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MAS-Encryption and Its Applications in
Privacy-Preserving Classifiers
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Abstract—Homomorphic encryption (HE) schemes, such as fully homomorphic encryption (FHE), support a number of useful
computations on ciphertext in a broad range of applications, such as e-voting, private information retrieval, cloud security, and privacy
protection. While FHE schemes do not require any interaction during computation, the key limitations are large ciphertext expansion
and inefficiency. Thus, to overcome these limitations, we develop a novel cryptographic tool, MAS-Encryption (MASE), to support
real-value input and secure computation on the multiply-add structure. The multiply-add structures exist in many important protocols,
such as classifiers and outsourced protocols, and we will explain how MASE can be used to protect the privacy of these protocols,
using two case study examples. Specifically, the first case study example is the privacy-preserving Naive Bayes classifier that can
achieve minimal Bayes risk, and the other example is the privacy-preserving support vector machine. We prove that the constructed
classifiers are secure and evaluate their performance using real-world datasets. Experiments show that our proposed MASE scheme
and MASE based classifiers are efficient, in the sense that we achieve an optimal tradeoff between computation efficiency and
communication interactions. Thus, we avoid the inefficiency of FHE based paradigm.

Index Terms—MAS-Encryption, Homomorphism, Privacy-preserving, Classifiers.
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1 INTRODUCTION

Classifiers, such as Naive Bayes (NB) and decision trees,
are key in machine learning. Given a dataset with mul-
tiple features, a classifier predicts the value of the target
attribute for a new sample. Classifiers have been widely
used in applications ranging from the detection of diseases
to economic modeling, network optimization, and so on.
A supervised classifier generally extracts classification rules
from a dataset that contains a series of training samples. The
rules are then represented as a prediction or discrimination
function along with its parameters. Using the classification
function, the algorithm will predict the value of the target
attribute for any new sample.

The importance of ensuring privacy during classification
has become more pronounced in recent years, due to the
nature and amount of data, the type of computations per-
formed on such data, and the increasing sophistication of
classification algorithms to maximize the mining of data.
For example, consider a situation where a server (say, a
healthcare organization that owns a large dataset compris-
ing patients’ medical and diagnostic information, and a pro-
prietary prediction function) provides prediction services to
a user (say, a potential patient who wishes to analyze his
health data, including his family history, to determine if
he is at risk pertaining to a specific disease such as some
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autosomal recessive disorder). Privacy needs to be consid-
ered from the perspectives of both service providers and
consumers/users. In this context, the service provider does
not want to reveal/leak its proprietary prediction function
(i.e., intellectual property), and the user clearly has vested
interest not to reveal his/her private health related data as
the leakage of such data and the prediction findings can
have significant implications (e.g., being denied insurance
coverage or at risk of facing discrimination in future job
interviews). In other words, the service provider and the
user should utilize a protocol, which provides accurate
privacy-preserving prediction services to the user without
leaking information about the underpinning service and
infrastructure. Existing algorithms designed to protect the
privacy of classifiers can be broadly categorized into those
that protect the training phase’s privacy, and those that
protect the privacy during the prediction phase. In this
paper, we focus on the second category.

Depending on the complexity of the classifier, different
cryptographic tools are used to protect the privacy of the
classifier. For example, for simple classifiers with only multi-
plication or addition structures, partially homomorphic en-
cryption (PHE) tools can be used to achieve privacy protec-
tion. PHE mainly includes additively homomorphic encryp-
tion (AHE) and multiplicatively homomorphic encryption
(MHE). The PHE approach not only protects the privacy,
but also allows users to perform some simple operations
on the ciphertext. For more complicated classifiers, existing
approaches usually use FHE to facilitate secure prediction
on the encrypted input. However, FHE is impractical for
real-world deployment at the time of this research, due
to the significant ciphertext expansion and computation
complexity. For example, the ciphertext space in FHE is
Zq[x] × Zq[x], where q is a large integer; hence, 100 bits’
plaintext corresponds to a ciphertext above 10K bits.
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This paper focuses on the privacy of the family of
multiply-add (M-A) type classifiers. The multiply-add type
classifiers refer to the classifiers which can be expressed as
the form of

∑
i(
∏
j αi,j). They can achieve the function that

the classifier of simple structure (i.e., multiplicative-only or
additive-only) cannot reach. Many important classifiers can
be transformed into this type of classifier family, e.g., the
NB classifiers and a part of support vector machine (SVM)
classifiers. However, the M-A type structures also increase
the difficulty of privacy protection, compared to the simple
structure classifiers. For example, one cannot trivially use
PHE to protect the privacy of M-A type classifiers, since
PHE can only handle multiplicative or additive structure.

In this paper, we seek to solve the challenge in pro-
tecting privacy of M-A type classifiers. To avoid using
FHE, we propose an efficient tool, coined MAS-Encryption,
which allows us to protect the M-A structure’s privacy
with only additional two-round overhead compared to the
FHE approach. In constructing the cryptographic tool MAS-
Encryption, a novel blinding-then-normalization technique
is used, which enable us to process real-value cleartexts,
and handle multiple multiplications or additions in a batch
mode.

1.1 Contributions

In summary, the contributions of this paper are as follows:
1). We propose a novel cryptographic tool MAS-Encryption,

which is designed to support both real-value input
and secure computations on a multiply-add structure.
Compared to FHE and PHE approaches, it achieves an
optimal tradeoff between computation efficiency and
communication interactions.

2). We present two examples to illustrate the applications
of MAS-Encryption in efficiently constructing private
classifiers. In the first example, we construct a privacy-
preserving Naive Bayes classifier with minimal Bayes
risk (MBR-PPNBC). The MBR-PPNBC has a multiply-
add structure, and prior approaches do not minimize the
Bayes risk in a private NB classifier. The second appli-
cation is to construct a privacy-preserving support vec-
tor machine classifier (PPSVMC). In prior approaches,
the number of protocol interactions will be high if the
multiplication operations in the support vector machine
(SVM) classifier increase. We avoid such a limitation in
the proposed protocol.
In the next two sections, we will present the related liter-

ature and background materials. In Section 4, we present the
proposed cryptographic tool (i.e. MAS-Encryption), prior
to presenting the proposed MBR-PPNBC and PPSVMC
protocols in Sections 5 and 6 respectively. Findings from
our evaluation are reported in Section 7. The concluding
remarks are then presented in the last section.

2 RELATED WORK

Protecting privacy of classifiers, or in a broader sense also
the machine learning algorithms, is an ongoing research
topic that has practical implications, particularly in our
increasingly privacy-aware society [22], [39]. In supervised
classifiers, the privacy issue lies in two phases, namely: the

training phase and the prediction phase. Providing privacy
in the training phase has been considered in secure training
algorithms such as Naive Bayes [24], [48], [56], [60], deci-
sion tree [11], [58], and deep learning algorithms [53], [43].
Their applications include gene classification [36], electronic
health system [30], preserving the privacy of outsourced
data [23], [64], and so on. To preserve the privacy in the
prediction phase, Erkin et al. [17] and Sadeghi et al. [49]
designed protocols to enable a client to privately search
for a specific face image in facial image databases. Barni
et al. [5], [6] also designed protocols to securely evaluate
linear branching programs, which can be used to construct
privacy-preserving electrocardiogram classifications. How-
ever, preserving the privacy in the prediction phase appears
to be a topic that is relatively understudied, in comparison
to preserving the privacy in the training phase.

For simple classifiers with only multiplication or addi-
tion structures, simple structured cryptographic tools (e.g.,
PHE) can be used to achieve privacy protection. As dis-
cussed earlier, FHE are often used to protect the privacy
in more complicated classifiers. M-A type classifiers are an
important classifier family, in which NB and SVM classifiers
are two typical representatives. Both NB and SVM classifiers
are widely used in applications as diverse as spam filters
[50], disease diagnosis [40], [41], [7] and face recognition
[37]. In the following, we will review the related work for
protecting the privacy of the NB classifier and the SVM
classifier respectively.

To protect the privacy of NB classifiers, Vaidya et al.
[57] introduced the use of differential privacy, and Bost et
al. [10] explained how one can utilize a PHE scheme to
compute the prediction value. Then, Aslett et al. [3] and
Khedr et al. [26] demonstrated how one can construct secure
NB classifiers based on FHE. David et al. [14] also proposed
a scheme based on the so-called commodity-based model. In
their scheme, they assumed that pre-distributed correlated
randomness is available to both parties. In 2016, Liu et al.
[35] proposed a privacy-preserving clinical decision support
system based on NB classifications. These existing literature
depend on either FHE (with a heavy computation overhead
[3], [26]) or a strong security assumption [14]. In addition,
these discussed works focus on how to construct privacy-
preserving NB classifiers with the lowest misclassification
rate. In other words, they assume the classifiers only simply
output argmaxs Pr(x,Cs) for prediction [19]. In a number
of real-world applications, such as healthcare and network
security, it is crucial to reduce the Bayes risk (BR), i.e., the
expected misclassification loss. For example, a typical case
is to distinguish between the false positive errors and the
false negative errors and treat them differently [55], [54].

In this paper, we demonstrate how to use our proposed
MAS-Encryption tool to minimize BR for NB classifiers,
while preserving the privacy during prediction. This is, at
the time of this research, the first construction of efficient
privacy-preserving NB classifiers designed to minimize BR.

The work of protecting the privacy of SVM’s training
phase can be found in [63], [62], [59]. For the prediction
phase, Rahulamathavan et al. [47], [46] proposed methods
to protect Gaussian kernel-based and polynomial kernel-
based SVM classifiers. Later in 2017, Li et al. [29] observed
that Rahulamathavan et al.’s approaches [47], [46] have
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security flaws, and hence proposed a revised version. The
protocols of Rahulamathavan et al. and Li et al. [47], [46],
[29] are based on additively homomorphic encryption, and
are vulnerable to repetitive attacks. In other words, after
multi-round execution of protocols, the client can obtain the
number of the supported vectors and all their kernel values.
In addition, in [47], [46], [29], to protect a value K, the cloud
server blinds it with a natural number r, and sends the
encryption of K · r to the client who has the decryption key.
However, the client can repetitively request to obtain the
value of K · r for different r values. Since all blind factors
r are natural numbers, the client can get the value of K by
finding the greatest common divisor between different K ·r.

In addition to the above discussed works, Lin and Chen’s
protocol [31] and Zhu et al.’s protocol [65] used lightweight
multiparty random masking method to protect the privacy.
However, both protocols cannot achieve semantic security
(for the security model, please refer to [20]). In 2018, Liu
et al. [34] presented a privacy-preserving outsourced SVM
designed for secure drug discovery. However, for each
multiplication operation in the protocol, their protocol has
to perform two rounds of interaction between the cloud
platform and the parties with private encryption keys [33].
Thus, the number of protocol interactions will be high if the
multiplication operations in the SVM classifier increase.

We summarize several existing potential approaches for
securely computing multiply-add structures as follows.

1) The general approach for two-party computation or
multi-party computation can be found in [61], [9], [21],
[44], where a classification function is expressed as a
garbled circuit and some cryptographic tools can be
used to achieve privacy-preserving for the protocol.
However, such an approach usually represents the
classification function as an arithmetic circuit or a bi-
nary circuit to achieve the privacy and security goals,
and hence, incurs significant computation overhead.
Moreover, it is known that garbled circuits are more
suitable for Boolean operations or integer arithmetic op-
erations [4], but are of high inefficiency for complicated
arithmetic operations of real numbers. For example, It
expresses each single multiplication or addition of two
real numbers into about 13000 Non-XOR gates, and
uses oblivious transfer and encryption techniques to
securely compute these gates [45].

2) PHE approach. Trivially applying a PHE (e.g., Paillier
Encryption, which is an AHE) cannot solve the M-A
structure problem, since PHE is designed only for either
multiplicative or additive homomorphism. However,
PHE can achieve both kinds of homomorphism in an
interactive way. Elmehdwi et al. [51], [16] used this in-
teractive technique to realize secure k-nearest neighbor
query over encrypted data. Their method is an AHE-
based approach, which requires two interactions for
one homomorphic multiplication of ciphertexts.

3) FHE is another commonly used method to construct
privacy-preserving classifiers [3], [26], and similarly the
limitation is the costs (i.e., significant ciphertext expan-
sion and computation complexity). Cheon et al. [13] and
Kim et al. [27] presented FHE-like encryption schemes
that support approximate addition and multiplication
of encrypted messages. However, in order to avoid

message expansion, both schemes adopt a rescaling
strategy each time a multiplication is performed. In
other words, the ciphertext modulus decreases with
homomorphic operations and their schemes no longer
support homomorphic computation as the circuit depth
becomes large.

4) Multi-server technique. Another line of work [25], [39],
[38] use multi-server technique to protect user data pri-
vacy. This approach requires sharing users’ data among
non-colluding servers and assumes that the majority of
servers are honest.

5) Functional Encryption (FE) is also adopted for pri-
vacy protection. This approach expresses classifiers as
some specific functions and outputs the encryption of
function value, which is then later used for classifica-
tion purpose. However, existing FE schemes [52] can
only efficiently compute simple functions such as inner
product and quadratic schemes. For general multiply-
add structures, there are no efficient FE solutions.

Therefore, we avoid using above approaches in this paper.

3 PRELIMINARIES

In this section, we will describe the notations and concepts
relevant to the rest of this paper. Let N and R denote the set
of natural numbers and the set of real numbers, respectively.
If k ∈ N, then {0, 1}k denotes the set of bitstrings of
bitlength k. If i, j are two integers and i ≤ j, then we
use [i, j] to denote the set {i, i + 1, . . . , j}, and [i, j]/r to
denote the set of {i/r, (i+ 1)/r, . . . , j/r}. If r ∈ R, then we
denote by brc the largest integral value that is not greater
than r. “PPT” refers to “probabilistic polynomial-time”, and
all logarithms in this paper are of base 2.

Additively homomorphic encryption. In an additively
homomorphic encryption, given only the public-key and the
encryptions of m1 and m2, one can compute the encryption
of m1 +m2. We utilize the Paillier encryption scheme [42]
supporting negative plaintexts as our additively homomor-
phic public-key encryption scheme. Let Enc-Ppk(·, ·) be the
encryption function of the Paillier cryptosystem with public
key pk (see also Figure 1). Suppose the modulus of the
cryptosystem is n, then Enc-Ppk(·, ·) supports the following
operations:
1). Enc-Ppk(m1, r1)Enc-Ppk(m2, r2) mod n2

= Enc-Ppk(m1 +m2, r1 · r2).
2). Enc-Ppk(m1, r1)

m2 mod n2 = Enc-Ppk(m1 ·m2, r
m2
1 ).

For simplicity, we denote an encryption of a message m
as Enc-Ppk(m) or JmK with the randomness omitted.

3.1 Naive Bayes Classifiers

The NB classifier assumes each feature of the user data is
conditionally independent given the target attribute, and
trains a classifier by collecting a set of classification param-
eters. Suppose a sample’s target attribute (Y -attribute) has
k possible classes C1, . . . , Ck, and that X = (X1, . . . , Xt) is
its feature vector with dimension t. Let x = (x1, . . . , xt)
be a concrete value of the feature vector. Typically, to
minimize the misclassification rate, a NB classifier pre-
dicts the target attribute’s class as argmax1≤s≤k Pr(Y =
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Paillier encryption scheme

Public key: pk = (n, g). Private key: sk = (λ, µ).
Encryption:

Plaintext m ∈ [−n2 ,
n
2 ] ∩ Z

Select random r ∈ Z∗n
Ciphertext c = Enc-Ppk(m, r) = gm mod n · rn

mod n2

Decryption:
Ciphertext c ∈ Z∗n2

Compute m̂ = (cλ mod n2)−1
n · µ mod n, and

Dec-Psk(c) =

{
m̂ if 0 ≤ m̂ < n

2 ,

m̂− n otherwise.

Fig. 1. Paillier encryption scheme supporting negative plaintexts

Cs)
t∏
i=1

Pr(Xi = xi|Y = Cs). However, to minimize the

Bayes risk (BR), the following MBR criterion should be used.
Classifiers with minimum Bayes risk (MBR). Reducing

BR is formally described using a loss function, which is
also known as a cost function. The loss function is defined
using a loss matrix, which introduces the costs of various
misclassifications. Suppose the loss matrix is L, and Li,s
denotes the cost of misclassifying class Ci as class Cs, the
BR of incorrectly assigning a sample to Cs is defined by

LPs =
k∑
i=1

Li,s Pr(X = x, Y = Ci).

Normally, Li,i has a value of 0 for any i. Thus,

LPs =
k∑

i=1,i6=s
Li,s Pr(X = x, Y = Ci).

A MBR classifier’s task is to make a prediction that mini-
mizes BR (i.e., compute k∗ = argmins∈[1,k]LPs).

For a MBR-NB classifier, by the NB independent as-
sumption, it computes k∗ as

k∗ = argmins∈[1,k]


k∑

i=1,i6=s

(
Li,s · Pr(Y = Ci)

·
t∏

j=1

Pr(Xj = xj |Y = Ci)

) .

(1)

In fact, minimizing the misclassification rate is
only a special case of minimizing BR if we assume
Li,j = 1 for all i 6= j. In this special case,
computing argmin1≤s≤kLPs is simplified as computing

argmax1≤s≤k Pr(Y = Cs)
t∏
i=1

Pr(Xi = xi|Y = Cs). The lat-

ter, clearly, is a relatively simple form. However, when
Li,j(i 6= j) is not constant and the possible class number
k is larger than 2, then computing Equation (1) needs using
more complex calculations.

Security model. A privacy-preserving MBR-NB (MBR-
PPNB) classifier is a two-party protocol, in which the server

has its private classification parameter par =
(
{Pr(Y =

Ci)}i∈[1,k], {Pr(Xj = b|Y = Ci)}b∈[1,kj ],i∈[1,k],j∈[1,t]
)

as in-
put, and the user has his/her personal data x = (x1, . . . , xt)
as input. Here, t denotes the number of features, kj denotes
the number of possible values of the j-th feature, and k
denotes the number of classes of the Y -attribute (i.e. the
target attribute). At the end of the protocol execution, the
user learns the value k∗ = argmins∈[1,k]LPs, and the server
learns nothing. The privacy of the classifier is considered
under the framework of two-party secure computations,
whose details can be found in [20]. From the view of
two-party computations, the functionality of a MBR-PPNB
classifier is defined as FMBR-PPNBC : (par, x) 7→ (⊥, k∗),
where par is the server’s private input, x is the user’s private
input, ⊥ denotes the empty string (i.e., no output), and k∗

is defined as above.

3.2 Support Vector Machine (SVM) Classifiers
The SVM classifier tries to separate the positive and the
negative samples with a hyperplane. It predicts the label of a
new sample by judging the sign of

∑m
i=1 αiy

(i)K(z(i), x)+b.
Here {(z(i), y(i))}1≤i≤m are m training samples, y(i) ∈
{−1, 1} is the i-th sample’s label, {{αi}1≤i≤m, b} is a set
of parameters obtained from the SVM training phase, x
is a testing sample with unknown label, and K(·, ·) is a
kernel function. If

∑m
i=1 αiy

(i)K(z(i), x) + b ≥ 0, then the
new sample x’s label is predicted as +1, otherwise as -1.
We show in Section 6 that our technique can be applied to
the the cases of p ≥ 1 for the polynomial kernels of form
K(z, x) = 〈z, x〉p = (z1 · x1 + z2 · x2 + · · ·+ zt · xt)p.

Security model. A privacy-preserving SVM (PPSVM)
classifier is a two-party protocol, in which the classi-
fier server has its private classification parameter par =(
{αi, z(i), y(i)}1≤i≤m,αi 6=0, b

)
as input, and the user has

his/her personal data x = (x1, . . . , xt) as input. Here,
t denotes the number of features of each sample and
{z(i)}1≤i≤m,αi 6=0 are called support vectors. At the end of
the protocol execution, the user learns the label y of the
sample x which is determined by

y = sign
( m∑
i=1

αiy
(i)K(z(i), x) + b

)
, (2)

and the server learns nothing. From the view of two-party
computations, the functionality of a PPSVM classifier is
defined as FPPSVM : (par, x) 7→ (⊥, y), where par is the
server’s private input, x is the user’s private input, ⊥
denotes the empty string (i.e., no output), and y is defined
as above.

4 MAS-ENCRYPTION (MASE)
Background: Many classifiers must securely compute a
structure of f({αi,j}) =

∑
i(
∏
j αi,j) (i.e. a M-A structure).

In the following we first give an outline of a HE-based
framework for securely computing a M-A structure classi-
fier. Previous FHE-based and PHE-based approaches, and
our new solution all fall in this framework.

Suppose a classifier’s goal is to compute k∗ =

argmin1≤s≤kf({α
(s)
i,j }) where a party (say, Party A) has the

set {α(s)
i,j } as input and another party (say, Party B) can
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compute function f(·). A HE-based framework executes the
following steps to securely compute k∗.

(1) Party A encrypts all his input α(s)
i,j as Enc(α(s)

i,j ) and
sends them to Party B. Here Enc(·) is a HE encryption
whose private key is owned by A.

(2) Party A and Party B together compute f({Enc(α(s)
i,j )}) =

Enc(f({α(s)
i,j })) for all 1 ≤ s ≤ k using some homomor-

phic property of the encryption scheme Enc(·). In detail,
they securely

(a) compute
∏
j(Enc(α(s)

i,j )) = Enc(
∏
j α

(s)
i,j ) (multi-

plicative homomorphism), and
(b) compute

∑
i(Enc(

∏
j α

(s)
i,j )) = Enc(

∑
i(
∏
j α

(s)
i,j ))

(additive homomorphism).

At the end of this step, B obtains Enc(f({α(s)
i,j })) for all

s.
(3) A and B together use a secure argmin algorithm

over encrypted data Enc(f({α(s)
i,j })) to obtain k∗ =

argmin1≤s≤kf({α
(s)
i,j }).

As previous discussed, although the FHE-based ap-
proach can execute step (2) without interaction, a signifi-
cant computation overhead is needed. Another alternative
approach is PHE-based approach. However, the number of
interactions of current PHE-based approaches depends on
the size of the set {α(s)

i,j }, which results in heavy interactions.
In detail, Elmehdwi et al.’s solution [51], [16] requires two
communication rounds for one multiplication, and requires
2dlg ke rounds for k ciphertexts’s parallel multiplication.

Therefore, in this section, we present a new crypto-
graphic tool to securely compute a multiply-add structure.
Specifically, the tool supports real value input (i.e. αi,j ∈ R).
Furthermore, its communication round does not increase
with the number of multiplication or addition operations.
When it is executed in parallel, it can output multiple en-
crypted values that can then be used for further comparison.

Now we explain more about the comparison issue.
Our goal of securely computing f({αi,j}) is for compar-
ison, rather than obtaining the accurate value. For exam-
ple, let us suppose we have k different sets {α(s)

i,j }1≤s≤k.
In this context, we are not seeking to obtain the accu-
rate values of f({α(s)

i,j }). Rather, our goal is to compare
f({α(s)

i,j }) for 1 ≤ s ≤ k (e.g. to compute argminsf({α
(s)
i,j })

or argmaxsf({α
(s)
i,j })).

To sum up, MASE is an interactive paradigm whose
goal is to securely output the encrypted value of f({αi,j})
where f(·) is a multiply-add function. It is composed of
6 basic algorithms, and in addition, the paradigm can be
implemented based on any additive encryption schemes.

High-level intuition. A MAS-Encryption (MASE) is an
encryption scheme which supports real-valued plaintext.
As the traditional encryption, KeyGen is the key genera-
tion algorithm, Enc is the encryption algorithm, and Dec
is the decryption algorithm. The difference from a tradi-
tional encryption is that MASE is a “composed” encryp-
tion paradigm built upon an additive encryption, and the
ciphertext it produces is not for decryption (i.e., we do not
need to ensure that the decryption of a ciphertext will get
the original plaintext). MASE has two modes of encryption:
type-1 encryption supports multiplications of ciphertext,

i.e., the result of multiplying multiple type-1 ciphertexts
will also get type-1 ciphertext. But for the addition, type-1
ciphertext will be converted to type-2 ciphertext. Parameters
l1 and l2 are precision control parameters for type-1/type-2
encryption, respectively. Algorithm Dec returns a decrypted
real-valued plaintext, which is a “virtual” algorithm only
used in the security proof. Algorithm Dec-int behaves like
a traditional decryption algorithm, which just outputs a
integer value proportional to the real-valued plaintext. In
MASE, the multiplicative and additive operations on ci-
phertext are explicitly defined as two operators: Mul and
Add. Without depending on the FHE, our concrete imple-
mentation utilizes a two-rounds protocol to realize the Add
algorithm, and needs no interactions in Mul. For further
intuitive explanation of each component, please refer to the
remarks after the formal definition.
MASE. MASE is given by the following algorithms (i.e.
MASE = (KeyGen,Enc,Dec-int,Dec,Mul,Add)):
- KeyGen, the key generation algorithm, is a probabilistic

algorithm that takes a security parameter κ ∈ N and
returns a public/secret key pair (pk, sk).

- Enc, the encryption algorithm, is a probabilistic algorithm
that takes as input an encryption mode i ∈ {1, 2}, a public
key pk, a precision parameter li ∈ N and a message Q ∈
R+. The output is a type-i ciphertext c, denoted as c =

Enctype-i
pk,li

(Q) (or c =< Q >i,li for simplicity).
- Dec-int, the integerized decryption algorithm, is a determin-

istic algorithm that takes a secret key sk and a ciphertext
c to produce a decrypted integer mQ ∈ {0, 1}∗.

- Dec, the decryption algorithm, is a deterministic algorithm
that takes a secret key sk, a ciphertext c, a decryption
mode i ∈ {1, 2}, and a precision parameter li ∈ N to
produce a decrypted message Q ∈ R+. We denote it as
Q = Dectype-i

sk,li
(c).

- Mul, the multiplicative operator, is a probabilistic algorithm
that takes a public key pk, and T type-1 ciphertexts
c1, c2, . . . , cT , to produce a type-1 ciphertext c. We denote
it as c = Mulpk(c1, c2, . . . , cT ) (or c = c1 · c2 · · · cT for
simplicity).

- Add, the additive operator, is a probabilistic algorithm
that takes a public key pk, and K type-1 ciphertexts
c1, c2, . . . , cK , to produce a type-2 ciphertext c. We denote
it as c = Addpk(c1, c2, . . . , cK) (or c = c1 + c2 + · · · + cK
for simplicity).

Notations. For c1 · c2: if c1, c2 ∈ R, then we use “·” to
denote the multiplication in R; if c1, c2 ∈ C1, where C1 is
the type-1 ciphertext domain, then “·” is the multiplicative
operator Mul. For c1 ·c2 mod n2, we view c1, c2 as elements
in Zn2 and “·” is the modular multiplication.

c1+c2 is defined similarly: if c1, c2 ∈ R, then we use “+”
to denote the addition in R; if c1, c2 ∈ C1, then we use “+”
to denote the additive operator Add. When we use c1 + c2
mod n, we view c1, c2 as elements in Zn and “+” is the
modular addition.

For “'”: when we write c '< Q >i,l where c is a type-
i ciphertext, we require that the decrypted value of c is
sufficiently close to the value of Q. In other words, there
exists a sufficiently small error bound ε, such that∣∣∣∣∣Dectype-i

sk,l (c)

Q
− 1

∣∣∣∣∣ < ε.
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Requirements.MASE should satisfy the following proper-
ties.
(1). Multiplicative homomorphism: for appropriate T ∈ N,

l1 ∈ N and Q1, Q2, . . . , QT ∈ R+, it should hold that

< Q1 >1,l1 · < Q2 >1,l1 · · · < QT >1,l1'< Q1·Q2 · · ·QT >1,l1 .

(2). Additive homomorphism: for appropriate K ∈ N and
Q1, Q2, . . . , QK ∈ R+, it should hold that

< Q1 >1,l1 + < Q2 >1,l1 + · · ·+ < QK >1,l1

'< Q1 +Q2 + · · ·+QK >2,l2 .

(3). Correctness of Dec: for any Q ∈ R+, i ∈ {1, 2}, li ∈ N,
and c = Enctype-i

pk,li
(Q), there exists a sufficiently small

error bound ε, such that∣∣∣∣∣Dectype-i
sk,li

(c)

Q
− 1

∣∣∣∣∣ < ε.

(4). Order-preservation of Dec-int: for any Q1, Q2 ∈ R+,
i ∈ {1, 2} and li ∈ N, if Q1 > Q2, then it should hold
that

Dec-int(< Q1 >i,li) ≥ Dec-int(< Q2 >i,li).

(5). Computability and security of Mul and Add. The Mul
operator is a PPT algorithm and there exists an efficient
two-round protocol

PAdd(c1, c2, . . . , cK ; sk) 7→ Addpk(c1, c2, . . . , cK)

that securely computes the Add function.
(6). Semantic security: both type-1 and the type-2 encryp-

tion should satisfy the semantic security (i.e. IND-CPA
security [8]).

Remarks.
1). Encryption and homomorphism: The type-1 encryption

has multiplicative homomorphism which requires no
interaction. (The property of multiplicative homomor-
phism is stated in Property 1.) However, to achieve addi-
tive homomorphism, an interactive protocol is required
and multiplying two type-1 ciphertexts will result in a
type-2 encryption. (The property of additive homomor-
phism is stated in Property 2. And the computability
of multiplicative and additive operators is stated in
Property 5.)

2). Decryption:
a). Dectype-i is the corresponding decryption algorithm

for Enctype-i where i ∈ {1, 2}.
b). Because MASE is constructed based on ordinary

encryption which has a integer plaintext domain,
the decryption algorithm for the integer plaintext
domain - we name it Dec-int - is needed for imple-
menting the homomorphic addition.

3). Order-preservation: As stated in the background part,
computing f({αi,j}) is for comparison, rather than ob-
taining the accurate value. Thus, given two encryption
Enctype-i(Q1) and Enctype-i(Q2), we only require the
two integers decrypted by Dec-int to have the same
numerical order as Q1, Q2, we name this property
as Order-preservation. Note that this order-preservation

requirement is different from the definition of order-
preserving encryption [28], which may lead to semantic
insecurity.

4). The last property (semantic security) is needed to guar-
antee that any adversary cannot obtain useful informa-
tion from the ciphertext without sk.

4.1 Implementation of MASE
Based on any additively homomorphic encryption scheme
which is IND-CPA secure, we can construct a secure
MASE paradigm. Without loss of generality, we suppose
the multiply-add structure we want to securely compute is
Q11Q12 · · ·Q1T + · · · + QK1QK2 · · ·QKT where Qij ∈ R+

and 2−Lmax ≤ Qij ≤ 2Lmax . In the following we use the
Paillier encryption scheme PE = (KeyGen,Enc-P,Dec-P),
where KeyGen,Enc-P,Dec-P are the key generation al-
gorithm, encryption algorithm and decryption algorithm
of Paillier respectively. The keys of construction are how
to preserve the precision of the real-valued plaintext and
how to maintain the order-preservation property after the
multiplicative and additive operations. The following is the
construction.
- KeyGen is similar to that in the Paillier key generation

algorithm. We let (pk, sk)← KeyGen(1κ) and pk = (n, g),
sk = (λ, µ).

- The encryption algorithms.
- Enctype-1

pk,l1
(Q). We define it as the value of

Enc-Ppk
(
b2l1 lgQc

)
.

- Enctype-2
pk,l2

(Q). We define it as the value of
Enc-Ppk

(
b2l2Qc

)
.

- Dec-int. The integerized decryption algorithm is defined
as Dec-intsk(c) = Dec-Psk(c).

- The decryption algorithm:

- Dectype-1
sk,l1

(c). We define it as the value of 2Dec-Psk(c)/2l1 .
- Dectype-2

sk,l2
(c). We define it as the value of Dec-Psk(c)/2l2 .

- Mul. The multiplication algorithm is defined as
Mulpk(c1, c2, . . . , cT ) = c1 · c2 · · · cT mod n2.

- Add. The addition function Add(< Q1 >1,l1 , < Q2 >1,l1

, . . . , < QK >1,l1) computes a ciphertext, which is “suffi-
ciently close” to < Q1 + Q2 + · · · + QK >2,l2 . Here we
use a two-party protocol PAdd to realize the Add operator.
As shown in Figure 2, PAdd is executed between two
parties, say A and B. The party B can be anyone who only
has the public key and wants to make Add operation on
ciphertext, and the party A is the secret key holder, who
assists the party B to get the addition result he wants.

PAdd’s design philosophy. PAdd is a core protocol of MASE.
It is sufficient in our scenario to compute an encrypted
value that is proportional to the original plaintext, and the
following is our technical subtlety. The PAdd protocol uses
a blinding-then-normalization approach to ensure addi-
tive homomorphism. Specifically, suppose B has ciphertexts
< Q1 >1,l1 , . . . , < QK >1,l1 . Party B first sends to party
A type-1 ciphertexts which blinds lgQi with −δi (Step 1).
The party A then decrypts these ciphertexts and transforms
them to type-2 (Step 2). A technical subtlety is that in this
step, the function lg(·) acting on Qi is stripped off and now
the resulted type-2 ciphertexts has additive homomorphism.
Finally, Party B normalizes these type-2 ciphertexts to obtain
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Algorithm PAdd

Public parameters: T, Lmax,K, l1, l2, l4, τ ∈ N, where
τ is the bitlength of n, l2 = bτ − 1− T · Lmax − lgKc,
and l4 = 20.
Private inputs: Party A has input sk, and party B has
input (c1, c2, · · · , cK) and pk, where ci =< Qi >1,l1

are type-1 encryption with precision parameter l1, and
2−T ·Lmax ≤ Qi ≤ 2T ·Lmax .
Output: output c '< Q1 +Q2 + · · ·+QK >2,l2 to the
party B.
1. For all i ∈ [1,K], party B randomly selects δi ∈ [2l1 ·
l4, 2

l1 · (τ − 1)]/2l1 (i.e., δi is a random real number
which has a blg(τ − 1)c-bits integer part and an l1-
bits fraction part), computes ei = ci · Jb−δi · 2l1cK
mod n2, and sends ei to party A.
. ei ' Jb2l1 · (lgQi − δi)cK

2. Party A computes di = Dec-intsk(ei)/2l1 , computes
êi = Jb2l2+dicK, and sends êi to party B.
. di ' lgQi − δi
. êi ' Jb2l2 ·Qi · 2−δicK

3. Party B computes ĉi = ê
b2δic
i mod n2, multiply

them to get ĉ = ĉ1 · ĉ2 · · · ĉK mod n2, and outputs
ĉ.
. ĉi ' Jb2l2 ·QicK
. ĉ ' Jb2l2 · (Q1 +Q2 + · · ·+QK)cK

Fig. 2. Addition algorithm in MASE paradigm

ciphertexts ĉi which have order-preserving plaintexts and
multiplication of them can get an encrypted value which is
proportional to (Q1 + .. + QK) (Step 3). We note that the
algorithm is essentially running in a batch mode, because
the number of its interactions does not depend on the
number of addends (i.e., K). The following are two remarks
focusing on some details.
1. δi is used to blind lgQi in the ciphertext ei.
2. At the end of step 2, êi has a form of Jb2l2 ·Qi ·2−δicK(this

is shown in the proof of Theorem 2). In order to get
Qi, a straightforward idea is to remove the factor 2−δi

by computing êζi where ζ is the inverse of 2−δi , i.e.,
ζ = 2δi mod n. However we will find that doing this
is not helpful because 2−δi is not an integer and we
will not get desired result even if we let ζ = b2(−δi)c−1
mod n. Fortunately, we do not need to accurately recover
the value of Qi, whilst we only need to add up all Qi.
Therefore in step 3, Party B adds δi to fill in the exponent,
and get a common factor 2l2 in the plaintext of ĉi. We note
that ĉi, ĉ are not held by Party A, thus Party A cannot
benefit from these values in any attack.

4.2 Proof of Properties

We will now prove that the above implementation is a valid
MASE satisfying the requirements described in Section 4.
(1). The multiplicative homomorphism is proven in Theo-

rem 1.
(2). The additive homomorphism is proven in Theorem 2.

(3). The correctness of decryption algorithm Dec is proven
in Theorem 3.

(4). Order-preservation of Dec-int. From the construction of
the encryption algorithm, demonstrating the property
of order-preservation is straightforward.

(5). The computability of Mul and PAdd is also straightfor-
ward to demonstrate. The security of PAdd is shown in
Theorem 4.

(6). The semantic security can be easily derived from the
IND-CPA security of the Paillier cryptosystem.

Theorem 1 shows the multiplicative homomorphism of our
construction, which essentially states that

< Q1 >1,l · < Q2 >1,l · · · < QT >1,l'< Q1·Q2 · · ·QT >1,l .

Theorem 1. The constructed MASE satisfies the multiplica-
tive homomorphism. Formally, for any l1, T ∈ N such
that lg T ≤ min{l1 − l4, τ − 1 − l1 − lgLmax}, and
Q1, . . . , QT ∈ R+ satisfying | lgQj | ≤ Lmax for all
j ∈ [1, T ],

∣∣∣∣∣Dectype-1
sk,l1

(< Q1 >1,l1 · < Q2 >1,l1 · · · < QT >1,l1)

Q1 ·Q2 · · ·QT
− 1

∣∣∣∣∣
< 2−l4 . (3)

Proof outline: We want to ensure that the multiplication of
type-1 ciphertexts < Q1 >1,l1 , . . . , < Q1 >T,l1 results in a
ciphertext which is “approximately” the type-1 encryption
of the value Q1 ·Q2 · · ·QT . Therefore, we want to guarantee
that:
1). The resulted plaintext filled in the Paillier plaintext
domain does not exceed the value n/2 (recall that n/2 is
the maximum positive plaintext in Paillier encryption);
2). The type-1 decryption of c =< Q1 >1,l1 , . . . , < Q1 >T,l1
is sufficiently close to Q = Q1 · Q2 · · ·QT . The key to the
proof is that we need to compare the decryption of c with
Q, and prove that they are sufficiently close.
Proof 1. First of all, we need to ensure no overflow occurs

during the calculation, i.e.,

|2l1 · (lgQ1 + · · ·+ lgQT )| < 2τ−1,

which is guaranteed by | lgQj | ≤ Lmax and lg T ≤ τ −
1− l1 − lgLmax.
Because Dectype-1

sk,l1
(< Q1 >1,l1 · < Q2 >1,l1 · · · <

QT >1,l1) = 2β , where β = (b2l1 lgQ1c + · · · +
b2l1 lgQT c) · 2−l1 , to prove Equation (3), we only need
to show ∣∣∣∣∣ 2β

Q1 ·Q2 · · ·QT
− 1

∣∣∣∣∣ < 2−l4 .

Since

2l1 lgQ1 + · · ·+ 2l1 lgQT − T
≤ b2l1 lgQ1c+ · · ·+ b2l1 lgQT c
≤ 2l1 lgQ1 + · · ·+ 2l1 lgQT ,

we know

Q1 ·Q2 · · ·QT · 2−T ·2
−l1 ≤ 2β ≤ Q1 ·Q2 · · ·QT .

So,
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0 ≤ 1− 2β

Q1 ·Q2 · · ·QT
≤ 1− 2−T ·2

−l1
.

Because

1− 2−x ≤ x holds for any x ≥ 0, (4)

we get

∣∣∣∣∣ 2β

Q1 ·Q2 · · ·QT
− 1

∣∣∣∣∣ ≤ T · 2−l1 = 2lg T−l1 < 2−l4 .

This completes the proof of the theorem.
Thus, as long as 2l4 is sufficiently large (e.g. l4 > 20),
the property of multiplicative homomorphism will be
satisfied.

Theorem 2 shows the additive homomorphism of our con-
struction, which states that

< Q1 >1,l1 + < Q2 >1,l1 + · · ·+ < QK >1,l1

'< Q1 +Q2 + · · ·+QK >2,l2 .

The key to the proof is similar to that of Theorem 1.
Theorem 2. The constructed MASE satisfies the additive ho-

momorphism. Formally, for any l1, l2,K ∈ N satisfying
l2 + T · Lmax + lgK + 1 ≤ τ , and Q1, Q2, . . . , QK ∈ R+

satisfying | lgQi| ≤ T · Lmax for all i ∈ [1,K],

∣∣∣∣∣Dectype-2
sk,l2

(< Q1 >1,l1 + · · ·+ < QK >1,l1)

Q1 +Q2 + · · ·+QK
− 1

∣∣∣∣∣
< 2−l4 , (5)

where l4 is defined as l4 = min{l1 − 1, δi, l2 + lgQi −
δi}−3, and δi are defined as the values in executing PAdd.

Proof 2. We first prove no overflow occurs during the
calculations, i.e., the constraints 2δi ≤ 2τ−1 and 2l2 ·
(Q1 + · · · + QK) ≤ 2τ−1 are satisfied. From the setting
of the values of δi, l1, l2, we can ensure that lg δi ≤ τ − 1
and l2 + T · Lmax + lgK + 1 ≤ τ , which guarantees the
constraints.
In order to prove Equation (5), we need to prove∣∣∣∣ β

Q1 +Q2 + · · ·+QK
− 1

∣∣∣∣ < 2−l4 ,

where β = Dectype-2
sk,l2

(< Q1 >1,l1 + · · ·+ < QK >1,l1) =

(b2l2 · 2d1c · b2δ1c+ · · ·+ b2l2 · 2dK c · b2δK c) · 2−l2−r .
From di = (b2l1 lgQic+b−δi·2l1c)·2−l1 and the equation

2l1 lgQi − δi · 2l1 − 2

≤ 2l1 lgQi − δi · 2l1 ,

we have the following:

lgQi − δi − 2/2l1 ≤ di ≤ lgQi − δi.

Let βi = b2l2 · 2dic · b2δic, we arrive at

(2l2 · 2lgQi−δi · 2−2
1−l1 − 1) · (2δi − 1)

≤ βi
≤ 2l2 ·Qi · 2r.

As we also know

(2l2 · 2lgQi−δi · 2−2
1−l1 − 1) · (2δi − 1)

= 2l2 ·Qi · 2r · (2−2
1−l1 − 2−2

1−l1 · 2−δi

− 1

2l2Qi · 2−δi
+

1

2l2Qi · 2r
)

Let

α = 2−2
1−l1 −2−2

1−l1 ·2−δi−− 1

2l2Qi · 2−δi
+

1

2l2Qi · 2r
,

and we can deduce that

1− α ≤ 2−l4

where l4 is defined as

l4 = min{l1 − 1, δi, l2 + lgQi − δi} − 3.

So,∣∣∣∣ β

Q1 +Q2 + · · ·+QK
− 1

∣∣∣∣
= 1− β1 + · · ·+ βK

2l2 · (Q1 + · · ·+QK)

≤ 1− α
≤ 2−l4 .

Thus, as long as 2l4 is sufficiently large (e.g. the party B can
ensure that min{l1−1, δi, l2+lgQi−δi}−3 > 20 and takes
l4 = 20), the property of additive homomorphism will be
satisfied.

Theorem 3 shows that if 2min(l1−1,l2−T ·Lmax) is suffi-
ciently large, the correctness of decryption algorithm Dec
is satisfied.

Theorem 3. For allQwhich are computed from the multiply-
add structure, and c = Enctype-i

pk,li
(Q), it satisfies that∣∣∣∣∣Dectype-i

sk,li
(c)

Q
− 1

∣∣∣∣∣ < 2−min(l1−1,l2−T ·Lmax).

Proof 3. Suppose c = Enctype-i
pk,li

(Q).
1). For the case of i = 1,

Q · 2−2
−l1 ≤ Dectype-1

sk,l1
(c) ≤ Q · 22

−l1
,

which means

2−2
−l1 ≤

Dectype-1
sk,l1

(c)

Q
≤ 22

−l1
.

Then from inequality (4) we get∣∣∣∣∣Dectype-1
sk,l1

(c)

Q
− 1

∣∣∣∣∣ ≤ 1

2l1−1
.

2).For the case of i = 2,

Q− 2−l2 ≤ Dectype-2
sk,l2

(c) ≤ Q+ 2−l2 ,

which means

1− 1

Q · 2l2
≤

Dectype-2
sk,l2

(c)

Q
≤ 1 +

1

Q · 2l2
.
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Because Q is computed from Q11Q12 · · ·Q1T + · · · +
QK1QK2 · · ·QKT where Qij ∈ R+ and 2−Lmax ≤ Qij ≤
2Lmax , we get∣∣∣∣∣Dectype-2

sk,l2
(c)

Q
− 1

∣∣∣∣∣ ≤ 1

Q · 2l2
≤ 1

(2−T ·Lmax) · 2l2
=

1

2l2−T ·Lmax
.

This completes the proof.

Theorem 4 shows that the protocol PAdd securely com-
putes the function Add. In this paper, all two-party compu-
tation protocols work in the semi-honest model as described
in [20], where all adversaries are curious-but-honest. In
other words, these adversaries act honestly according as
per protocol specifications, but they may attempt to learn or
infer as much private information about the input/output of
the other party by passively observing the entire transcript
/ communication.
Theorem 4. Our constructed protocol PAdd securely com-

putes the function Add in the semi-honest model if
Paillier cryptosystem is semantically secure.

Proof 4. Now we follow the two-party computation’s
paradigm to show that there exist two PPT simulators
that can simulate party A and B’s views, separately.
Simulate party B’s view. In the protocol’s
execution, party B’s view is ViewB =(
pk, c1, . . . , cK ; {δi}i∈[1,K]; {êi}i∈[1,K]

)
. The simulator

SB , on input pk, c1, . . . , cK , ĉ, performs the following:
(1). Randomly generate the blinding pairs {(r′i, δ′i)}i∈[1,K]

as in the real protocol PAdd.
(2). Randomly generate {ĉ′i}i∈[1,K] such that ĉ = ĉ′1 ·

ĉ′2 · · · ĉ′K mod n2.

(3). Compute ê′i = (ĉ′i)
b2δ
′
ic
−1

, where b2δ′ic
−1
∈ Z∗n is the

inverse of b2δ′ic mod n.
(4). Output

S-ViewB =
(
pk, c1, . . . , cK ; {r′i, δ′i}i∈[1,K]; {ê′i}i∈[1,K]

)
.

Since Paillier cryptosystem is semantically secure, and the
constraint

ĉ = (ê′1)
b2δ
′
1c · (ê′2)b2

δ′2c · · · (ê′K)b2
δ′K c mod n2

is also satisfied, it follows that both distributions ViewB
and S-ViewB are computationally indistinguishable.
Simulate party A’s view. In the protocol’s execution,
party A’s view is ViewA =

(
sk, {ei}i∈[1,K]

)
. SA, on input

sk, performs the following:
(1). Randomly generate K Paillier ciphertexts {e′i}i∈[1,K].
(2). Output S-ViewA =

(
sk, {e′i}i∈[1,K]

)
Since the plaintext in ei is blinded by the random factor−δi,

both distributions ViewA and S-ViewA are indistinguish-
able. Formally, the integer b2l1 · lgQic, which has at most
l1 + lg(T ·Lmax) bits, is blinded by an integer b−δi · 2l1c,
which has l1 + lg(τ − 1) bits. So the distributions are
distinguishable with an advantage of T ·Lmax

τ−1 at most.

5 A PRIVACY-PRESERVING NAIVE BAYES CLASSI-
FIER WITH MINIMUM BAYES RISK (MBR-PPNBC)
Based on our MASE, we give a simple and elegant construc-
tion for the MBR-PPNBC. In the proposed construction, a
user with personal data x and a classifier with classification

secure NB classification
with MBR

core technique

User
Classification 

server

                   1, ,

Pr( , ) Pr( ) Pr( | )i i j i
j

i k

x C C x C



 


Enc(par)x

Multiplicative  
structure

argmin

 argmin s
s

LP

,
1

1, ,

= Pr( , )

       

k

s i s i
i

k

LP L x C

s







Additive  structure

Order-preserving      

            MAS
Encryption

Multiplicative 
homomorphism

Additive 
homomorphism

Fig. 3. Architecture of the MBR-PPNB classifier.

parameter par can collectively output a private prediction
for the user. We depict the architecture of our MBR-PPNBC
and the key technique in Figure 3.

5.1 Construction
Intuition. A MBR-PPNB classifier wishes to
securely compute argmins∈[1,k]LPs, where LPs
has a multiply-add structure (i.e. LPs =∑k
i=1,i6=s

(
Li,s Pr(Y = Ci)

t∏
j=1

Pr(Xj = xj |Y = Ci)

)
).

The server first uses the encryption algorithm of MASE
to encrypt its secret parameters and transfers them to
the user. Then, the user utilizes the multiplicative and
additive operators to generate the encryption of LPs’s for
i ∈ [1, k]. Finally, the prediction k∗ can be obtained by a
secure comparison protocol being applied on the ciphertext
of LPs’s. The correctness of k∗ can be guaranteed by the
order-preservation property of MASE, and the security can
be guaranteed by the security of MASE.

MBR-PPNBC construction. The protocol is split into an
online phase and an offline phase. In the latter phase, the
server undertakes preparatory activities prior to the user
launching the classification service request. When the input
x is known (i.e. a user initiates the request), the online phase
will commence. In this phase, the server and user utilize
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the result of the pre-computation and the execution of the
protocol is relatively brief. The use of such an online/offline
technique is generally to improve the efficiency of network
protocols.
Public input: l1, l2 are public precision parameters.
Server’s input: The server has its NB classifier’s se-
cret parameters {Pr(Y = Ci)}i∈[1,k], {Pr(Xj = b|Y =
Ci)}b∈[1,kj ],i∈[1,k],j∈[1,t], and the MASE’s secret key sk as
input.
User’s input: The user has his/her personal data x =
(x1, . . . , xt), and the MASE’s public key pk as input.
Output: The prediction k∗ with minimum expected loss is
given as the output to the user.

Collectively, both server and user execute the following
protocol π.
1) Off-line stage. The server computes < Pr(Xj =
b|Ci) >1,l1 and < Pr(Y = Ci) >1,l1 for all i ∈ [1, k], j ∈
[1, t], b ∈ [1, kj ] using the type-1 encryption algorithm, and
transmits them to the user.
2) On-line stage.
2.1 For all i, s ∈ [1, k], the user computes

P̃i =< Pr(Y = Ci) >1,l1 ·
t∏

j=1

< Pr(xj |Ci) >1,l1 (6)

and
L̃Pi,s =< Li,s >1,l1 ·P̃i (7)

using the multiplicative operator.
2.2 The server and the user jointly execute

L̃Ps ← PAdd({L̃Pi,s}i∈[1,k],i6=s) (8)

in parallel for all s ∈ [1, k]. Here the server/user play
the roles of Party A/Party B respectively.

2.3 The server and the user jointly execute

k∗ ← Pargmin({L̃Ps}s∈[1,k]), (9)

where Pargmin is a two-party protocol to jointly compute
argmin over encrypted data. Here we adopt the secure
comparison protocol proposed by Bost et al., whose
details and security proof can be found in [10]. The
protocol proposed in [10] is secure in the semi-honest
model and has 8(k − 1) rounds of communication.
The above proposed paradigm also works if we replace

MASE with FHE, as long as the FHE supports real-valued
plaintext, e.g., Kim et al.’s FHE-like encryption [13]. The
only difference when applying FHE is that we should
instead use multiplicative and additive homomorphism
of FHE to accomplish the step 2.1 and 2.2 in the MBR-
PPNB protocol. We’ll see in Section 7 that the MASE based
paradigm outperforms the FHE-based one.

5.2 Security and Efficiency
Correctness. We show that the MBR-PPNB classifier outputs
the correct prediction satisfying Equation (1).

From Equation (6), (7) and the multiplicative homomor-
phism, we have

L̃Pi,s '< Li,s · Pr(Y = Ci) ·
t∏

j=1

Pr(xj |Ci) >1,l1 (10)

From Equation (6), (10) and the additive homomorphism,
we have

L̃Ps =
∑
i6=s

L̃Pi,s '<
∑
i6=s

(
Li,s · Pr(Y = Ci) ·

t∏
j=1

Pr(xj |Ci)

)
>2,l2

(11)
By the order-preserving property,

k∗ = Pargmin({L̃Ps}s∈[1,k]) = argmins∈[1,k]{LPs},

where

LPs =
∑
i6=s

Li,s · Pr(Y = Ci) ·
t∏

j=1

Pr(xj |Ci)

 .
Thus, the output of the protocol is what we expected.
Security. Theorem 5 describes the privacy–preserving prop-
erty of the protocol in the semi-honest model.
Theorem 5. The MBR-PPNBC protocol πPAdd,Pargmin securely

computes FMBR-PPNBC in the semi-honest model.

Proof 5. To prove this theorem, we only need to show that
πAdd,argmin securely computes FMBR-PPNBC in the semi-
honest model. Since PAdd securely computes Add, and
Pargmin securely computes argmin, then by the composi-
tion theorem [12], [32], we can conclude that πPAdd,Pargmin

securely computes FMBR-PPNBC in the semi-honest model.
Now we show that there exist two PPT simulators that
can simulate the user and the server’s view in executing
πAdd,argmin.

Simulate the user’s view. In the protocol’s execution,
the user’s view is ViewU = (pk;x; {< Pr(Xj =
b|Ci) >1,l1}i∈[1,k],j∈[1,t],b∈[1,kj ], {< Pr(Y = Ci) >1,l1

}i∈[1,k], {L̃Ps}s∈[1,k]; k∗). The simulator SU , on input
pk, x, k∗ performs the following:

(1). Randomly generate k∗(
∑t
j=1 kj+1) type-1 ciphertexts:

{e(b)i,j }i∈[1,k],j∈[1,t],b∈[1,kj ], {ei}i∈[1,k],
(2). Randomly generate k type-2 ciphertexts: {êi}i∈[1,k],
(3). Output S-ViewU =

(pk;x; {e(b)i,j }i∈[1,k],j∈[1,t],b∈[1,kj ], {ei}i∈[1,k], {êi}i∈[1,k]; k∗).
Since the MASE cryptosystem is semantically
secure, both distributions ViewU and S-ViewU are
computationally indistinguishable.

Simulate the server’s view. In the (Add, argmin)-hybrid
model where we view Add and argmin as ideal func-
tionalities, the server receives nothing in executing the
protocol πAdd,argmin. Thus, the simulator SS for the server
is trivially constructed in the sense that it only outputs
the server’s initial input and random input (coins) used.

Efficiency. The computation/communication cost of above
MBR-PPNB protocol is summarized as follows. The anal-
ysis is applicable to both MASE-based and FHE-based
paradigms. Let te, tm, ta denote the time of encryption,
multiplication, and addition per ciphertext of the basic en-
cryption scheme, and let le denote the length of a ciphertext.
Computational cost: O(te · k(k1 + .. + kt)) for Server, and
O(ta · k2 + tm · (k2 + kt)) for User. Communicational cost:
O(le · k(k + k1..+ kt)) for Server, and O(le · k) for User.

In addition, MASE based paradigm has 1 round of offline
communication and 8k − 6 rounds of online communica-
tions, namely: 2 rounds in the PAdd protocol and 8(k − 1)
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rounds in the argmin protocol. The communication round
of the FHE-based MBR-PPNB has two less rounds than the
MASE based paradigm (the FHE needs no communications
in the Add operation).

Elmehdwi et al.’s AHE-based approach uses an interac-
tive method to obtain multiplicative homomorphism. Their
method needs 2dlg ke communication rounds to perform a
batch multiplication of k ciphertexts [51]. Thus the commu-
nication rounds of their approach is 2dlg(t + 1)e + 8(k −
1), and the communication/computational complexity are
O(le · k(4k+4t+ k1..+ kt)) and O(te · k(k1 + ..+ kt) + ta ·
k2 + tm · (k2 + kt)) respectively.

6 PRIVACY-PRESERVING SVM (PPSVM) CLASSI-
FIERS

We show another application of the MASE: a privacy-
preserving SVM classifier. The SVM classifier we consider
in this section is a binary classifier and the kernels we use
is a set of polynomial kernels of form K(z, x) = 〈z, x〉p =
(z1 · x1 + z2 · x2 + · · ·+ zt · xt)p, p ≥ 1, p ∈ N.

6.1 Construction

Intuition. A PPSVM classifier wishes to securely compute
y = sign

(∑m
i=1 αiy

(i)K(z(i), x) + b
)
. We first convert the

problem into computing argmaxi∈{+1,−1}{γ+1, γ−1} such
that γi has a multiply-add form, and then we can apply our
MASE paradigm. Here we adopt the server-centric model
in order to reduce transmissions. In protocol construction,
the user first uses the type-1 encryption algorithm of MASE
to encrypt its feature values and transfers them to the
classification server. At the server side, the server utilizes
the multiplicative and additive operators to generate the
encryption of γi’s for i ∈ {+1,−1}. Finally, the prediction
y can be obtained by a secure comparison protocol being
applied on the ciphertext of γ+1 and γ−1. The correctness of
y can be guaranteed by the order-preservation property of
MASE, and the security can be guaranteed by the security
of MASE.

Converting to the multiply-add structure. To apply
MASE, we need to convert the SVM classifier into a
multiply-add structure first. When the parameter p of the
kernel equals to 1, the classifier is already an additive
structure and the construction is trivial. In the following we
focus on the case of p > 1.

Firstly, the task of computing
sign

(∑m
i=1 αiy

(i)K(z(i), x) + b
)

is equivalent of computing
argmaxj∈{0,1}{βj} where β1 =

∑m
i=1 αiy

(i)〈z(i), x〉p + b
and β0 = 0. This is derived from the definition of the SVM
algorithm, which predicts the new sample x’s label as:

Predicted label of x =

{
+1 if β1 ≥ β0,
−1 if β1 < β0.

Denote S = {i : 1 ≤ i ≤ m,αi 6= 0} be the index
set of support vectors, and let c+j1..jp =

∑
i∈S,y(i)=1 αiz

(i)
j1
·

z
(i)
j2
· · · z(i)jp , c−j1..jp =

∑
i∈S,y(i)=−1 αiz

(i)
j1
· z(i)j2 · · · z

(i)
jp

. To

ensure that each item in the formula has a positive value,
we rearrange the formula as follows. 1

argmax{
m∑
i=1

αiy
(i)〈z(i), x〉p + b, 0}

= argmax{
∑

i∈S,y(i)=1

αi〈z(i), x〉p + b,
∑

i∈S,y(i)=−1

αi〈z(i), x〉p}

=

{
argmax{β+ + |b|, β−} if b > 0,

argmax{β+, β− + |b|} if b < 0
(12)

where

β+ =
t∑

j1,..,jp=1

c+j1..jpxj1 · · ·xjp (13)

and

β− =
t∑

j1,..,jp=1

c−j1..jpxj1 · · ·xjp (14)

are both multiply-add structures, and we are done.

PPSVM construction. The protocol is in a server-centric
model and is also divided into on-line/off-line phases.
Public input: l1, l2 are public precision parameters.
Server’s input: The server has its SVM classifier’s secret
parameters par =

(
{αi, z(i), y(i)}1≤i≤m,αi 6=0, b

)
, and the

MASE’s public key pk as input.
User’s input: The user has his/her personal data x =
(x1, . . . , xt), and the MASE’s private key sk as input.
Output: The prediction y denoting the sample x’s label is
given as the output to the user.

The server and user execute the following protocol π.
1) Off-line stage. The server computes c̃+j1..jp =<∑
i∈S,y(i)=1 αiz

(i)
j1
· z

(i)
j2
· · · z(i)jp >1,l1 , c̃−j1..jp =<∑

i∈S,y(i)=−1 αiz
(i)
j1
· z(i)j2 · · · z

(i)
jp
>1,l1 , and b̃ =< |b| >1,l1 for

all j1, . . . , jp ∈ [1, t] using the type-1 encryption algorithm.
2) On-line stage.
2.1 The user computes < xj >1,l1 for all j ∈ [1, t] and

transmits them to the server.
2.2 For all j1, . . . , jp ∈ [1, t], the server computes

β̃+
j1..jp

= c̃+j1..jp · < xj1 >1,l1 · · · · < xjp >1,l1 (15)

and

β̃−j1..jp = c̃−j1..jp · < xj1 >1,l1 · · · · < xjp >1,l1 (16)

using the multiplicative operator.
2.3 The server and user jointly execute{

γ̃+1 ← PAdd({β̃+
j1..jp
}j1,..,jp∈[1,t] ∪ b̃)

γ̃−1 ← PAdd({β̃−j1..jp}j1,..,jp∈[1,t] ∪ ⊥̃)
(17)

if b > 0, or{
γ̃+1 ← PAdd({β̃+

j1..jp
}j1,..,jp∈[1,t] ∪ ⊥̃)

γ̃−1 ← PAdd({β̃−j1..jp}j1,..,jp∈[1,t] ∪ 0̃)
(18)

1. Without loss of generality, we assume before the training phase, we
have already converted the feature values of each sample to positive
values by a standard procedure. For example, to achieve this we can
add a positive constant to each feature value.
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if b < 0. Here the server/user play the roles of Party
B/Party A respectively, and ⊥̃ denotes that the party
B (i.e., the server) selects a random dummy message’s
encryption, which does not really be added to the final
result of addition.

2.4 The server and user jointly execute

y ← Pre-argmax(γ̃+1, γ̃−1), (19)

where Pre-argmax is a reversed argmax protocol, which
securely outputs the indicator y ∈ {+1,−1} of the
largest element to the private-key holder (in our case,
the user obtains the final result). Here Pre-argmax can be
easily derived from the reversed encrypted comparison
protocol proposed by Bost et al. (Appendix A.2 of [10]).

6.2 Security and Efficiency

Correctness. We show that the PPSVM classifier outputs the
correct prediction satisfying Equation (2).

From Equation (15), (16) and the multiplicative homo-
morphism, we have

β+
j1,..,jp

'<
( ∑
i∈S,y(i)=1

αiz
(i)
j1
·z(i)j2 · · · z

(i)
jp

)
·(xj1 · · ·xjp) >1,l1

(20)
and

β−j1,..,jp '<
( ∑
i∈S,y(i)=−1

αiz
(i)
j1
·z(i)j2 · · · z

(i)
jp

)
·(xj1 · · ·xjp) >1,l1 .

(21)
From Equation (13), (14), (17), (18) and the additive homo-
morphism, we have{

γ̃+1 '< β+ + |b| >2,l2

γ̃−1 '< β− >2,l2

(22)

if b > 0, and {
γ̃+1 '< β+ >2,l2

γ̃−1 '< β− + |b| >2,l2

(23)

if if b < 0.
By Equation (12) and the order-preserving property,

y = Pre-argmax(γ̃+1, γ̃−1) = argmax{γ+1, γ−1}

= sign
( m∑
i=1

αiy
(i)K(z(i), x) + b

)
where γ+1 = Dec(γ̃+1) and γ−1 = Dec(γ̃−1). Thus, the
output of the protocol is what we expected.
Security. Theorem 6 describes the privacy–preserving prop-
erty of the protocol in the semi-honest model.

Theorem 6. The PPSVM protocol πPAdd,Pre-argmax securely com-
putes FPPSVM in the semi-honest model.

Proof 6. As in proving Theorem 5, we only need to show
that πAdd,re-argmax securely computes FPPSVM in the semi-
honest model.
Now we show that there exist two PPT simulators that
can simulate the user and the server’s view in executing
πAdd,re-argmax.

Simulate the server’s view. In the protocol’s execution, the
server’s view is ViewS = (pk; {αi, z(i), y(i)}1≤i≤m, b; {<

xj >1,l1}j∈[1,t], γ̃+1, γ̃−1). The simulator SS , on input
(pk, {αi, z(i), y(i)}1≤i≤m, b) performs the following:

(1). Randomly generate t type-1 ciphertexts: {ej}j∈[1,t],
(2). Randomly generate 2 type-2 ciphertexts: ζ+, ζ−,
(3). Output S-ViewS =

(pk; {αi, z(i), y(i)}1≤i≤m, b; {ej}j∈[1,t], ζ+, ζ−).
Since the MASE cryptosystem is semantically secure,
both distributions ViewS and S-ViewS are computation-
ally indistinguishable.

Simulate the user’s view. In the (Add, re-argmax)-hybrid
model where we view Add and re-argmax as ideal
functionalities, the user’s view is ViewU = (pk, sk;x; y)
where (pk, sk, x) is the input and y is the output. Thus,
the simulator SU for the user is trivially constructed in
the sense that it just outputs S-ViewS = (pk, sk;x; y).

Efficiency. The computation/communication cost of above
MBR-PPNB protocol is summarized as follows. Since the
classifier is a multiply-add structure, the following anal-
ysis is applicable to both MASE based and FHE-based
paradigms. The notations te, tm, ta, le are defined in Section
5.2. Define ξ = (p+t−1)!

p!(t−1)! , which represents the number of
different c̃+j1..jp or c̃−j1..jp . Computational cost: O(ξ · (te +
p · tm + ta)) for Server, and O(t · te + 2ξ · ta) for User.
Communicational cost:O(ξ ·le) for Server, andO((t+2ξ)·le)
for User.

In addition, MASE-based paradigm has a constant round
of communication. It has a total of 9 rounds, namely: 1
round in transmitting the user’s data, 2 rounds in the
PAdd protocol and 6 rounds in the re-argmax protocol. The
communication round of the FHE-based PPSVM has two
less rounds than the MASE based paradigm (the FHE needs
no communications in the Add operation).

For Elmehdwi et al.’s AHE-based approach, the com-
munication rounds is 12 + 2dlg pe, and the communica-
tion/computational complexity are O(le · (8pξ + t)) and
O(2ξ · (te + p · tm + ta) + te · t) respectively.

7 EVALUATION

In the following, we first give a comparison of the perfor-
mance of the FHE and our MASE. Then we evaluate our
MASE based MBR-PPNB and PPSVM protocol.

The evaluation is performed on a personal computer
(PC) with a 4-core 2.5GHz Intel Core i5 CPU and 4GB RAM.
The algorithms are implemented in C++ and compiled with
g++ version 5.4.0 on a 64-bit version of Ubuntu (ubuntu-
16.04-desktop-amd64). The program uses the GNU Multi-
Precision (GMP) library [1] (version 6.1.1) and the OpenSSL
Library [2] (version 1.0.2g).

Our protocol works well with the floating-point repre-
sentation system of real numbers. In our implementation,
IEEE 754 standard is used to store floating point values,
which is a double-precision floating-point format. This rep-
resentation is simple and convenient. Compared to the
fix-point representation system, where a number must be
represented as shared integers for multiplication [39], our
approach is very efficient and achieves good accuracy. In
addition, the modulus n of the Paillier cryptosystem is 2048
bits long. Thus in general, our implementation has security
equivalent to integer factorization cryptography’s 2048 bit-
key security.
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Schemes te tm ta le

MASE 11.2 ms 0.006 ms 30.1 ms 0.5KB
FHE [13] 856 ms 2573 ms 41 ms 32KB

TABLE 1
Comparison between our proposed MASE and FHE [13].

Schemes Additive
round

Multiplicative
round

Ciphertext
expansion

Encryption
time

AHE [51]
(parallel)

0 2dlg ke 2 10.7 ms

FHE [13] 0 0 128 856 ms
MASE 2 0 2 11.2 ms

TABLE 2
Comparison of our proposed MASE with FHE and PHEs.

7.1 Comparison between MASE and FHE

As shown in Sections 5.2 and 6.2, the MASE based clas-
sifier and the FHE-based classifier have the same asymp-
totic complexity, except that they have different values of
te, tm, ta, le and the FHE-based paradigm has two less com-
munication rounds. In Table 1, we present the comparative
summary for the performance of FHE (Cheon et al. [13] ,
ASIACRYPT’2017, which also supports real-valued plain-
text) and the Paillier-based MASE using the same security
level and setting (we take 2048 bit modulus for MASE and
217 ring dimension for FHE). Findings indicate that MASE
outperforms FHE-based solutions at the price of adding two
communication rounds in PAdd.

7.2 Comparison between MASE and PHEs

Our proposed MASE finds good tradeoff between compu-
tation efficiency and communication interactions. In partic-
ular, it can significantly reduce communication rounds of
batch addition/multiplication. For AHE, 2dlg ke communi-
cation rounds are needed for a batch multiplication of k
ciphertexts [51]. For MHE, to our knowledge there are no
current methods to obtain additive homomorphism.

Our proposed MASE scheme optimizes this to only 2
communication rounds for batch addition, while no inter-
actions are needed for multiplication. Table 2 in Section 7
clearly shows this advantage.

7.3 Evaluation of MBR-PPNB Protocol

We use two real world datasets from UCI Machine Learning
Repository [15] to evaluate the performance of our protocol.
The choice of these two medical datasets is due to the need
for privacy protection in medical and healthcare industry.
For the rest of this section, t, kj and k respectively denote
the number of features, the number of possible values of the
j-th feature, and the number of classes of the Y -attribute
(i.e. target attribute).

1) Dataset 1: cardiotocography dataset. In this dataset, t =
21, k = 3, and we reduce the real value feature type to
the categorical type such that k1 to k21 take the values of
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Fig. 4. Average loss comparison of the NB, MBR-NB and MBR-PPNB
classifiers

9, 9, 9, 8, 8, 8, 8, 8, 9, 2, 5, 8, 8, 8, 9, 11, 9, 8, 8, 9, 3. The
loss matrix is assigned to

L =

 0 1 2
50 0 1
100 50 0

 .
2) Dataset 2: lymphography dataset. In this dataset, t =

18, k = 4, and k1 to k18 take the values of 4, 2, 2, 2, 2, 2,
2, 2, 4, 4, 3, 4, 4, 8, 3, 2, 2, 8. The loss matrix is assigned to

L =


0 1 2 3
30 0 1 2
70 30 0 1
100 50 30 0

 .
Risk reduction. To show that the MBR-PPNB classifier
reduces the Bayes risk, i.e., the expected misclassification
loss, we compare the average loss of the three methods (i.e.
NB, MBR-NB and MBR-PPNB). The comparative summary
is presented in Figure 4. Here, the average loss is defined as

lossa =

∑
i∈[1,m] Lj(i),s(i)

m
,

where j(i) and s(i) represent the true category and the
predicted category of the i-th testing sample respectively,
and the dataset has m testing samples.
Classification accuracy. Findings from our evaluation show
that the MBR-PPNB classifier has almost the same accuracy
as the original MBR-NB classifier. First of all, the final
outputs (i.e. predicted k∗) of the MBR-PPNB classifier and
the MBR-NB classifier are the same for all samples in both
datasets. In addition, in the following we will show that the
intermediate results of the two methods are also consistent.

Let α̂ be the computed value from the MBR-PPNB
classifier, and α be the corresponding value computed from
the MBR-NB classifier. We define the relative error between
these two methods as e =

∣∣ α̂
α − 1

∣∣. We also define the global
maximum error as

em = max
i∈[1,m],s∈[1,k]

∣∣∣∣∣∣ L̂P
(i)

s

LP
(i)
s

− 1

∣∣∣∣∣∣ ,
where L̂P

(i)

s denotes the decrypted LPs value of the i-th
sample from the MBR-PPNB classifier and the dataset has
m testing samples. Similarly, we define the global average
error as

ea =

∑
i∈[1,m],s∈[1,k]

∣∣∣∣ L̂P (i)

s

LP
(i)
s

− 1

∣∣∣∣
m · k

.

Authorized licensed use limited to: Newcastle University. Downloaded on October 11,2020 at 09:48:06 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3009221, IEEE
Transactions on Knowledge and Data Engineering

14

Dataset T Lmax K l2

1 23 10 2 1816
2 20 10 3 1845

TABLE 3
Parameters for MBR-PPNB Protocol on two datasets.
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Fig. 5. Relative error between MBR-PPNB and MBR-NB on Dataset 1.

In order to ensure security and avoid overflow, we set
l2 to a fixed value l2 = bτ − 1 − T · Lmax − lgKc that
satisfies the constraints of Theorem 1 and Theorem 2. The
parameters for the two datasets are summarized in Table 3.
To determine the appropriate parameter l1 that satisfies the
accuracy requirement, we experiment with different values.
The global maximum error em and the global average error
ea with different l1 performed on Dataset 1 and Dataset 2
are respectively shown in Figures 5 and 6. Our experiments
show that the parameter l1 affects the accuracy of the
multiplication. For both datasets, selecting l1 = 50 has a
global maximum error less than 10−6; thus it satisfies the
accuracy requirement.
Computational cost. We now evaluate the computational
cost for the MBR-PPNB classifier. For a dataset with k
classes of Y -attribute, the protocol has 8k − 5 rounds of
communications. For Dataset 1 (with k = 3), the MBR-PPNB
classifier has 19 rounds of communications; and for Dataset
2 (with k = 4), the classifier has 27 rounds. The computation
and communication overhead are summarized in Figure 7.
Comparison among different approaches for MBR-PPNB
We compare the performance among different approaches
for constructing MBR-PPNB. For AHE-based approach,
Elmehdwi et al. [51], [16] introduced a method to obtain
multiplicative homomorphism through an interactive ap-
proach on AHE, which can used to securely compute the
multiply-add structure. As we stated before, FHE-based
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Fig. 6. Relative error between MBR-PPNB and MBR-NB on Dataset 2.
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Fig. 7. Computational cost of the MBR-PPNB classifier for making a
classification. Dataset 1 has t = 21, k = 3, kj = 3 to 11 and Dataset 2
has t = 18, k = 4, kj = 2 to 8.

approach [27] is another alternative solution. To our knowl-
edge, there is no MHE-based approach to solve this prob-
lem. The comparison is listed in Table 4, and it shows that
our proposed MASE-based approach finds good tradeoff
between computation efficiency and communication inter-
actions.

7.4 Evaluation of PPSVM Protocol

We use a non-linearly separable dataset to evaluate the
PPSVM protocol. The Iris dataset is a classic dataset in the
pattern recognition literature [18]. We set t = 2, i.e., we
only use two key features: sepal length and petal width. We
also reduce it into a dataset with only two categories: the
virginica iris and non-virginica iris.

To evaluate performance with different degree of the
polynomial kernel, we take p = 2, 4 and 6. The values of
parameters are shown in Table 5.
Classification accuracy. As with the NB classifier, our
PPSVM classifier and the original SVM classifier have the
same final output for all testing samples. The classification
accuracy for p = 1, 2, 4, 6 is shown in Table 6. We can see
that taking p ≥ 2 can significantly improve the classification
accuracy compared to p = 1 (the case of p = 1 does not
require the use of MASE). In the following, we will show
that the intermediate results of the two methods are also
consistent.
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Dataset 1 Dataset 2
MBR-PPNB Communi- Time(s) Round Communi- Time(s) Round

Protocols cation(KB) Offline Online cation(KB) Offline Online
AHE-based 445.98 10.19 4.41 27 380.71 3.32 5.39 35
FHE-based 3118592.02 241.27 100.52 17 1707140.71 118.44 124.01 25

MASE-based 185.74 10.3 0.99 19 153.99 3.36 1.5 27
TABLE 4

Comparison among different approaches for MBR-PPNB

p T Lmax K l2

2 3 10 5 2014
4 5 10 17 1992
6 7 10 65 1970

TABLE 5
Parameters for PPSVM Protocol with different p.

Phase p = 1 p = 2 p = 4 p = 6

Training 79.17% 91.67% 94.17% 94.17%
Prediction 90% 96.67% 96.67% 96.67%

TABLE 6
SVM classification accuracy on Iris dataset.

The indicators em, ea (the global maximum/average er-
ror) are defined in Section 7.3. Their evaluations with differ-
ent l1 and p performed on the Iris dataset are respectively
shown in Figures 8, 9 and 10. In general, selecting l1 = 40
achieves a sufficient accuracy (global maximum error less
than 10−4).

Computational cost. The computation and communication
overheads of PPSVM on the Iris dataset are summarized in
Figure 11. One can observe that our protocol is very efficient.
For example at p = 6, the protocol requires less than 0.3
seconds and 20 KB of communication to make a private
prediction. In addition, the PPSVM protocol has a total of
9 rounds, regardless of the values of t and p.

Comparison among different approaches for PPSVM We
compare the performance when AHE-based, AHE-based,
and our MASE-based approaches are used to construct
PPSVM. The comparative summary outlined in Table 7
shows that our MASE-based approach is efficient and its
communication round does not increase with the value p.
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Fig. 8. Relative error between PPSVM and SVM on Iris (p = 2).
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Fig. 9. Relative error between PPSVM and SVM on Iris (p = 4).
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Fig. 10. Relative error between PPSVM and SVM on Iris (p = 6).

8 CONCLUSION

Privacy will be increasingly important, as our society be-
comes more networked and data about individuals are
increasingly digitalized.

In this paper, we presented a new cryptographic tool,
MAS-Encryption (MASE), which is designed to allow one to
securely compute a multiply-add structure for comparative
purposes. Such a tool has several potential applications, for
example to protect the privacy of classifiers with multiply-
add structures. To demonstrate the utility of MASE, we use
two examples, namely: to construct a privacy-preserving NB
classifier with minimal Bayes risk (i.e. MBR-PPNB classifier)
and to construct a privacy-preserving SVM classifier (i.e.,
PPSVM classifier). In order to be practical for real-world
applications, our constructions do not rely on the FHE. We
also proved the security of the two private classifiers, as well
as demonstrating that both classifiers are very efficient.
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