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Information Retrieval and Informative Reasoning 

Introduction 

C.J. van Rijsbergen 
Glasgow University 

U.K. 

Information Retrieval has been a bit of a Cinderella subject, 
claimed by the Library and Information Science community and viewed 
with a certain amount of suspicion by the Computer Science community 
(why not solve it by DB technology?l), but as part of computing its roots 
go back to at least before World War II when Robert Fairthorne was 
speculating about the use of computing machinery to enhance the 
retrieval of bibliographic records. The physical storage of large amounts 
of information on electronic media has ceased to be a major problem, 
hence the emphasis in IR on the retrieval of the stored information. The 
arrival of electronic storage devices that will comfortably handle data sets 
in the terrabyte range has allowed researchers and developers to 
concentrate on the searching, retrieval, browsing and display of multi
media information. 

What is the Information Retrieval problem? Why is it not enough 
to say: 'Just store it and when you need it just fmd it, and retrieve it!' In 
fact as long ago as in Plato's day the IR problem was already apparent. I 
quote (paradoxically): 

'And how will you enquire, Socrates, into that which you do 
not know? . .if you fmd what you want, how will you ever know 
that this is the thing which you did not know? .. a man cannot 
enquire either about that which he knows, or about that which he 
does not know: for if he knows, he has no need to enquire; and if 
not, he cannot; for he does not know the very subject about which 
he is to enquire.' Meno, Plato 

The storage step is now easy. Finding the right information and 
looking at it is a different matter. A user interested in a item of 
information, fIrst has to ask for it. In IR asking for it means constructing a 
query which may be a natural language statement, a tune, a picture, a bit 
of image, etc. This query is formulated to reflect or represent what the 
user is interested in, and ultimately intended to lead to items that the user 

1 But see Harper and Walker's work 
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wishes to explore, read, think about, absorb etc. The process is one of 
locating information for further examination. 

The Haystack Analogy 

In practice the number of items2 in the repository of items likely to 
be of interest to a user is small, hence one is dealing with the computation 
of very rare events. It is like looking for a needle in a haystack, this 
simple analogy to a haystick will give you some idea of the early models 
that were proposed for solving the IR problem. If you were given the 
problem of finding a needle in a haystack you would very quickly find a 
way to do it. To begin with you would think about the problem in the 
following way: 

1. the thing I am looking for is rare, so a random 
search is likely to be useless 

2. its characteristics are very different from the 
things I do not want (hay) 

3. I can exploit this difference if I know more 
about it, I could use a magnet or burn down 
the stack. 

Now imagine that the same problem was faced by a Martian who 
knows nothing about the properties of metal, for example that it is 
resistant to fire and attracted by magnets. How would such a creature 
proceed? Well, the Martian's situation is not very different from a user's 
faced with a large information store: she knows that there is likely to be 
an item of interest but it is one amongst millions which are of no interest. 
To take a random sample does not help much for in the case of the 
haystack it would produce only hay, from which we infer that the needle 
is not made of straw! We need to find out more about the item looked for, 
a Martian would consult our knowledge about needles. In the case of IR 
the user would express a query which when processed would return items 
likely to be like the ones sought and it is precisely the charateristics of the 
items returned that could be used to continue the search. The approximate 
response of the IR system will give clues about the nature of the items 
sought. It is important to emphasise that what is retrieved is not a random 
sample. 

The QM Analogy 

The haystack analogy is a very simple one, and indeed does 
correspond to some retrieval models. Another analogy which is far more 
sophisticated and leads into more recent IR models, is one based on the 

2 object=item=document 
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quantum mechanical paradigm. As many of you will know the theory of 
quantum mechanics is mainly concerned with observables and state 
vectors. It is possible to reduce the QM analysis to one in which the 
observables are simple 'yes'/'no' questions about the state of a system. 
Moreover the answer to such a binary question has associated with it a 
probability of being either yes or no in any state. If you now think of the 
states as documents in an information space and observables as simple 
queries then the analogy is complete. In fact the properties of simple 
observables are such that they form a structure, a non-boolean lattice, 
which gives rise to a logic: quantum logic. The same can be said for IR, 
instead of the physics we have the semantics of the query terms, and 
these can also give rise to a non-ciassicallogic. It is interesting that in 
quantum logic one of the central questions is how to specify an 
appropriate conditional for the logic; similarly in defining an IR logic the 
central issue appears to be what the semantics of the conditional will look 
like. There is a further correspondence and this arises through the Hilbert 
space respresentation for state vectors, in this an observable can be 
thought of as a subspace and the quantum logic as operations on 
subspaces. In IR we often represent our documents as points in a high 
dimensional vector space and indeed the Boolean logic of queries 
corresponds to set-theoretic operations, it may be that the Hilbert space 
formalism is more appropriate for IR , if so, it would give a concrete 
example of a non-boolean logic. 

Feedback and Iteration 

How does the IR problem differ from the DB problem? In 
databases it is asumed that the user can specify completely and accurately 
the data items of interest. In the relational technology this means 
asserting a logical combination of attribute values to be satisfied. Any 
item not satisfying the query in this way is assumed to be of no interest. 
In IR such an approach simply will not work. Given a logical 
combination of keywords the chances are that no item will satify it, or 
that too many will! In either case the answer (the set of items) is not the 
end of the story. A null answer does not mean that there are no items of 
interest, nor does a large set as response mean that all the retrieved items 
are of interest. How does IR get around this problem? The main solution 
rests on an iterative approach to retrieval, using feedback to focus the 
search. Conceptually one attempts to locate the relevant items in the 
store proceeds to iteratively discover the attributes of such relevant items 
so that they can be retrieved. 
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In statistical terms looking for a rare item is not easy, the literature 
on signal detection has established that. In terms of the haystack analogy, 
starting a search might consist of taking a random sample, since this is 
the time honoured way of estimating properties subject to randomness, 
but in doing so you are likely to find nothing. To start the iteration one 
needs to use clues which are likely to tell you something about the items 
sought. Once such items have been identified their properties can be used 
to improve the search In other words once a relevant item has been found 
(because the user says so) one assumes that other relevant items are like it 
(support fror this comes from the Cluster Hypothesis). Several tools are 
available to enhance both the intitial and subsequent searches, 

• document clustering3 

• query expansion4 

• dictionaries and thesauri 
• word sense disambiguation 
• relevance feedback5 

3 See my other paper in these proceedings. 
4 ditto 
5 See later this paper 
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Retrieval as Inference 

In the last few years a new way of looking at the IR problem has 
been explored: retrieval is modelled as a form of inference. It is simplest 
to explain this in terms of textual objects. A document is seen as a set of 
assertion or propositions and a query is seen as a single assertion or 
proposition6 Then, a document is considered relevant to a query if it 
implies the query. The intuition here is that when say q is implied by L\ 
then L\ is assumed to be about q. Another reason for being attracted to 
this view of things is that it captures a notion of information containment. 
When A => B7 then the information that B is contained in A e.g. A = 'is a 
square' contains B = 'is a rectangle'. Hence by seeking that which implies 
the query we are seeking that which is about the query and that which 
contains the information specified by the query. 

If A =:} q then 

Ll is about q 

Although I have represented retrieval as logical inference it is not 
enough. Basing retrieval on strict logical consequence has the major 
disadvantage that typically a query is not implied by any documents (of 
course, this is similar to the failing of Boolean retrieval). Nevertheless it 
is possible to extend and modify the implication retaining the idea of 
inferring the query but making it less strict. For this we move to the idea 
of partial entailment, degree of provability, or plausible inference as it is 
variously called. 

There is an extensive literature on partial entailment going back to 
at least Leibniz. The intuition is that we are able to assess the degree to 
which a proposition is entailed by a set of other propositions. So if we 
have a set L\ , then L\ -> q is measurable. One of the ways is through 
calculating the conditional probability P(qlL\). Another way is to evaluate 
L\ -> q as a conditional whereby we measure the extent to which L\ has 

6 In this paper I will not distinguish between assertions and propositions. 
7 At this point nothing is said about the nature of the implication. 
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to be augmented so that ~ -> q will go throughB. The details of this latter 
approach can be found in my earlier work9 and that of otherslo . 

The above approach has much in sympathy with evidential 
reasoning, that is, given that q constitutes the evidence/clues for the 
identity of a relevant document D, then we can interpret P(qID) or P(Dlq) 
as the strenght of evidential support. 

Vector Space and Probabilistic Models 

Possibly the most complete and satisfactory models for IR that 
have been described in the literature over the last 20 to 30 years are the 
vector space and probabilistic models for retrieval. These models are very 
abstract and assume a considerable data reduction of the objects in the 
domain of application before they can be used. The vector space model 
assumes that documents and queries can be represented as points in a 
high dimensional vector-space and that relevance is measured by a 
query's proximity to documents in that space. The probabilistic model 
assumes that one can estimate P(relevanceldocument). This is done by 
assuming that the document is a random vector and that relevance is a 
property whose probability for any unknown document can be estimated 
by using sample information from a set of known documents. II The 
model then can be shown to be optimal with respect to quality of retrieval 
if the documents are then retrieved in their order of probability of 
relevance.12 Under both models most of the semantics associated with the 
documents and queries is lost, in fact, it is replaced by absence/presence 
index terms or frequency counts of those terms. 

The basis for Probabilistic Retrieval is the celebrated Bayes' 
Theorem: 

P(Hle) ex P(eIH)p(H) 

or P(Hle) = 
P( elH )P(H) 

pee) 

srnce E P( Hie) = 1 . 
H 

8 See my other paper in these proceedings. 
9 Logic papers 
10 Nie. Bruza and Lalmas 
II The details in my book (see references) 
12 The well known probability ranking principle by SE. Robertson. 

I 

I . 



VII.7 

The usual interpretation of the symbols is that H is a hypothesis 
(one of several) which is supported (or otherwise) by some evidence e . 
P(Hle) is interpreted as the probability that H is true given certain 
evidence e. Bayes' Theorem is a form of belief revision in that P(eIH), 
P(H), and Pee) are probabilities associated with propositions (or events) 
before e is actually observed and P(Hle) is the probability of H after e 
has been observed. The notation used to express this is especially 
opaque because the same P(.) is used for the prior and posterior 
probabilities. In fact P(Hle) would be better written as PeCH) indicating 
that we now have a new probability function Pe . A further difficulty 
with this approach is that the evidence e has to be certain at observation, 
that is, cannot be disputed once it is observed, which implies that Pe(e) = 
113 . The fact that in general a conditional probability can only take into 
account an exact and certain proposition, or event, as its basis for revising 
the probability in the light of observation, is a source of some difficulty. 
In IR we use the Bayesian approach by calculating Pq(Rld) through 
P(Rlx) where x is some representation of the document assumed to be 
certain. This means that the description x is assumed to be true of the 
document, or in the document, depending on one's point of view. In 
many cases this is not fully appropriate, as the description, or 
representation x may be subject to uncertainty itself at the time of 
observation. 

Let us examine the calculation of PCRlx) in a little more detail: let 
x be a set of independent variables xl, ... xn., then 

13 There is an ambiguity here but !reat Pe as the revised probability. 
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P(AIG) =.4 P(AIE) =.4 P(AIV) =.8 

Prior to inspection 

peA) = P(AIG) peG) + P(AIE)P(B) + P(AIV)P(V) 
= .4 x.3 +.4 x.3 +.8 x.4 =.56 

After inspection Jeffrey proposes: 

P*(A) =P(AIG)P*(G)+P(AIB)P*(B)+P(AIV)P*(V), 
= .4 x .7 + .4 x .25 + .8 x .05 = .0485 

known as Jeffrey's rule of conditioning 

It is valid whenever P*(A1Ei) = P(A1Ei) where Ei is a partition of 
the sample space. This differs from Bayesian conditioning which would 
use P*(G) = 1, or P*(B) = 1, or P*(V) = 1 and so revise peA) to P*(A) = 
P(AIX) when X = G, B, or V. Thus Bayesian conditioning can be seen 
as a special case of Jeffrey conditioning. 

In this example the conditioning event is a simple property, namely 
colour, in what was proposed earlier, L\->q is a logical relationship. The 
machinery required to calculate the relevant probabilities is not so simple 
and I suggest you consult some of my papers. It is interesting that this 
complex expression defaults to some of the esarlier models under certain 
assumptions. Assume that L\ is empty then 

P*(Rel) = P(Rell q) P*(q) + P(Rell q) p* ( q). 

In the classical case p* (q) = 1 implies P*(Rel) = P (Rei I q) 
whereas p* ( q) = 1 implies P*(Rel) = P (Rei I q). Boolean retrieval 
would judge that 

p* (q) = 1 =} P(Rell ql. = p* (Rei) = 1 
p* (q) = 0 =} P(Rell q) = p* (Rei) = 0 
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Dr Aalders asked Professor van Rijsbergen in the context of the problem of finding a 
needle in a hay stack, if the human approach of finding the needle would involve extra 
knowledge or extra infonnation. Professor van Rijsbergen answered that it would involve 
extra knowledge. 

Dr Larcombe enquired if instead of searching for a needle, one had been searching for a 
piece of hay, what was the importance of metrics in the process of searching. Professor van 
Rijsbergen answered that metrics were quite important depending on the space (context) 
considered. However, the metrics defined for one person may not reflect the needs of 
another person. 

Professor Lincoln asked if the approach had been implemented in neural net. Professor van 
Rijsbergen said that it had been implemented and he had obtained very interesting results 
but he was very cautious because the results obtained for small systems may not be 
generalised for large applications. 

Professor Wheeler asked if in the probabilistic model the attributes of the probabilistic 
function had to be independent. Professor van Rijsbergen answered that they did not need 
to be independent. Professor van Rijsbergen added that in one of the models that he had 
built the dependency between the attributes were second order. This led to a computational 
unsolvable solution and, in the end, the order was one and a half. He concluded saying that 
there are some interesting tradeoffs between the establishment of the dependency order of 
the attributes and the complexity of the system. 


