
1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3029845, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XX 2020 1

EncodeORE: Reducing Leakage and Preserving
Practicality in Order-Revealing Encryption

Zheli Liu, Siyi Lv, Jin Li∗, Yanyu Huang, Liang Guo, Yali Yuan and Changyu Dong

Abstract—Order-preserving encryption (OPE) is a cryptographic primitive that preserves the order of plaintexts. In the past few years,
many OPE schemes were proposed to solve the problem of executing range queries in encrypted databases. However, OPE leaks
some certain information (for example, the order of ciphertext), so it is vulnerable to many attacks. Subsequently, order-revealing
encryption (ORE) was proposed by Boneh et al. (Eurocrypt 2015) as a generalization of order-preserving encryption. It breaks through
the limitation of the numeric order of OPE plaintext. It implements ciphertext comparison for any specific form of plaintext through a
publicly computable comparison function. In this work, we aim to design a new ORE scheme which reduces the leakages and
preserves the practicality in terms of ciphertext length and encryption time. We first propose the hybrid model named HybridORE.
Then, we propose an improved scheme named EncodeORE which achieves acceptable security and appropriate ciphertext length.
They both explore the encode strategy of encoding plaintext into different parts and apply suitable ORE algorithms to each part
according to its security characteristics to reduce leakages. Compared with the typical CLWW scheme (FSE 2016) and Lewi-Wu (CCS
2016) in large domain, they have fewer leakages. The experiment shows that the proposed EncodeORE is very practical.

Index Terms—Encrypted database, data privacy, order-preserving encryption, order-revealing encryption.

F

1 INTRODUCTION

Nowadays, the increasing amount of data makes companies
and governments unable to bear the storage of all data
on their own. They are more willing to store their private
data in remote and potentially untrusted servers. In order
to maintain the security of data, encrypted databases have
become an effective way to solve the problems of big data s-
torage and privacy protection, but this sacrifices availability
of the data. Once the data is stored in the server in cipher-
text, it is difficult to query the data without decrypting it.
For supporting various queries in the encrypted database,
many works [1–7] have been proposed. Order-preserving
encryption (OPE) proposed by Agrawal et al. [1] can be
directly deployed into encrypted databases to support range
queries. It is a cryptographic primitive that ensures that the
order of the ciphertext is consistent with the corresponding
order of the plaintext.

The research of OPE has received widespread attention
in the field of database and security. Boldyreva et al. [2]
proposed the first formal security definition of OPE scheme.
They introduced the concept of “best possible” semantic
security, which stated that ciphertext did not reveal any
information outside of the plaintext order. Furthermore, this

• Z. Liu, S. Lv and Y. Huang are with the College of Cyber Science and
the College of Computer Science, Tianjin Key Laboratory of Network
and Data Security Technology, Nankai University, China, 300071. Email:
liuzheli@nankai.edu.cn, lv si yi@163.com, onlyerir@163.com.

• J. Li is with the School of Computer Science, Guangzhou University,
China. E-mail: lijin@gzhu.edu.cn.

• L. Guo is in Huawei Technologies Co., Ltd. Email: blue.guo@huawei.com.
• Y. Yuan is with the institute of Computer Science, University of

Goettingen, 37077 Goettingen, Germany. Emails: yali.yuan@cs.uni-
goettingen.de.

• C. Dong is with School of Computing, Newcastle University, Newcastle
upon Tyne, U.K. Email: changyu.dong@ncl.ac.uk.

Manuscript received May 2, 2020; revised xxx 2020.

paper defined the indistinguishability under an ordered
chosen-plaintext attack (IND-OCPA) and a weaker notion
of security (POPF-CCA security). However, Boldyreva et al.
[2] pointed out that if the scheme is stateless and immutable,
the ideal functionality cannot be achievable. Therefore, in
order to achieve IND-OCPA security, many researchers have
designed some stateful and immutable schemes, like Popa
et al. [8], Kerschbaum et al. [9], and so on. However, the
client storage and heavy frequent interactions make these
schemes not practical.

Notice that OPE scheme still faces attacks [10–12] even
if it reaches IND-OCPA security. Especially, Naveed et al.
[10] have proposed a series of inference attacks against
OPE. These attacks can successfully recover almost all of the
plaintexts while only providing data dumps of encrypted
databases and auxiliary information from public databases.
Based on the existence of the above attacks and security
considerations, Kerschbaum [13] proposed an OPE scheme
(FH-OPE) that can hide the frequency of plaintext. Certainly,
it can resist some inference attacks which are based on
frequency. However, it still faces some sort based attack and
the client storage is heavy. Furthermore, data-driven cyber
security [14–17] is also the focus of protection.

1.1 Order-Revealing Encryption

In order to achieve higher security and improve practicality,
Boneh et al. [18] proposed a more flexible concept called
order-revealing encryption (ORE). ORE can be seen as a
generalization of OPE. ORE achieves higher security by
allowing some unimportant leakages. It is generally be-
lieved that these leakages will not cause a large security
loss. Furthermore, ORE does not limit the ciphertext to any
particular forms. That is, the ciphertext in ORE is not nec-
essarily numerical as OPE scheme. The order of ciphertext
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TABLE 1: Comparison with prior ORE schemes. Let n be the size of input in bits where l1 is the size of value part and l2 is the size of range part.
Let d denote the number of bits per block, h denote the size of property-preserving hash, λ denote the size of PRF output size, and MSDB denote most significant
differing bit. PPH is property-preserving hash, PRF is pseudorandom function, and PRP is pseudorandom permutation.

Scheme Ciphertext length (bit)
Primitive usage

Leakage
Encryption Comparison

CLWW [21] 2n n PRF none MSDB

LEWI-WU-NORMAL [22] n
d
(λ+ n+ 2d+1) + λ

2n
d

PRP, 2n
d
(2d + 1) PRF,

n
d
2d Hash

n
2d

Hash The first differing block

CLOZ [24] n · h n PRF, n PPH, 1 PRP n2 PPH MSDB equality pattern

ENCODEORE 2(l1 + l2) n PRF none MSDB of one part

in ORE is determined by a publicly computable comparison
function. Lots of ORE schemes have been proposed, such
as Wang et al. [19], Cash et al. [20], and so on. Like Cash
et al. [20], most ORE schemes use complex cryptograph-
ic primitives (property preserving Hash, PPH) to reduce
leakage. However, compared with the schemes that only
use symmetric encryption primitives, the scheme of Cash
et al. [20] is not practical in actual scenarios. Therefore,
ORE scheme still faces the tradeoff between practicality and
leakage.

The schemes proposed by Chenette et al. [21] and Lewi
et al. [22] are the two most famous ORE schemes. In 2019,
the evaluations in [23] pointed out that Chenette et al.
[21] (CLWW) is the most efficient ORE scheme. However,
it reveals the most significant differing bit between two
ciphertexts. To further reduce the leakage, Lewi et al. [22]
(Lewi-Wu) proposed two ORE schemes. One is for small
plaintext domain (Lewi-Wu-Small) and the other is for large
plaintext domain (Lewi-Wu-Normal). Lewi-Wu-Small [22]
only leaks the order of plaintext. However, its ciphertext
length increases exponentially with the number of plaintext
domain. On the basis of CLWW [21], Lewi-Wu-Normal [22]
reduces the leakage to the location of the first differing
block. Unfortunately, [23] pointed out that the performance
of Lewi-Wu-Normal [22] decreases exponentially with the
increase of block size, which is mainly due to the exponen-
tial decrease in the number of indexes performed by pseu-
dorandom function (PRF) and pseudorandom permutation
(PRP).

Motivation. We are willing to further reduce leakage
based on Lewi-Wu-Normal [22] and achieve the same per-
formance as CLWW [21]. Therefore, we are committed to
proposing a new ORE scheme which draws on the strengths
of CLWW [21] and Lewi-Wu-Small [22]. We try to combine
the advantages of these two schemes to make a good balance
between leakage and practicality. In detail, our motivations
are 1) presenting a new ORE scheme which achieves ac-
ceptable efficiency, 2) achieving less leakage than Lewi-Wu-
Normal [22] and CLWW [21].

1.2 Our Contributions

In this paper, we propose a new ORE model which can
reduce leakage and preserve practicality based on Lewi-
Wu-Normal [22] and CLWW [21]. Based on the new ORE
model, we propose a new ORE scheme which reduces the
length of the ciphertext. Table 1 shows that our scheme

is more efficient than Lewi-Wu-Normal [22] and CLOZ
[24] in ciphertext length and primitive usage. In particular,
CLOZ uses the property-preserving hash primitive to ob-
tain smoothed CLWW leakage. However, CLOZ has many
limitations that make it difficult to be applied in practice. Its
limitations are reflected in the square number of calls to PPH
and PPH itself. The order of magnitude is more expensive
than any primitive in other schemes. Therefore, we only
make a rough comparison in the Table 1, and will not
elaborate on CLOZ scheme and make detailed comparisons
in the security analysis and performance. We summarize the
contributions in detail as follows.

Hybrid model and encode strategy. In this work, we
present a basic hybrid model named HybridORE to reduce
leakage. Its core idea is to encode the plaintext into the range
part and the value part. The range part indicates the range of
plaintext and it can be mapped to a small domain. The value
part represents the relevant value and it can be expressed in
binary form. These two parts are encrypted and compared
by Lewi-Wu-Small [22] and CLWW [21] respectively. As we
know, the comparison in the range part using Lewi-Wu-
Small [22] does not leak additional information. Meanwhile,
because the value part must be processed by alignment and
other methods to meet the comparison requirements, the
encoded value is no longer equal to the original value. Thus,
it achieves the goal that has fewer leakages than CLWW [21]
and Lewi-Wu-Normal [22].

The improved ORE construction with short ciphertext.
In order to avoid ciphertext expansion caused by Lewi-Wu-
Small [22] in HybridORE and preserve the same level of
leakage, we propose a new scheme named EncodeORE. It
follows the hybrid model HybridORE and achieves stronger
security than CLWW [21]. In order to have short ciphertex
length, it uses CLWW [21] to encrypt two parts together.
Furthermore, as shown in Table 1, it has fewer leakages than
CLWW [21] and Lewi-Wu-Normal [22]. Thus it is a practical
ORE construction with small leakage and short ciphertext.
In particular, with the encode strategy, EncodeORE is more
efficient when the length of the plaintext is different.

Security comparison with other schemes. In terms
of security, HybridORE and EncodeORE leak less private
information than CLWW [21] and Lewi-Wu-Normal [22].
As mentioned before, CLWW [21] leaks the first differing
bit between two different ciphertexts and Lewi-Wu-Normal
[22] reduces the leakage to the location of the first differing
block between two different ciphertexts. HybridORE and
EncodeORE only leak the first differing bit of one part but not
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the whole plaintext in any case. In particular, when compar-
ing two plaintexts with different range part, EncodeORE only
leaks the first differing bit of range part and HybirdORE has
no additional leakage. Furthermore, because we encode the
value part of plaintext, when the value part is different, our
schemes leak less information than CLWW [21] and Lewi-
Wu-Normal [22].

Experimental evaluation. We implement experiments
with EncodeORE for integer domain and run the existing
codes of CLWW [21] and Lewi-Wu-Normal [22]. The length
of the plaintext we set varies from 8 to 64 bits. The exper-
imental results show that when the plaintext size is 8 bits
and the block size of Lewi-Wu-Normal [22] is 2 bits, the
ciphertext length of Lewi-Wu-Normal [22] is the shortest.
At this time, the ciphertext length of Lewi-Wu-Normal [22]
is 22 times that of EncodeORE. When the plaintext size is
64 bits and the block size of Lewi-Wu-Normal [22] is 16 bits,
the ciphertext length of Lewi-Wu-Normal [22] is the longest.
At this time, the ciphertext length of Lewi-Wu-Normal [22]
is about 1800 times that of EncodeORE. Furthermore, the
ciphertext length of EncodeORE is only two bytes longer
than CLWW [21]. The encryption time of EncodeORE is
about 0.9 µs longer than CLWW [21] on average but much
shorter than Lewi-Wu-Normal [22]. In terms of comparison
execution time, it is related to the generation of random
numbers. EncodeORE is much efficient when the range part
of ciphertexts is different.

1.3 Related work

In this section, we describe the existing work on searching
over encrypted data, including order-revealing encryption,
order-preserving encryption, and other related work.

Order-preserving encryption. OPE was first proposed
by Agrawal et al. [1] in 2004. Later, researchers [3, 4, 8, 9, 13,
25–28] have conducted many expansive studies on it. Some
works [4, 28] are devoted to studying the security of order-
preserving encryption. In recent years, many works have
focused on ad hoc OPE schemes [29, 30] which generally
lack formal security analysis. Stateful or interactive OPE
schemes [3, 8, 9, 13, 27] avoid the lower bounds in [2, 4, 8],
however, it is usually impractical in distributed storage
environments. In 2013, Popa et al. [8] constructed the first
order-preserving encryption scheme that can achieve ideal
security, and give a strict security proof. Considering that
the ciphertext database can be updated, Popa et al. [8]
presented a security definition: same-time OPE (st-OPE)
security which is stronger than ideal security.

Order-revealing encryption. In 2014, [31] regarded ORE
as a special case of multi-input functional encryption
(MIFE). In the subsequent works, ORE schemes were con-
structed with various techniques, such as indistinguisha-
bility obfuscation [31–35], cryptographic multilinear maps
[18], symmetric or public key encryption [29, 36], bilinear
mapping [37], and branch functions [38].

The security of ORE is also the focus of research. In
2016, CLWW [21] introduced the general ORE security def-
inition. In detail, CLWW [21] leveraged leakage function to
constrain the security of the scheme. Even it was the most
practical ORE scheme, the leakage is proved to be able to
be further restrained. In 2016, Lewi-Wu [22] proposed two

schemes that satisfied ORE security definition introduced
by CLWW [21] with the leakage of the order of plaintext
or the location of the first differing block. However, the
performance of Lewi-Wu [22] decreased exponentially as
the block size increased and Lewi-Wu [22] would take a
lot of time due to the use of hash primitives. Subsequent
works [19, 24, 39, 40] had conducted many studies on other
information leakages that compromise the confidentiality
and privacy of the entire data. In 2017, Haagh et al. [40]
generalized the cryptographic notion of ORE to arbitrary
functions and did not rely on cryptographic obfuscation or
multilinear map. However, it only allowed to determine
the (partial) ordering of two vectors. In 2018, Wang et al.
[19] further studied the leakage of OPE and ORE and their
forward security. They proposed a practical compilation
framework for achieving forward secure ORE in order to
resist the perniciousness of file injection attack (FIA). Later,
Cash et al. [24] used bilinear maps for a new primitive
called property-preserving hash (PPH) to construct a new
ORE scheme (CLOZ), which could hide the first differing
bit in 2018. However, the complexity and impracticality of
the PPH primitives made it impractical.

Other works on searching over encrypted data. Search-
able symmetric encryption (SSE) [41–44] and property-
preserving encryption (PPE) [25, 45] are proposed to sup-
port query function on encryption databases. In addition,
fully homomorphic encryption (FHE) [46], hidden vector
encryption [47], and oblivious RAMs (ORAM) [48] are also
designed to solve various functional problems in encrypted
databases.

2 PRELIMINARIES

2.1 NOTATIONS
Let [n] denote the set of integers {1, . . . , n} for n ∈ N. In
this paper, [N ] denotes the plaintext domain, [E] denote
the range domain and [V ] denote the value domain. Let λ
denote the security parameter. If f = o(1/λc) for all c ∈ N ,
we can say that function f(λ) is negligible. Let negl(λ)
denote the negligible function in λ. Let x ← D denote
a draw from a distribution D. We review the standard
definition of pseudorandom functions (PRFs) [49]. For a
function F : K × X → Y , if there is no efficient adversary
can distinguish with the outputs of F (k, ·) for a randomly
chosen k

R←− K from that of a truly random function f(·)
from X to Y , we can say that F is a secure PRF.

2.2 ORE DEFINITIONS
An order-revealing encryption (ORE) scheme can be de-
noted as

∏
= (ORE.Setup, ORE.Encrypt, ORE.Compare)

which consists of three algorithms. The algorithms of ORE
are defined over an ordered domain D. The algorithms are
described as follows:

• ORE.Setup(1λ)→sk. The input is the security param-
eter λ. The output is the private key which is used for
encryption.

• ORE.Encrypt(sk,m)→ct. The inputs are private key
sk and plaintext m. The output is the ciphertext ct.

• ORE.Compare(ct1, ct2)→ b. The inputs are two ci-
phertexts ct1 and ct2. The output is a bit b ∈ {0, 1}.
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Correctness. For the security parameter λ, if there
is an ORE scheme

∏
= (ORE.Setup, ORE.Encrypt,

ORE.Compare) which is defined over an ordered domain D
and sk ← ORE.Setup(1λ), then for any messages m1,m2 ∈
D,

Pr[ORE.Compare(ct1, ct2)
= 1 (m1 > m2)]

= 1− negl(λ),
(1)

where ct1, ct2 denote the ciphertexts and ct1 = ORE.
Encrypt(sk, m1), ct2 = ORE.Encrypt(sk, m2).

Security. The ideal security goal for OPE is indistin-
guishability under ordered chosen-plaintext attack (IND-
OCPA) as shown in which means ciphertexts only reveal
the order of the plaintexts, but nothing else. Naveed et al.
[10] proposed that the security proposed by OPE may be
insufficient. Some adversary can use frequency analysis and
sorting of ciphertexts to decrypt OPE encrypted values. In
order to defend against such attacks, Kerschbaum [13] pro-
posed a stronger notion of security IND-FAOCPA as shown
in which hides the frequency of OPE values. For order-
revealing encryption, the ‘’best-possible” security which is
shown in Remark 1 is the notion of indistinguishability
under ordered chosen-plaintext attack (IND-OCPA).

Definition 1. (ORE with Leakage [21]). ORE scheme
can be denoted as

∏
=(ORE.Setup, ORE.Encrypt,

ORE.Compare). Let A = (A1, . . . ,Aq) denote a
polynomial-size adversary and S = (S1, . . . ,Sq) denote
a polynomial-size simulator. Let L denote the leakage
function, sk denote the private key, mi denote the plain-
text, cti denote the ciphertext and st denote the state.
If for A, there exists S such that the outputs of the
two distributions REALORE

A (λ) and SIMORE
A,S,L(λ) are

computationally indistinguishable, ORE scheme
∏

is
secure with the leakage function L. The experiments of
REALORE

A (λ) and SIMORE
A,S,L(λ) are shown in Fig. 1.

Best-possible security [22]. When the leakage function
is only the order of the plaintexts, we can say that the
scheme achieves the best-possible security. It can be formally
described as follows:

Remark 1. Iff ORE scheme achieves the best-possible securi-
ty, the leakage function can be denoted as

LORE
CMP(m1, . . . ,mt) ={(i, j,CMP(mi,mj)|

1 ≤ i < j ≤ t)},
(2)

where mi (1 ≤ i ≤ t) denotes the plaintext. Further-
more, CMP(·, ·) is a comparison function. If mi > mj ,
CMP(mi,mj) returns 1. If mi < mj , CMP(mi,mj)
returns -1. If mi = mj , CMP(mi,mj) returns 0.

2.3 CLWW Scheme

The basic idea of CLWW [21] is implementing ORE from
pseudorandom functions and comparing the ciphertexts bit
by bit. The setup algorithm mainly does some preparation
work to generate a private key sk for pseudorandom func-
tion.

As shown in Fig. 2, during the encryption process, the
plaintext is represented in binary form, and then encrypted.

The binary representation of the plaintext m is b1b2 . . . bn.
For each bit bi (1 ≤ i ≤ n), computing

ui = F (sk, (i, b1b2 . . . bi−1||0n−i)) + bi (mod M), (3)

where the F denotes the pseudorandom function and M ≥
3. After encrypting the plaintext bit by bit, the ciphertext of
m is (u1, u2, . . . , un), where ui ∈ ZM .

b1 ... bi ... bn

Fk(b1...bi-1)+biFk(�)+b1 Fk(b1...bn-1)+bn... ...

u1 ... ui ... un

ct

Fig. 2: Encryption algorithm of CLWW [21].

The comparison process is shown in Fig. 3. For two
different plaintexts, same prefix will have same ciphertex-
t block. If the prefix is different, the value is computa-
tionally hidden. When comparing two ciphertexts ct1 =
(u1, u2, . . . , ui, . . .) and ct2 = (u1, u2, . . . , u

′
i, . . .), compare

ui with u′i (1 ≤ i ≤ n) and i is the smallest index where
ui 6= u′i.

b1 ... bi ...

b1 ... b*i ...

u1 ... ui ...
Encrypt

u1 ... u*i ...
Encrypt

the	first	different	block

Fig. 3: Comparison of CLWW [21].

CLWW [21] can be extended to d-ary generation, but
with a slight loss in security. Different from above, m =
b1b2 . . . bn is the d-ary form representation of plaintext m.
Furthermore, if the input length of d-ary CLWW [21] is l,
then the ciphertext size is approximately l · logMd , for any
M ≥ 2d− 1.

Leakage. The comparison operation of CLWW [21] re-
veals the order of the plaintexts and the first differing bit
of the plaintexts. The leakage function can be written as
follows:

L(m1, . . . ,mt) :={(inddiff(mi,mj), 1(mi < mj)) :

1 ≤ i < j ≤ t},
(4)

where mi denotes the plaintext. Denote m = b1b2 . . . bn,
m′ = b′1b

′
2 . . . b

′
n, inddiff(m,m

′) gives the index of the first
bit where m and m′ is different. If m 6= m′, inddiff(m,m

′)
equals the smallest index i (1 ≤ i ≤ n) for which bi 6= b′i. If
m = m′, set the inddiff(m,m

′) = n+ 1.

2.4 Lewi-Wu Scheme

In this section, we introduce small domain scheme Lewi-
Wu-Small and large doamin scheme Lewi-Wu-Normal in
[22].
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REALOREA (λ) :

1: sk ← ORE.Setup(1λ)
2: (m1, stA) ← A1(1

λ)
3: ct1 ← ORE.Encrypt(sk,m1)
4: For 2 ≤ i ≤ q
5: (Bi, stA) ← Ai(stA, ct1, . . . , cti−1)
6: cti ← ORE.Encrypt(sk, mi)
7: Output (ct1, . . . , ctq) and stA

SIMORE
A,S,L(λ) :

1: stS ← S0(1λ)
2: (m1, stA) ← A(1λ)
3: (ct1, stS) ← S1(stS , L(m1))
4: For 2 ≤ i ≤ q :
5: (mi, stA) ← Ai(stA, ct1, . . . , cti−1)
6: (cti, stS) ← Si(stS , L(m1, . . . , mi))
7: Output (ct1, . . . , ctq) and stA

Fig. 1: ORE ideal-real security game.

x1 x2 xi... ... xnplaintext	domain

ki {0,	1}λ

π:		[N] [N]

R

Ekj(CMP(xi,xj))
π

ctL	of	xi ctR	of	xi

......

Fig. 4: Encryption of Lewi-Wu-Small [22].

2.4.1 Lewi-Wu-Small
The plaintext space of Lewi-Wu-Small [22] is [N ] where
N = poly(λ). In Fig. 4, the ciphertext is composed of the
left ciphertext and the right ciphertext. The left ciphertext
ctL of a value xi (1 ≤ i ≤ n) stores the encryption
key ki which is used for the right ciphertext. The right
ciphertext ctR of value xi stores the encryption of the
comparison outputs between xi and every other elements in
the domain. The encryption of CMP(xi, xj) (1 ≤ j ≤ n) is
Ekj (CMP(xi, xj)). Then all the comparison components are
permuted according to π. Furthermore, the left ciphertext of
xi includes this permuted position π(xi).

(ki,	π(xi))ctL	of	xi:

...

ctR	of	xj

π	
Eki(CMP(xj,xi))... Eki(CMP(xj,xi))

π(xi)
CMP(xj,xi)

ki

Fig. 5: Encryption of Lewi-Wu-Small [22].

As shown in Fig. 5, when getting the left ciphertext ctL
of xi and the right ciphertext ctR of xj , we can compare
the two elements xi and xj . With π(xi) which is in xi’s
left ciphertext ctL, we can get Eki(CMP(xj , xi)) which is
in xj ’s rigth ciphertext ctR and denotes the encryption of
CMP(xj , xi). Then with ki which is in xi’s left ciphertext
ctL, we can get CMP(xj , xi) which contains the order of xi
and xj .

Leakage. The comparison operation of Lewi-Wu-Small
[22] does not reveal other information except the order of
the plaintexts. It achieves the best-possible security from
Remark 1. The leakage function can be denoted as follows:

LORE(m1, . . . ,mt) ={(i, j,CMP(mi,mj)|
1 ≤ i < j ≤ t)}.

(5)

2.4.2 Lewi-Wu-Normal

The large domain construction can be seen as consisting of
small domain construction and CLWW [21] construction.
CLWW [21] can be seen as a general transformation that
takes the k-bit ORE scheme as input and outputs the kn-
bit ORE scheme. Therefore, it can be seen as inputting a
1-bit ORE scheme and extends it to a n-bit ORE scheme. It
implements ciphertext expansion, but the security is slightly
reduced. The large domain construction applies the domain-
extension technique to the small domain construction and
expands the d-bit ORE to dn-bit ORE scheme. It regards d-
bit as a block.

Leakage. Compared to Lewi-Wu-Small [22], the index
of the first block that differs between two ciphertexts is
the additional leakage of Lewi-Wu-Normal [22]. For two
plaintexts m and m′, the d-ary representations of them
are m = b1b2 . . . bn and m′ = b′1b

′
2 . . . b

′
n respectively.

ind
(d)
diff (m,m

′) denotes the first differing block function.

ind
(d)
diff (m,m

′) is the first index i (1 ≤ i ≤ n) such that

bi 6= b′i and bj = b′j for all j < i. If m = m′, ind(d)diff (m,m
′)

equals n+1. The leakage function can be denoted as follows:

L(d)
BLK(m1, . . . ,mt) ={(i, j,BLK(mi,mj))|

1 ≤ i < j ≤ t},
(6)

wheremi denotes the plaintext and BLK function can be de-
noted as BLK(mi,mj) = (CMP(mi,mj), ind

(d)
diff (mi,mj)).

3 HYBRID MODEL FOR REDUCING LEAKAGE

In this section, we introduce our basic solution for reducing
leakage and preserving practicality.

3.1 Hybrid model

Our basic solution is inspired by two well-known ORE
schemes. One is CLWW scheme [21], which is the most
practical ORE scheme. It provides a universal bit-by-bit en-
cryption solution. It has short ciphertext and high efficiency,
but it has more leakage. The other is Lewi-Wu-Small [22],
which is the ideal solution for comparison operations in
a small domain. Although it has ciphertext expansion, it
does not reveal any other information except the order.
Therefore, we consider how to combine these two schemes
together to achieve the purpose of both reducing leakage
and preserving practicality. An intuitive idea is to split the
plaintext into two parts. The left part is mapped to a small
domain to indicate the range of plaintext; the right part is
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HybridORE.Setup(λ) :
Client:
1: k1, k2

$←− {0, 1}λ
2: π : [E]→ [E]
3: sk1 = (k1, π)
4: sk2 = k2
5: Return sk = (sk1, sk2)

HybridORE.Encrypt(sk1, sk2,m) :
Client:
1: (E, V )← HybridORE.Encode(m)//V = v1v2 . . . vl1
2: kl ← F (k1, π(E))
3: ctLE = (kL, π(E))

4: r
$←− {0, 1}λ

5: For i ∈ [E] :
6: wi = CMP(π−1(i), E) +H(F (k1, i), r) (mod 3)
7: ctRE = (r, w1, w2, . . . , wE)
8: For i = 1 to l1 :
9: ui = F (sk2, (i, v1v2 . . . vi−1||0l1−i)) + vi
10: ctV = (u1, u2, . . . , ul1)
11: Send ct = (ctRE , ctV ) to Server

HybridORE.Compare(x, ct, ct
′
) :

Client:
1: h← π(x)
2: k ← F (k1, h)
Server:
3: r ← ct

′R
E .r

4: If ct
′R
E .wh −H(k, r) (mod 3) 6= 0 :

5: Return ctRE .wh −H(k, r) (mod 3)
6: For 0 ≤ i ≤ l1 :
7: If ui 6= u′i (mod 3) and u′i = ui + 1 (mod 3)
8: Return 1
9: Return 0
HybridORE.Encode(m) :
Client:
1: Denote m as V × dE
2: V = v1 . . . vj //The binary representation of m.
3: If j < l1 :
4: V = v1v2 . . . vj ||0l1−j
5: Return (E, V )

Fig. 6: The algorithms of HybridORE.

used to represent the relevant value. Then, we apply Lewi-
Wu-Small [22] to the left part while CLWW [21] to the right
part. Since different parts use different encryption methods,
we call this model the hybrid model.

In order to describe the model better, we define the
process of dividing the message into two parts as the encode
process. Therefore, the entire encryption process in our
hybrid model includes two processes, namely encode and
encryption. The model is shown in Fig. 7. For convenience,
we define the left part and the right part after encoding as
the range part and the value part. When performing the
comparison operation, the ciphertexts of the range part will
be compared first. If they are not equal, the result of the
range part comparison is the final result. Because this part
uses an ideal ORE scheme (Lewi-Wu-Small [22]), there is no
additional leakage. If they are equal, the ciphertexts of the
value part will be compared. Usually, the value part will be
processed by alignment and other methods to meet the new
comparison requirements, so that the encoded value is no
longer equal to the original value. Therefore, the comparison
in this part also has fewer leakages.

Formal definition. We provide the formal definition of
the basic hybrid model as follows:

• HybridORE.Setup(1λ)→sk: The algorithm samples
the necessary private key. The input is the secure
parameter. The output is the private key sk.

• HybridORE.Encode(m)→(E, V ): The algorithm en-
codes the plaintext into the range part and the value
part. The input is the plaintext m. The output is the
coding of m which consists of the range part E and
the value part V .

• HybridORE.Encrypt(sk,m)→ct: The algorithm first
calls the encode algorithm to get the encoding of
plaintext m. Then the range part E and the value
part V are encryptd with private key sk. The input is
the plaintext m. The output is the ciphertext ct which

Message m1
Encode Left part: range1

Right part: value1

Encrypt E1(range1)

E2(value1)

Message m2
Encode Left part: range2

Right part: value2

Encrypt E1(range2)

E2(value2)

E1: Lewi-Wu-Small    E2: CLWW

E1(range1)

E1(range2)

Compare
E2(value1)

E2(value2)

Compare
equal

not equal
Result

Fig. 7: The Hybrid Model for Reducing Leakage.

consists of the ciphertext of the range part and value
part.

• HybridORE.Compare(ct, ct′)→b: The algorithm first
compares the range part. If the range part is different,
there is no necessary to compare the value part.
Otherwise, it compares the value part. The input is
two ciphertexts ct and ct′ and the output is a bit
b ∈ {0, 1}.

3.2 Challenges and our HybridORE solution

Our hybrid model looks very effective, but it is not easy to
build an ORE scheme that meets the hybrid model. There
are two challenges that must be solved. The first challenge
is how to encode the plaintext to the range part and the value part.
The second challenge is how to compare the ciphertexts of the
range part and the value part. In Fig. 6, we present HybridORE
scheme to demonstrate how it works. Note that when x 6=
y, CMP(x,y) provides the same amount as 1, therefore the
correctness holds.

For the first challenge, we must ensure that the range
part after encoding has as few values as possible. Because
this part will be encrypted by Lewi-Wu-Small [22] scheme,
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the length of the ciphertext will increase linearly with the
number of the values. Meanwhile, the value part is no
longer the original value, but it should be able to be com-
pared. In HybridORE, we can select the representation of
floating-point numbers in computer systems as the encod-
ing method to meet this requirement. For a 32-bit floating-
point number, it uses 1 bit to represent the sign, 8 bits to
represent the exponent, and 23 bits to represent the value.
That is, the first 9 bits represent the range part, and the last
23 bits represent the value part.

For the second challenge, we can divide it into two
categories. One is how to compare one by one, and the other
is how to compare step by step. The former follows the basic
idea of the hybrid model and our HybridORE demonstrates
its implementation. The latter puts forward higher security
requirement. It requires that the ciphertexts of the value part
cannot be directly compared, and the result of the range
part comparison must be used as input. That is, we must
conduct the connection between the ciphertext of the range
part and the ciphertext of the value part. However, this
kind of connection is difficult to establish directly on the
two existing solutions. Because the ciphertext of Lewi-Wu-
Small [22] is the encryption of comparison with all different
values, it is difficult to use the output of these comparisons
as the input of the ciphertext of value part. Considering
Lewi-Wu-Small [22] produces left ciphertext and right ci-
phertext, a simple solution is to generate the left ciphertext
for the ciphertext of the value part. Assume that the server
is honest but curious, it will request the left ciphertext of the
value part when the ciphertexts of the range part are equal.
Therefore, this solution increases the interaction between the
client and the server, and brings a lot of storage for the
client. We introduce an improved construction to achieve
ciphertexts comparison without interaction in the hybrid
model in Section 4.

3.3 Analysis of HybridORE

Space Usage. For Lewi-Wu-Small [22], the ciphertext can be
divided into the left ciphertext and the right ciphertext. The
left ciphertext consists of a key for pseudorandom function
and a permutation. The length of the left ciphertext is λ +
dlogNe, where the λ denotes the security parameter and
[N ] is the plaintext domain. The right ciphertext consists
of a nonce and N elements in Z3. The length of the right
ciphertext is λ + dNlog32e. Therefore, the ciphertext of Lewi-
Wu-Small [22] is λ + dlogNe + dNlog32e. For CLWW [21],
the ciphertext length is dn · log32e, where n is the bit length
of input. For our HybridORE model, suppose the value
domain is [V ], the length of it is l1, the domain of range
part is [E] and there are E elements. Because the range part
is encrypted by Lewi-Wu-Small [22] and the value part is
encrypted by CLWW [21]. Therefore, the ciphertext length
of HybridORE is:

λ+ dlogEe+ dElog32e+ dl1 · log32e. (7)

Leakage analysis. HybridORE leaks much less than Lewi-
Wu-Normal [22] and CLWW [21]. The leakage can be de-
noted as follows:

• If the range part is the same but the value part is
different, the leakage function can be denoted as

LORE = the first differing bit of value part. (8)

• If the range part is different, the leakage function can
be denoted as

LORE = ⊥. (9)

The comparison of the range part leaks nothing while
the value part has not been compared. Therefore, the
scheme leaks nothing.

4 ENCODEORE: THE IMPROVED CONSTRUCTION

In this section, we propose an improved ORE construction
called EncodeORE. It preserves the advantages of HybridORE
and further shortens the length of the ciphertext.

4.1 Basic idea
HybridORE looks ideal, but there are still ciphertext exten-
sions (the range part). Notice that encode is an importan-
t factor to reduce leakage in HybridORE, it changes the
comparison operation to the range comparison and value
comparison. Because of the ciphertext expansion, Lewi-Wu-
Small [22] is not available. It means that the leakage will be
increased, but our improved construction is still better than
Lewi-Wu-Normal [22] scheme.

For the challenge of encoding, we adopt scientific nota-
tion instead of the representation of floating-point numbers
in our EncodeORE. We know that scientific notation can
represent a message m as V × dE , where d is equal to
10, V is the value part and E is the range part. It is more
flexible because we can choose different cardinal number d
according to different requirements. In order to allow the
value part to be compared bit by bit, we need to fill the end
of the value part with 0 to the same length.

For the challenge of comparison step by step, we encrypt
the range part and value part through CLWW [21] scheme
together. In this way, the connection between the two parts
can be established without interaction. This improvement
mainly stems from the encode strategy, so we call our scheme
EncodeORE.

4.2 Concrete Construction
Fix a security parameter λ ∈ N , and let F be a secure PRF.
Set d as the cardinal number of scientific notation, l1 as the
bit length of value part and l2 as the bit length of range part.
We define our EncodeORE scheme as

∏
EORE = (EncodeO-

RE.Setup, EncodeORE.Encode, EncodeORE.Encrypt, Encode-
ORE.Compare) and give the construction in the form of
independent algorithm description.

Algorithm 1 EncodeORE.Setup(1λ)

1: sk
$←− {0, 1}λ

2: Return sk

EncodeORE.Setup(1λ). The algorithm chooses a uniform-
ly random PRF key sk for F . Since both the range part and
the value part are encrypted together, only one private key
sk is generated.
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Algorithm 2 EncodeORE.Encode(m)

1: Denote m as V × dE
2: V = v1v2 . . . vi //The binary representation of m.
3: E = e1e2 . . . ej //The binary representation of E.
4: If i < l1
5: V = v1v2 . . . vi||0l1−i
6: If j < l2
7: E = 0l2−j ||e1e2 . . . ej
8: l = l1 + l2
9: B = E||V = b1b2 . . . bl

10: Return B

EncodeORE.Encode(m). The algorithm adopts scientific
notation to encode the plaintext m into range part E and
value part V . The value part V = v1v2 . . . vi is the binary
representation of plaintextm. The range partE = e1e2 . . . ej
is the binary representation of exponential part. Padding
the value part and the range part to the fixed length l1,
l2 respectively. Therefore, the value part V is expressed as
v1v2 . . . vl1 and the range part E is expressed as e1e2 . . . el2 .
We encrypt the range part and value part together, so stitch
them together and denote asB. The length ofB is l = l1+l2.

Algorithm 3 EncodeORE.Encrypt(sk,m)

1: B ← EncodeORE.Encode(m)//B = b1b2 . . . bl
2: For 1 ≤ i ≤ l :
3: mask = F (sk, (i, b1b2 . . . bi−1||0l−i))
4: ui = mask + bi (mod 3)
5: ct = (u1, u2, . . . , ul)
6: Return ct

EncodeORE.Encrypt(sk,m). The plaintext m is encoded
as B which is the result of splicing the range part and value
part together. When encrypting the i-th bit of B, generate
a pseudorandom number as mask. The pseudorandom
number mask is generated by the pseudorandom function
with the first i− 1 elements as input. Then after adding the
i-th bit with the mask, modulo 3 with the result to get the
ciphertext for the i-th bit. In this way, we get the ciphertext
which can be denoted as ct = (u1, u2, . . . , ul).

Algorithm 4 EncodeORE.Compare(ct, ct′)

1: For 1 ≤ i ≤ l :
2: If ui 6= u′i and u

′
i = ui + 1 (mod 3) :

3: Return 1
4: Return 0

EncodeORE.Compare(ct, ct′). When performing compar-
ison algorithm, the range part is compared first then the val-
ue part is compared. Only when the range part is the same,
compare the value part. Since encrypting the range part and
the value part together, no other interaction between the
server and the client is required.

4.3 Analysis of EncodeORE

Space Usage. For CLWW [21], the ciphertext length is
dn · log32e, where n denotes the length of input. For En-
codeORE scheme, the length of value part is l1, the length

of range part is l2 and l = l1+l2. The ciphertext length of
value part is dl1 · log32e, the ciphertext length of range part is
dl2 · log32e. Therefore, the ciphertext length of EncodeORE is
dl · log32e. The ciphertext of range part is much shorter than
HybridORE model and the ciphertext length of value part is
the same. Therefore, the ciphertext length of EncodeORE is
shorter than HybridORE.

Leakage analysis. We compare the leakage with CLWW
[21] and Lewi-Wu-Normal [22]. Lewi-Wu-Small [22] is not
suitable for large domain applications, because the length of
the ciphertext is positively related to the length of the data
domain, so it is not considered. CLWW [21] leaks the first
unequal binary bit. Lewi-Wu-Normal [22] leaks the location
of the first differing block. The leakage further leads to the
disclosure of the range of the relative distance between two
data. The leakage of our model is shown as following:

• Same range, different value. The scheme leaks the
first differing bit of value part. Since the range part
has not been leaked, the adversary cannot estimate
the relative distance between the two plaintexts.

• Different range. The value part has not been com-
pared. The comparison of the range part leaks the
first differing bit of the range part.

The leakage of EncodeORE scheme consists of the leakage
of Setup, Encode and Encrypt which can be denoted as
LSetup,Encode,Encrypt and the leakage of Compare which can
be denoted as LCmp. Our scheme applies CLWW [21] to en-
crypt the encoding of plaintext. The leakage of comparison
algorithm is the same as CLWW [21]. It can be denoted as:

LCmp(B1, . . . , Bt) :={(inddiff(Bi, Bj), 1(mi < mj)) :

1 ≤ i < j < t},
(10)

where Bi denotes the encoding of the plaintext mi,
inddiff(x, y) gives the index of the first bit where x and y
is different.

The Setup, Encode and Encrypt algorithms are done by
the client side. Therefore, the leakage of setup and encode
algorithm can be denoted as:

LSetup, Encode, Encrypt(m1, . . . ,mt) =⊥ . (11)

In summary, we can say the leakage of our scheme can
be denoted as:

LEORE(m1, . . . ,mt) :={(inddiff(Bi, Bj), 1(mi < mj)) :

1 ≤ i < j ≤ t},
(12)

where Bi is the encoding of plaintext mi and Bj is the
encoding of plaintext mj .

4.4 Security

We prove that EncodeORE is secure with the leakage LEORE.

Theorem 1. As shown in Definition 1, EncodeORE scheme
is secure with leakage function LEORE under the PRF
security of F .

Proof 1. Let λ denote the security parameter. As shown in
Definition 1, let A = (A1, . . . ,Aq) denote an efficient
adversary for ORE security game, where q = poly(λ).
Let S = (S0, . . . ,Sq) denote an efficient simulator for
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which the outputs of distributions REALEORE
A (λ) and

SIMEORE
A,S,LEORE

(λ) are computationally indistinguishable.
Game G0. This is the real world game REALEORE

A (λ).
That is to say

Pr[REALEORE
A (λ) = 1] = Pr[G0 = 1] (13)

Game G1. The output of G1 is (ct1, . . . , ctq). In setup
algorithm, choose a random function

f
R←− Funs[([n]× {0, 1}n−1),ZM ]. (14)

In EncodeORE.Encrypt, replace F (k, ·) with f(·). Oth-
ers are the same asG0. Therefore, under the PRF security
of F , G0 and G1 are computationally indistinguishable.
Hence, we have

|Pr[G1 = 1]− Pr[G0 = 1]| = 0. (15)

Simulator. S = (S0, . . . ,Sq) denotes the simulator. At
first, S0 initializes an empty table L : [q] × [n] → ZM
and outputs that stS = L. Then, for each 1 ≤
i ≤ q, the simulation algorithm takes inputs stS and
LEORE(m1, . . . ,mi) where Bi is the encoding of mi

and Bi is the query which is the output of adversary
A. LEORE(m1, . . . ,mi) contains inddiff(Bj , Bi) and the
values 1 for Bj < Bi. inddiff(Bj , Bi) gives the index of
the first bit where Bj and Bi are different. The output of
simulator is (ct1, . . . , ctq).
For each 1 ≤ s ≤ l (l denotes the encoding length of
plaintext), if for 1 ≤ j ≤ i−1, there is inddiff(Bj , Bi) > s,
then the simulator sets ui,s = L(j, s) = uj,s, where j is
the smallest one for which inddiff(Bj , Bi) > s. If for each
1 ≤ h ≤ i − 1, there is inddiff(Bh, Bi) ≤ s, then the
simulator sets

ui,s = L(j, s)− (1− 2 · 1 (Bj < Bi))

= uj,s − (1− 2 · 1 (Bj < Bi)) (mod M),
(16)

where j ∈ [i − 1] is the smallest one for which
inddiff(Bj , Bi) = s. If for each 1 ≤ h ≤ i − 1, there
is inddiff(Bh, Bi) < s, then the simulator sets ui,s = y,

where y R←− ZM .
The simulator adds the mapping (i, s) → ut,s to L.
The simulator St outputs the ciphertext cti and updates
stS = L.
We proceed inductively in the number of queries q. For
some 1 ≤ i ≤ q, suppose (ct1, . . . , cti) ≡ (ct1, . . . , cti).
The statement holds for i + 1. Denote the ciphertext ctj
as (uj,1, . . . , uj,n) for 1 ≤ j ≤ i. Denote the ciphertext
ctj as (uj,1, . . . , uj,n) for 1 ≤ j ≤ i. Denote the s-th bit
of Bj as bj,s.
If for a 1 ≤ j ≤ i− 1, there is inddiff(Bj , Bi) > s and j is
the smallest one for which inddiff(Bj , Bi) > s. Bj and Bi
has the same prefix of at least length s. Then, in the G1,
we have

ui,s = f(s, p||0n−s) + bi,s = uj,s, (17)

where p ∈ {0, 1}s−1 denotes the common prefix. There-
fore, by inductive hypothesis, we can conclude that ui,s
and ui,s are identically distributed. If for each 1 ≤ h ≤
i − 1, there is inddiff(Bh, Bi) ≤ s and 1 ≤ j ≤ i − 1
is the smallest one for which inddiff(Bj , Bi) = s. In this

situation,Bj andBi has the same prefix of at least length
s. Then, in the G1, we have

ui,s = f(s, p||0n−s) + bi,s (mod M), (18)

uj,s = f(s, p||0n−s) + bj,s (mod M). (19)

Assume bj,s 6= bi,s, so bi,s = bj,s − (1− 2 · 1(Bj < Bi)).
Therefore, in G1, we have

ui,s = f(s, p||0n−s) + bi,s

= uj,s − (1− 2 · 1(Bj < Bi)) (mod M).
(20)

Therefore, by inductive hypothesis, we can conclude
that ui,s and ui,s are identically distributed. If for each
1 ≤ h ≤ i−1, there is inddiff(Bh, Bi) < s. By assumption,
the encodings B1, . . . , Bi−1 do not have prefix p and f
is a random function. Therefore, ui,s is independent of
all other ciphertexts and is uniform in ZM . By inductive
hypothesis, we can conclude that ui,s and ui,s are iden-
tically distributed.
We can conclude that ui,s ≡ ui,s for all 1 ≤ s ≤ n.
Hence, we have

|Pr[G1 = 1]− Pr[IDEALEORE
A,S,LEORE

(λ) = 1]| = 0. (21)

Conclusion. By combining all the contribution from all
games, there exists an adversary A such that

|Pr[REALEORE
A (λ) = 1]− Pr[IDEALEORE

A,S,LEORE
(λ) = 1]|

= 0.
(22)

5 EXPERIMENTS AND EVALUATION

In this section, we present a benchmark of EncodeORE and
run CLWW [21], Lewi-Wu-Normal [22] schemes to present
the performance comparison. Furthermore, we measure the
performance of EncodeORE under various parameter set-
tings.

5.1 Experiment Details

We implement EncodeORE and run CLWW [21], Lewi-
Wu-Normal [22] scheme according to the code in https:
//github.com/kevinlewi/fastore in the experimental evalu-
ation. We focus on comparing the ciphertext length, encryp-
tion execution time, and comparison execution time of these
three schemes. All experiments run single-threaded on the
processor. The cost of network transmission and delay time
is ignored. Our code is run on a computer device running
Ubuntu 18.04 with an Intel(R) Core(TM) i5 − 8250U CPU
@1.60 GHz 1.80 GHz CPU and 8 GB memory. Our experi-
ment is entirely written in C. The length of the plaintext we
set varies from 8 to 64 bits. When encoding the plaintext,
the cardinality is 16. We operate under 128-bit security
(λ = 128) and we use AES-128 to instantiate PRF. We use
OpenSSL [50] to implement the AES-128 algorithm in our
experiments. At the same time, we use the GMP [51] library
to implement large integer algorithms.
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Fig. 8: Comparison of ciphertext length with different plain-
text length.

5.2 Performance comparison
We first compare the ciphertext lengths of CLWW [21], Lewi-
Wu-Normal [22], and our scheme. Notice that k in Lewi-
Wu-Normal [22] denotes block size. Overall, Fig. 8 shows
that the ciphertext length of these three schemes increases
as the plaintext length increases. Meanwhile, the ciphertext
lengths in our scheme are slightly longer than CLWW [21]
and much smaller than Lewi-Wu-Normal [22]. Under dif-
ferent plaintext lengths, the ciphertext length of our scheme
is always two bytes longer than CLWW [21]. However, the
ciphertext length of our scheme is much shorter than Lewi-
Wu-Normal [22]. When k = 12 and plaintext length is 64
bits, our scheme is on average 1/180 of Lewi-Wu-Normal
[22] in terms of ciphertext length.
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Fig. 9: Execution time of encryption process with different
plaintext length.

We also evaluate the execution time of the encryption
and comparison process of these three schemes. Fig. 9
presents the comparison of encryption time among CLWW
[21], Lewi-Wu-Normal [22], and our scheme. Notice that the
encryption time in our scheme includes the encoding pro-
cess. The encryption time of thees three schemes increases

with the length of the plaintext. The encryption execution
time of Lewi-Wu-Normal [22] is much longer than CLWW
[21] and our scheme. In detail, the encryption time of our
solution is only about 0.9 µs longer than CLWW [21] on
average. Because the ciphertext length of our scheme is
always 2 bytes longer than CLWW [21]. The encryption time
of Lewi-Wu-Normal [22] increases as k increases. When the
plaintext length is 64 bits, the encryption execution time
of our scheme is only 10% longer than CLWW [21]. When
the plaintext length is 64 bits and k = 4, the encryption
execution time of Lewi-Wu-Normal [22] is about 4 times
that of our scheme. When the plaintext length is 64 bits and
k = 8, the encryption execution time of Lewi-Wu-Normal
[22] is about 18 times that of our scheme. When the plaintext
length is 64 bits and k = 12, the encryption execution time of
Lewi-Wu-Normal [22] is about 195 times that of our scheme.
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Fig. 10: Execution time of comparison process with different
plaintext length.
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Fig. 11: Overall execution time with different plaintext
length.

Fig. 10 shows the comparison of execution time in com-
parison process among CLWW [21], Lewi-Wu-Normal [22]
and our scheme. The length of the two plaintexts being
compared is equal. This result is tested with 200,000 iter-
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Fig. 12: Comparison time for plaintext over different lengths.
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Fig. 13: Range length and value length under different base
codes.

ations. The comparison of execution time is related with
the plaintext. In our implementation, we choose random
number as plaintext. The execution time of our scheme
is longer than Lewi-Wu-Normal [22]. When k = 12 and
plaintext length is 64 bits, the execution time of our scheme
is 10 times that of Lewi-Wu-Normal [22]. Furthermore, the
execution time of our scheme is longer than CLWW [21],
because the range part is the same. The execution time of
our scheme is 1.5 µs longer than CLWW [21].

The comparison of the overall execution time among
CLWW [21], Lewi-Wu-Normal [22] and our scheme is
shown in Fig.11. Our execution time is almost equal to
CLWW [21] and much less than Lewi-Wu-Normal [22]. The
plaintext length of our scheme is longer than CLWW [21],
so our overall implementation time will be slightly slower.
Furthermore, for different plaintext lengths, the average
execution time will be slower by 0.9 µs than CLWW [21].
Compared to Lewi-Wu-Normal [22], the execution of our
scheme is better. When k is equal to 4, 8, and 12, respectively,
the execution time of Lewi-Wu-Normal [22] is 2, 14, and 180
times longer than that of our scheme.

5.3 Performance of our scheme
We evaluate the comparison time of plaintext with different
range part in our scheme. Fig. 12 shows the time for com-
paring two plaintexts of different range part. The dots of the
same color in the figure indicate that there is one plaintext
in the compared plaintext pair whose length is the same. As
shown in Fig. 12, we can find that the comparison time also
slowly increases as the number of bits in another plaintext
increases when one plaintext length is fixed, but the overall
increase is not large. Computationally speaking, in the com-
parison of plaintext pairs of different lengths, the average
comparison time is 1.9 µs. The experiment results show that
our scheme is suitable for comparing plaintext with different
range part. Table 2 presents the encode time of our scheme.
Under different plaintext lengths, the encoding time of our
scheme is basically the same. In fact, the encoding time of
our scheme is affected by the length of the plaintext, but
the encoding process is relatively efficient, so the results are

relatively close. If the length of plaintext can reach hundreds
or thousands of bits, the gap may be widened. On average,
the encode time of our scheme is 12.7 ns.

TABLE 2: Encode time for plaintext of different lengths.

Plaintext length (bit) Encode time (ns)
8 12.51
16 12.79
24 12.87
32 12.77
40 12.80
48 12.82
56 12.84
64 12.34

Fig. 13 shows the range part length and value part length
of our scheme under different cardinality. The value part
length of our scheme increases linearly with the length of the
plaintext. The length of the range has an obvious inflection
point as the length of the plaintext increases. Explain in
detail, when using hexadecimal encoding, the range length
will be mutated to 2 bytes when the plaintext length is 129
bytes. By analogy, the range length of decimal code and octal
code will be changed to 2 bytes when the plaintext length is
107 bytes and 96 bytes respectively. Generally speaking, as
the length of the plaintext increases, the range part length
of our scheme is much shorter than the length of value part.
Fig. 13 emphasizes that the range part always belongs to a
small domain in the plaintext domain.

6 CONCLUSIONS

In this paper, we propose a segmentation coding technique
that splits the encrypted plaintext into two parts: the range
part and the value part. Based on the segmentation coding
technique, we construct HybridORE model. Then, in order
to further shorten the length of the ciphertext, we construct
EncodeORE scheme. We analyze the space usage and the
leakage of HybridORE and EncodeORE. Furthermore, we
make experiments to compare the performance of Encode-
ORE, CLWW [21] and Lewi-Wu-Normal [22]. In the future,
we will work on more practical ORE schemes.
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