality to each of their inter-

actions: before, during, and after data exchange. An example

of such approach is Datum [5] (datum.org), based on

the Ethereum network, which however is designed to let

anyone store structured data on the blockchain. In contrast,

we envision a decentralised marketplace for real-time IoT

data, i.e., without any storage, that is scalable in the number

of participants and does not require prior trust amongst them,

while at the same time providing simple guarantees regarding

data and monetary loss in case of participant’s fraud. The

marketplace should be able to flexibly accept new partici-

pants (either individuals, institutions or business organiza-

tions), be resilient to leaving participants, and accommodate

unanticipated business relationships amongst those partici-

pants. Thus, anyone who controls IoT devices and generates

IoT data streams should be able to monetize it and use it as

tradeable assets in the marketplace. Additionally, in contrast

to existing proposals, e.g. [6], we aim to define a marketplace

that does not require a centralized trust component, such as a

brokerage platform with trusted ownership, but relies instead

on collective verification mechanisms, such as blockchain, to

enforce its own governance rules.

Our approach involves using Ethereum Smart Contracts

to support each phase of the interaction amongst a data

provider and a consumer. It separates the data exchange

interaction, which occurs on the IoT network and core

cloud network, from transaction-based interactions aimed

at enforcing non-repudiability of participant’s actions and

resolving their disputes, which occurs on the blockchain

network.

A. Contributions

This work follows on from our earlier proposal for a

IoT data marketplace, where we suggested that Ethereum

is capable of supporting a fully decentralised marketplace

without any assumption of mutual trust [7]. The approach

suggested in [7] is based on the idea that each participant

would periodically report to a Smart Contract on the data

sent to and received from other participants, and the Contract

would then be able to use such reports to settle any disputes.

In contrast, here we begin by proposing a different and

much simpler protocol involving data providers, consumers,

and a Smart Contract, based on the notion of periodic

checkpoints during data exchange, supported by blockchain

transactions to ensure limited scope for fraud on either side.

We then use our own prototype implementation of the

marketplace model on a private Ethereum network, to exper-

imentally evaluate the cost/risk trade-offs that are available
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by setting checkpoint frequency, also taking advantage of

potential external mechanisms for establishing trust amongst

participants, if they are available.

B. Related Work

The monetization of the huge amount of available IoT

data is a challenging task with respect to automation and

scalability. Many marketplaces exist that are designed to deal

with IoT data using either centralized or decentralized archi-

tectures, for instance Microsoft Azure, BDEX (bdex.com),

and Big IoT Marketplace (http://big-iot.eu/), a

European project to enable IoT Ecosystems where IoT data

producers can sell their data. These are all examples of

centralised solutions where a central authority controls and

manages the trades between data provider and data buyer.

A number of blockchain networks have been used

to support IoT data exchange. Some, like Hyper-

ledger (hyperledger.org),Quorum (jpmorgan.com/
global/Quorum) and Corda (marketplace.r3.com)

are private or permissioned. Hyperledger shows low latency

requirements for consensus but does not fully satisfy decen-

tralization goals, while both J.P.Morgan’s Quorum and Corda

target the financial sector using different approach, whereby

IoT data are stored off chain and the consensus function

is designed to ensure agreements among trade participants.

The Ethereum blockchain [8], used as a testbed for this work,

provides a public platform and automated agreements among

interacting parties in the form of smart contracts and supports

the development of DApps, making it one of the blockchin-

based platforms of choice.

Some decentralized IoT marketplaces also exist. ID-

MoB [9] is designed to trade non real-time and not critical

IoT data between IoT data producers and consumers. It runs

on Ethereum and uses Smart Contracts to manage and control

the market and to interact with the Raiden micropayment

network.

The same as Databroker DOA (databrokerdao.com)

which is a peer to peer marketplace for local IoT sensor

data. Based on their white paper [10], the sensor owners

place their data generated by their sensors up for sale. They

believe their marketplace will have be the online retailers for

sensor data.

Suliman A. et al [11] propose a marketplace to monetize

IoT data using smart contract in the blockchain. Similar to

our model, their approach involves sending IoT data through

MQTT broker and using smart contracts to manage and settle

payments. The main difference with our approach is that a

deposit is required before subscription to a topic may take

place. This conflicts with our no-trust assumption, as leaving

a deposit ahead of receiving goods is likely to be viewed as

risky by the buyer.

Huang Z. et al.’s decentralized platform for IoT data

exchange [12] comes close to addressing issues of mistrust

amongst participants, and similar to our approach, data is

exchanged off-chain and made available to buyers once the

contract is in place. However, the data to be purchased

is stored, making this solution unsuitable for streaming.

Furthermore, no guarantees are offered to ensure that the

data is genuine, so advance payment i.e. to get access to

data download is risky.

Another effort has emerged in IoT marketplace in the area

of data source verification. Datapace (datapace.io) is a

distributed and decentralised system based on blockchain

with technical and policy-based data verification. It is a

marketplace for IoT sensor data where the IoT sensors are

connected the IoT platform Mainflux which is integrated

into Datapace system part called Datapace IoT platform.

The difference between this model and our model that this

model provide data source verification by their own sensing

equipments. While our model assume data source producers’

honesty and no special verification hardware.

Similarly, AnyLedger (anyledger.io) is an embedded

wallet for the IoT devices which connect the physical world

to the blockchain. Each IoT device will be able to execute

transaction to the blockchain. It is the first IoT-Blockchain

application enablement platform starting from hardware de-

vice and the embedded software and finally end with the

remote device management and blockchain nodes. Based

on their white paper [13], AnyLedger blockchain solutions

allow seamless deployment of tamper proof sensors, which is

remotely controlled. It uses IPFS technology as decentralised

storage end point for secure storage for data monetization.

Finally, a recently proposed alternative blockchain

provider, IOTA (iota.org), announced their support for

decentralized marketplaces at the end of 2017, with the goal

of “enabling a truly decentralized data marketplace to open

up the data silos that currently keep data limited to the

control of a few entities”. One distinguishing feature of this

solution is that, unlike others cited above, here the IoT data

is actually stored in the blockchain (or IOTA’s version of it,

called the Tangle [14]. To the best of our knowledge this

solution has not yet been released.

As opposed to IOTA, Streamer (streamr.com) felt that

there is no need to develop a completely new blockchain

and instead, saving resources by using the existing Ethereum

blockchain. It is a real time data streams exchange platform.

It creates an ecosystem for data producers to sell their data to

consumers. As explained in their white paper, a data producer

creates a data streams for their data and push it to brokers

nodes which is responsible to deliver it to its data consumer

who purchase the desired data by the interaction with the

Ethereum smart contract for management, data permission

and payment.

Trust and reputation management is not directly addressed

in this paper, however a trust management model should

also be established as part of the marketplace. Existing trust

frameworks can be used on top of our infrastructure. Yan et

al. [15], for instance, explore the notion of trust across the

IoT platform layers (physical sensing, network, and appli-

cation layers), with the focus on a wide range of properties

from security to goodness, strength, reliability, availability,

ability of data. However, their survey largely overlooks issues

of trust amongst participants in a data marketplace, i.e., in the

context of data exchange transactions. More directly useful
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Fig. 1: Centralized Brokered IoT Data Marketplace Archi-

tecture

in our setting, is Roman and Gatti’s study of trust in data

marketplaces [16], based on credit scoring, where a direct

connection is made to the use of blockchain technology with

data trading.

II. MARKETPLACE MODEL

A. Brokered IoT Data Exchange

We assume, following standard IoT data streaming prac-

tices, that the exchange of streaming data between any pair

of participants, i.e., a data Provider P and a Consumer

C, is mediated by some transaction-agnostic broker infras-

tructure, such as the one shown in Fig. 1. In this data

transfer model, the stream is broken down into discrete

message batches. Providers tag their messages with topics
that uniquely identify that Provider’s stream. A Consumer is

allowed to subscribe to a topic subject to the conditions set

in a Trade Agreement, as described below.

In our previous work [7] we assumed initially a network

architecture where the broker is a trusted component that

can be relied upon to generate truthful data exchange re-

ports, which in turn can be used to settle disputes between

producers and consumers (the “cubes” in Fig. 1). In such a

scenario, the Smart Contract is simply in charge of settlement

given the reports. In the same paper, we then proposed a

more ambitious trust-less model where the task of generating

reports is left to each participant. In this case the Smart

Contract has a difficult task because the report themselves

cannot be trusted, and disputes cannot be settled by ascribing

certain responsibility to either participant.

B. Model Elements

In this work we work around these difficulties, as we

do not require the broker or the participants to generate

any report at all. Instead, the broker is simply a network

element. The goal of the marketplace is twofold. Firstly, to

enable trading of streaming data through the broker while

offering guarantees, i.e., regarding the max loss incurred by

either of them in case of adversarial behaviour. And secondly,

to resolve disputes about the amount of data exchanged.

To achieve this, we augment the data exchange with the

exchange of data receipts between C and P , which occurs

at regular intervals and throughout the duration of the data

stream. Such receipts are exchanged as part of transactions

that are mediated by a smart contract, denoted SC , on the

blockchain. The length of the exchange interval, denoted as

Batch Size or BS , is set at the time of trading agreement

negotiation. As we will see, this parameter enables P to

control the level of risk they are prepared to tolerate given

limited trust in C.

The model consists of the following elements:

1) The description of data offered by a Producer;

2) A trade agreement, which includes details of the data

to be exchanged and the exchange protocol, the corre-

sponding market value, and additional parameters such

as BS mentioned above;

3) A protocol for the exchange of data receipts, which

includes both parties in addition to a neutral smart

contract;

4) A reputation model, which allows a reputation score

to be assigned to every pair P and C of participants

at the end of each transaction they are involved in.

Participants may use reputation scores to assess the

risk of entering into an agreement with an untrusted

participant.

In this paper we are concerned primarily with (1-3), which

are described in detail below. Regarding (4), we are going

to assume that a reputation model is in place and that a

up-to-date score is associated with each participant, without

concern for how it works. The design of a customised

reputation model is the object of our ongoing work, and it is

beyond the scope of this paper. Proposals on how to achieve

such a model exist, however, see eg. [17].

The smart contract is responsible for each transaction

associated with (1-3), and specifically for recording (i) the

specification of the data offering, (ii) the trade agreement,

and (iii) each data receipt.

C. Data Offering

The first function of the smart contract is to let data

Providers publish their data offerings on the blockchain,

where they can be then discovered by prospective Con-

sumers. As mentioned, a data stream consists of a sequence

of messages uniquely identified by a provider’s topic, and

a data offering describes the type of stream and specifies

how to subscribe to the stream. Specifically, a data offering

DO = 〈T ,TI ,MR,UP〉 includes, in addition to the topic

T , a specification of (i) the time interval TI during which the

offer is valid, (ii) the expected streaming message rate MR,

eg. in messages/time, (iii) the unit cost UP of each message

in the stream. Note that here we are only concerned with

the overhead cost of trading, while the pricing of the data

itself is not a concern in this work. Interested readers may

find recent proposals on data pricing relevant [18], [19], [20],

[21].
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D. Trade Agreement

The trade agreement is a legally binding contract (we

use the term “agreement” to avoid confusion with smart

contracts) between a producer and a consumer, which defines

the terms of the data exchange. An agreement comes into

force when (i) it is signed by both parties using their

blockchain account keys (Ethereum in our implementation),

and (ii) a smart contract transaction containing the agreement

is committed to the blockchain, at which point it can no

longer be amended. The agreement contains (i) a specific

data offering DO and (ii) a time interval TATI , contained

within the time interval TI , during which the agreement

is in force. For instance, C may want to subscribe to a

portion of an event that is offered over a long period of

time. We denote the total price as TP = UP · TATI and

the estimated total number of messages in the agreement as

ETM = MR ·TATI . The latter is an estimate, rather than a

set value, because the total number of messages that can be

sent within interval TATI is affected by the time required

to carry out the Data Receipt protocol, as explained next.

E. Data Receipt protocol

Once the trade agreement is in force, C is allowed to

subscribe to P ’s stream. Under normal circumstances and

when both parties comply with the agreement, and data

transfer takes place as expected, at the end of the TATI
interval C informs SC that the agreement has been fulfilled,

and SC proceeds to settle the payment as per the agreement.

Suppose however that C fails to inform SC . This may

happen because C actually failed to receive some of the

data in the stream, or because it fraudulently claims not to

have received the data. In our model we assume that SC is

unable to distinguish between these two events, because there

is no requirement for the data broker to keep a (verifiably

truthful) log of its message delivery. In this situation, the only

possible course of action for SC is to believe C’s claim, and

to withhold P ’s payment as a consequence. Thus, assuming

minimal accountability on the broker and no trust amongst

participants, P may become the victim of C’s fraud.

Our approach to mitigate this circumstance is to introduce

checkpoints throughout the duration of data delivery. The

number of messages between two checkpoints is the batch

size BS , which P can configure as part of the agreement

negotiation with C. At each checkpoint, C is expected to

send a data receipt to SC as part of a blockchain transaction,

which acknowledges receipt of one batch of data from P .

When the transaction is confirmed, SC records the receipt

and then informs P . Meanwhile, at the end of each batch P
will have suspended its streaming to C until it receives the

acknowledgment from SC . If P does not receive a message

within a certain time limit, it times out and terminates the

trade agreement in order to cut its losses (in practice, C’s

subscription to the stream is cancelled). Thus, the data ex-

change protocol and data receipt protocols are interconnected

as shown in Fig. 2.

The timeout is a configurable parameter that reflects the

expected time required for a receipt transaction to be con-

firmed on the blockchain. In our experiments we model this

time as a random variable, denoted RT (for Receipt Time),

with an experimentally determined distribution (see Sec. IV).

P may configure the timeout RTmax to be more or less

tolerant of the variance in confirmation times, however longer

RTmax intervals translate into fewer effective messages

delivered to C, as in our model the latency RTmax counts

as part of the total agreement interval, TATI , as explained

next.

F. Cost / risk / time trade-offs

In the model just illustrated, P and C agree on a total

duration for the data streaming, TATI , and a streaming rate,

MR. We have also assumed that P has a way to assess

the risk of data loss when C is not trustworthy, i.e., by

accessing C’s reputation score (the details of which we have

omitted). In this setting, the term data loss refers to the

number of messages that P will have sent to C, that C will

not acknowledge and therefore will not pay for.

In order to minimise its risk, P is motivated to choose

frequent checkpoints, that is, by setting BS to a small value.

This, however, has a cost impact, because checkpoints are

smart contract transactions and as such, in blockchain models

like Ethereum, each of them incurs a fee. There is therefore

a trade-off between the risk of losing data and the cost of

engaging in a long-running trade with many checkpoints

along the way.

Now suppose that (i) the transaction fees for data receipts

are charged to C, and (ii) the latency RT due to each data

receipt transaction is detracted from the total contract time,

TATI .

These conditions potentially create a tension between P
and C, as P is interested in low risk, while C is interested

in low transaction cost and minimal reduction in effective

contract time. Such tension is embodied by C’s reputation

score, Crep ∈ [0, 1]. The ideal win-win scenario occurs when

C is fully trusted, that is, Crep = 1, as in this case there is no

need for checkpoints, i.e., BS = TATI ·MR. When Crep <
1, P will set BS < TATI ·MR, and C will experience higher

cost and fewer total messages delivered within TATI .

Thus, it makes sense to assume that BS is a function of

Crep : BS = f(Crep), where f() is a parameter in the model

and can be chosen to either amplify or reduce the effect of

reputation. In our experiments we have used a logarithmic

function: f(Crep) = ln(Crep+1)/k. The analysis in Sec. IV

shows that by choosing a suitable value for the constant k, we

can control the min number of receipts required. For instance,

setting k = 2.77 has the effect to produce a minimum of 4

data receipts. Many other functions can be chosen to map

the reputation score to the batch size, and thus indirectly to

the number of receipts.

It is straightforward to see that, in this model, P ’s

maximum data loss is simply one batch of messages. As

mentioned, RTmax denotes P ’s estimate of RT , which

will be used as timeout. RTmax is determined from RT ’s

empirical distribution, observed from the network behaviour.

In practice, the expected confirmation time for a Smart
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Fig. 2: Data receipt protocol Interactions between C, P and SC

Contract transaction on Ethereum is largely determined by

the user’s choice of gas price.

While this setting has no direct effect on data loss, it does

affect C’s cost and the actual number of messages received.

Because of our assumption (ii), a large value for RTmax

results in fewer messages sent to C. To make this observation

precise, consider TATI , MR and BS as constants from the

agreement. The time required to send a batch of data is

BT =
BS

MR

and the number of batches sent during TATI is

BN =
TATI

BT + RTmax

because of assumption (ii) above. Equivalently,

BN =
TATI ·MR

BS + RTmax ·MR

Assuming the Ethereum cost model with gas unit price GUP
and gas consumption per transaction GT , the total cost RC
due to the receipt transactions is:

RC = BN ·GT ·GUP

As expected, the cost is inversely proportional to BS .

The actual number of messages ATM delivered at the end

of TATI is

ATM = (TATI − BN · RTmax) ·MR

which decreases as BS and RTmax increase, as expected.

As assumed above (i), cost RC is charged to C. The total

cost associated with a trade agreement also includes one-

off transaction fees, which are split between P and C, as

follows. Firstly, in order to participate in the marketplace

each participant, in either a consumer or producer role,

must register itself with the network. This incurs a one-

off registration cost to execute the smart contract user

registration function. Secondly, the deployment of a trade

offer to the network is also implemented as a smart contract

function, which again incurs a fee. This is a provider-only

cost. Thirdly, a smart contract fee is paid when a new trade

agreement is recorded on the blockchain. This cost is split

between P and C.

G. End of trade

Marketplace practice suggests that C should pay a deposit

at the start of the trade, as a guarantee that sufficient funds

are available to settle the agreement at the end of it. The

funds are held by the SC and used against the final payment,

or they are returned to C in case the trade is terminated

early, i.e., if P times out on a data receipt. Importantly,

however, this deposit cannot be used as leverage to ensure

C’s honesty, because we have assumed that SC cannot

distinguish between fraud and genuine data loss, i.e., in the

brokered network. Thus, deposit details do not add to the

specific model we are proposing, and we are not going to

elaborate further.

Finally, we have overlooked details of the reputation

model, as it is beyond our current scope. It is important

to note, however, that the reputation manager should be

able to update participants’ reputations at the end of each

trade, i.e., based on the outcome of the trade. This is not

straightforward, because a trade terminating early does not

automatically apportion blame to either C or P . The design

of a dynamic reputation model that can deal with this

situation is the focus of our current research.

III. SYSTEM VIEW AND MARKETPLACE INTERACTIONS

The system consists of a data transfer layer, where IoT

data transfer is mediated by brokers, and a blockchain layer,

where all trade-related transactions occur.

In data transfer layer, the actual data is transferring from

producers to consumers off-chain (in broker level) in differ-

ent batch sizes as stated in the trade agreement in blockchain

layer.

The blockchain layer consists of a collection of smart

contracts SC written in Solidity, Ethereum’s smart contract

language, and executed on the Ethereum Virtual Machine,

EVM).

As shown in Figure 3, initially a new participant must

register itself in the blockchain, by calling the register

function of SC . Data providers P publish their data offers ,

or post updates to current offers, again using SC so that the

offers are stored in the blockchain and are publicly visible.

At the same time, consumers C can inspect offers, and then

make a request to the SC including the reference to and the

required time interval. This causes a new Trade Agreement
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to be created on the blockchain, possibly encrypted by the

consumer for privacy purposes.
The offer’s provider is then involved in the definition of

the agreement, which includes setting parameters BS and

RTmax based on the consumer’s current reputation score.

The negotiation phase occurs out of band and is not part of

our implementation. Once C and P sign the agreement, this

is posted on the blockchain through a SC call.

IV. IMPLEMENTATION AND EVALUATION

Our testbed consists of a set of smart contracts for trade

management and monetary settlement, deployed on a private

Ethereum test network. We used Ethereum’s web-based

IDE Remix (remix.ethereum.org) to write, deploy and

connect to the private chain through Remote Producer Calls.

We used fake accounts with balances provided by Remix as

trades participants.
Here we experimentally determine the costs associated

with each phase of the P − C interaction through SC . To

recall, SC and thus gas fees are involved in registering new

participants, to deploy new offers, and to create a new trade

agreement. Once the agreement is in place, C provides a

deposit TP based on ETM , as suggested earlier (Sec. II-G).

Importantly, we assess the cost RC due to the data receipt

protocol.
Table I shows the costs broken down per phase, incurred

by P , C, or both. We have measured the gas consumption

using the Remix debugger, which provides consumed gas for

every transaction. This can also be obtained by monitoring

the balances of participants and check the differences before

and after invoking the smart contract method.

TABLE I: shows transactions cost in each cost category (in

Gas)

Cost
Category Operation

Producer
Gas

Consumption

Consumer
Gas

Consumption
Registration

Cost
- Register in
the network

204739 gas 199093 gas

Offering
Cost

- Deploy an offer 491862 gas -

Setup
Cost

- Make an order
and create
a new TA

- 620865 gas

- Set Batch size
and sign off

the TA
82063 gas -

Receipt
Cost

- Send a receipt - 144367 gas

The settlement is done by the settlement smart contract

when the trade ends.
For evaluation purposes, we have defined a family of

functions BS = f(Crep) = ln(Crep +1)/k where parameter

k is set by constraining the minimum number of receipts

when TATI is set to one day (24 hours) and MR =
100msgs/s. The three columns in Table II show the effect of

setting k = 1.38, 2.10, 2.77, with corresponding min receipts

2,3, and 4, across the range of reputation scores.

TABLE II: Minimum number of receipts with three different

constant values in f(Crep)

Reputation Number of Receipt
ln(Crep + 1)/1.38 ln(Crep + 1)/2.10 ln(Crep + 1)/2.77

0.1 15 21 29
0.2 8 11 16
0.3 6 7 11
0.4 5 6 9
0.5 4 5 7
0.6 3 4 6
0.7 3 3 6
0.8 3 3 5
0.9 3 3 5
1 2 3 4

Setting k = 1.38 produces the minimum number of

receipts, 2, for Crep = 1 and increases to 3 for 0.5 ≤
Crep ≤ 0.9 In contrast, k = 2.10 produces the min number

of receipts within reputation range Crep ≥ 0.7, and for

k = 2.77, the min occurs for Crep = 1, while the number

of receipts are fairly evenly distributed in the range 0.6 ≤
Crep ≤ 0.7 with 6 receipts and for 0.8 ≤ Crep ≤ 0.9 with 5
receipts.

Because the focus of our experiment is the trade-off

between the cost and the consumer reputation, based on these

experiments we settled for k = 2.77 for our cost evaluation,

as this provides as good segregation of cost relative to

reputation while limiting producer loss.

The increase in a number of batches received means that a

consumer will incur more gas. If we assume that a producer

has no incentive not to send the data as agreed in the

agreement, a trade fails when the consumer fails to send

a receipt or was not honest in reporting the exact number of

messages received. The data receipt protocol is designed to

make the marketplace sustainable by providing incentives to

parties to increase their reputation.

Because the unit gas price GUP largely determines the

duration of the transactions in the blockchain to be confirmed

by miners, a consumer has the option to increase the GUP
in order to process their transaction faster and therefore he

will have more timem out of the total TATI , to receive more

batches. To clarify, in the Ethereum cost and POW model,

higher GUP gives the SC transaction priority, as miners who

will validate the transactions usually follow the strategy of

picking the transactions with higher GUP to be included in

the next block. Thus, the increase in GUP contributes to

decreasing RT and therefore provides a larger ATM (actual

total messages) within the TATI interval.

The minimum and the maximum GUP in the network can

be found using the ETH Gas Station (ethgasstation.
info). This is a tool to understand the conditions of the

current gas market and current policies of network miners.

Based on the current condition of the network at the moment

of writing, the recommended gas prices from Gas Station is

shown in Table III. The Table shows the maximum time

taken by miners to confirm the transaction for each GUP .

In addition, the Gas Station provides the median time of

transaction confirmation for each GUP .

For the purpose of evaluation, we have used the three dif-

ferent GUP for different consumer reputations to calculate
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Fig. 3: System Sequence Diagram

TABLE III: Gas Prices and Speeds

Gas Price
(Gwei) Speed Median Speed

1.6 SafeLow (<30m) 4.3m
4.2 Standard (<5m) 2.5m
7.2 Fast (<2m) 0.8m

the RC, as explained in Sec. II-F.

TABLE IV: Shows the RC in USD and Data Percentage

Delivered for consumer reputations for 1 day trade with three

GUP values, MR=100 msg/sec. (1 Eth ≈ 202.70 USD)

Consumer GUP= 1.6 Gwei GUP= 4.2 Gwei GUP= 7.2 Gwei

Reputation Cost
in USD

Data
Percentage

Cost
in USD

Data
Percentage

Cost
in USD

Data
Percentage

0.1 1.465$ 92.236% 3.970$ 95.313% 7.016$ 98.444%
0.2 0.903$ 95.81% 2.372$ 97.57% 4.277$ 99.17%
0.3 0.716$ 97.01% 1.881$ 98.26% 3.224$ 99.44%
0.4 0.623$ 97.61% 1.635$ 98.61% 2.802$ 99.55%
0.5 0.529$ 98.20% 1.389$ 98.95% 2.381$ 99.66%
0.6 0.482$ 98.51% 1.266$ 99.13% 2.170$ 99.72%
0.7 0.482$ 98.51% 1.266$ 99.13% 2.170$ 99.72%
0.8 0.435$ 98.81% 1.143$ 99.30% 1.960$ 99.78%
0.9 0.435$ 98.81% 1.143$ 99.31% 1.960$ 99.78%
1.0 0.388$ 99.10% 1.020$ 99.48% 1.749$ 99.83%

Fig. 4(a) shows the number of smart contract invocations,

that is, the number of receipts, vs consumer reputation. The

cost of these invocations is depicted in Fig. 4 (b).

Note that the maximum data delivery when Crep = 1 for

GUP = 1.6 Gwei, 4.2Gwei and 7.2 Gwei are 99.10%,

99.48%, and 99.83%, respectively. If we assume that the

minimum time for a transaction to be confirmed is about

1 second, the maximum number of messages could be

delivered to a consumer is ≤ (ETM −MR ∗BN). Recall

that the overhead due to processing the receipts, represented

as RT , is included in TATI , which reduces ETM by

RT · BN .

Although the number of receipts as shown in Fig. 4 (a)

are nearly the same, which lead to similar costs for receipts

as shown in Fig. 4 (b), the fraction of data received, ATM ,

is higher for a higher reputation consumer as expected, as

shown in Fig. 4 (c).

V. CONCLUSIONS

In this paper we have proposed a decentralized market-

place for trading brokered IoT data under assumptions of

limited trust amongst participants. Smart Contracts on the

Ethereum public network are used to mediate all interactions

amongst data producers and consumers, in order to achieve

non-repudiability and transparency. The model separates the

exchange of streaming data, which is supported by message

brokers off-blockchain, from transactions that occur at regu-

lar checkpoints during data transfer.

The model makes the trade-offs between risk of data

loss, cost, and total number of messages exchanged explicit,

empowering the participants to negotiate a balance between

those elements, based on their current reputation. We have

shown experimentally that, if a reputation score can be

obtained, i.e., from a third party service that is currently

beyond the scope of this paper, then the trade-offs can be

easily quantified, making trading risk becomes manageable.

This work is still in progress and, in the long run, aims

to deliver a customised reputation model where reputation

changes dynamically as a function of the history of past

trades in the marketplace. Our challenge is then to show

that (i) the marketplace encourages honest behaviour, i.e.,

participants have an incentive to increase their reputation

over time, and (ii) it is economically viable, vis a vis the

trading costs.

Also, we work - as an future work and work in progress

- on the marketplace scalability with the growth in par-

ticipants number and the transaction confirmation time in

the blockchain network, and how well-designed reputation

model guarantee less time for higher reputation participants.
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(a) Number of Receipts

(b) Cost in USD

(c) Data Percentage Received

Fig. 4: The cost, the number of receipts and the percentage

of the data received for three different gas prices
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