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Abstract 

A se.mantic file. syste.m is an information storage system that 
provides flexible associative access to the system's contents 
by automatically extracting attributes from files with file 
type specific transduce.rs. Associative access is provided by a 

. conservative extension to existing tree-structured file system 
protocols , and by protocols that are designed specifically for 
content based access. Compatiblity with existing file sys
t~lIl protocols is provided by introducing the concept of a 
virtual directory. Virtual directory names are interpreted as 
queries , and thus provide flexible associa.tive access to files 
and directories in a manner compatible with existing soft
ware. Rapid attribute-based access to file system contents 
is implemented by automatic extraction and indexing of key 
properties of file sys tem objects. The automatic indexing of 
files and directories is called "semantic" because user pro
grammable transducers use information about the semantics 
of updated file system objects to extract the properties for 
indexinl?, . Experimental results from a semantic file syst em 
implementat.ion support the thesis that. semant.ic file systems 
present a more effective storage abstraction than do tradi
t.ional tree structured file systems for information sharing 
and command level programlllin~. 

1 Introduction 

We would like t.o develop an approach for information stor
a~e that. both permi ts users to share information more ef
fec t.ively , and provides reductions in prol?,ramming effort and 
program complexity. To be effective this new approach must 
be used , and thus an approach that provides a transition 
path from existinl?, file syst.ems is desirable. 

In this paper we explore the thesis that se.mantic fil e. 
sY$te.ms present a more effective storage abstraction than 
do t.raditional tree structured file systems for information 
sharing and command level programming. A semantic file 
sys tem is an information storage system that provides flexi-
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.ble associative ·access to the system 's contents by automat
ically extracting attributes from files with file type specific 
transduce,.s. Associative access is provided by a conservative 
extension to existing tree-structured file system protocols, 
and by protocols that a.re designed specifically for content 
based access. Automatic indexing is performed whell files 
or directories are created or updated. 

The automatic indexing of files and directories is called 
"semantic" because user programmable transducers use in
formation about the semantics of updated file system ob
j ec ts to extract the properties for indexing. Through the 
use of specialized transducers, a semantic file system "un
derstands" the documents, programs , object code, mail , im
ages , name service databases , bibliographies, and other files 
contained by the system. For example, the transducer for a 
C program could extract the names of the procedures that 
the program exports or imports, procedure types , and the 
files included by the program. A semantic file system can be 
extended easily by users through the addition of specialized 
transducers. 

Associative access is designed to make it easier for users 
to share information by helping them discover and locate 
programs, documents , and other relevant objects. For ex
ample, files can be located based upon transducer generated 
attributes such as author, exported or imported procedures , 
words contained , type, and title. 

A semantic file system provides both a user interface 
and an application programming interface to its associa
tive access facilities. User interfaces based upon browsers 
[lnf90, Ver90] have proven to be effective for query based 
access to information, and we expect browsers to be offered 
by most semantic file system implementations. Application 
programming interfaces that permit remote access include 
spe~ialized protocols for information retrieval [NIS91], and 
remote procedure call based interfaces [GCS87]. 

It is also possible to export the facilities of a semantic 
file system without introducing any new interfaces. This 
can be accomplished by extending the naming semantics of 
files and directories to support a.c;sociative acc·ess. A benefit 
of this approach is that all existing applications, including 
user interfaces, immediately inherit the benefits of associ a-
tive access. 

A semantic file system integrates associative access into 
a tree st ructured file system through the concept of a vi,.tual 
di,.e.cto,.y. Virtual directory names are interpreted a. .. queries 
and thus provide flexible associative access to files and di
rectories in a manner compatible with existing software. 

For example, in the following session with a semantic 
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file svstem we first locate within a library all of the files 
that ~xport the procedure lookup..fault , and then further 
rest rict this set of files to those that have the extension c: 

Yo cd /sfs/exports: /lookup_fault 
Yo 1s - F 
virtdir_query.cG virtdir_query.oG 
Yo cd ext: /c 
% I s -F 
virtdir_query.cG 
'l. 

Semantic fil e systems can provide associative access to 
a ~roup of fil e servers in a distributed system. This dis
tributed search capability provides a simplified mechanism 
for locating information in large nationwide file systems. 

Semantic file sys tems should be of use to both individu
als and ~roups. Individuals can use the query facility of a 
st: mantic file system to locate files and to provide alternat ive 
viPows of ela.ta.. nroups of users should find semantic file sys
tems an effective way to learn about shared files and to keep 
themselves up to date about the status of group projects. As 
workgroups increasingly use file servers as shared library re
sources we expect t hat semantic file system technology will 
become even more useful. 

Because semantic file systems are compatible with exist
in ~ tree structured fil e systems, implementations of semantic 
file systems can be fuUy compatible with existing network 
file system protocols such as NFS [SGK*85 , Sun88J and AFS 
[Kaz88] . NFS compatibility permits existing client machines 
to use the indexin~ and associative access features of a se
mantic file system without modification . Files stored in a 
semant ic file system via NFS will be automatically indexed , 
and query result se ts will appear as virtual directories in 
the N FS name space. This approach directly addresses the 
"dusty data" problem of existing UNIX file systems by al
lowing exist ing UN IX file servers t o be can verted transpar
ently to semantic file systems. 

We have built a prototype semantic file system and run 
a se ries of experiments to test our thesis that semantic file 
s)'stems present a more effective storage abstraction than do 
traditional tree st ru ctured file systems for information shar
i n~ and cOlllm and level programming. We t ried to locate 
various documents and programs in the file system using 
unmodified N FS clients. The results of these experiments 
sugges t t hat semantic file systems can be used to find in
formation more quickly than is possible using ordin ary file 
systems, and add expressive power to command level pro
gramming languages. 

In the remainder of the paper we discuss previous re
s~arch (Section 2), introduce the interface and a semantics 
for a semantic file syst em (Section 3), review the design 
and implementation of a semantic file sY5tem (Section 4) , 
present. our experimental results (Section 5) and conclude 
with observations 0 11 other applications of virtual directo
ries (Section 6) . 

2 Previous Work 

Associative access to on-line information was pioneered in 
earl y biblio~raphic retrieval systems where it was found to 
he of great value in locating information in large databases 
[SaI83]. The utility of associative access motivated its sub
sequent applicat ion to file and document management. The 
previous research we build upon includes work on personal 

computer indexing systems. information retrieval systems. 
distributed file systems, new naming models for file systems. 
and wide-area naming systems: . 

• Personal computer indexing systems such as O n Loca
tion [Tec90J , Magellan [CorJ , and the Digital Librar
ian [NC89b, NC89a] provide window-based file system 
browsers that permit word- based associati ve access to 
file system contents. Magellan and the Digital Librar
ian permit searches based upon boolean combinations 
of words , while On Location is limited to conjunctions 
of words. All three sys tems ra nk matching fil es using a 
relevance score. These systems all create fndexes to re
duce search time. On Location automatically indexes 
files in the background , while MageUan and the Di~i
tal Librarian require users to explicitly create indexes. 
Both On Location and the Digital Librarian permit 
users to add appropriate key word generation programs 
{Cla90 , NC89b] to index new types of files. However, 
MageUan, On Loca.tion , and the Digital Librarian are 
limited to a list of words for fil e description. 

• Information retrieval systems such as Basis [lnf90J, 
Verity [Ver90], and Boss DMS [Log9 1J extend the se
mantics of personal computer indexing systems by 
adding field specific queries. Fields that can be queried 
include document category, author , type, title, identi
fier , status , date , and t.ext con tents. Many of these 
document relationships and attributes can be stored 
in relational database sys tems that provide a general 
query language and support application progra.m ac
cess. The WAIS system permits information at remote 
sites to be queried , but relies upon the user to choose 
an appropriate remote hos t from a direc tory of services 
[KM91, Ste91]. Distributed information retrieval sys
tems [GCS87, DA N09 1] perform query routing based 
upon database content labels to ensure that all rele
vant hosts are contacted in response to a query. 

• Distributed file systems [Su n89 , Kaz88] provide remote 
access to files with tree s tructured names. These sys
tems have enabled file sharing among groups of people 
and over wide geographic areas. Existing UNIX tools 
such as grep and find [Gr086] are often used to per
form associative searches in distributed file systems. 

• New naming models for file systems include the Portable 
Common Tool Environment (peTE) [GMT86], the 
Property List DIRectory sys tem (PLDIR) [Mog86J, 
Virtual Systems [Neu90] and Sun 's Network Software 
Environment (NSE) [SC88J. PCTE provides an entity
relationship database that models the attributes of 
objects including files. peTE has been implemented 
as a compatible ex tension to UN IX . However, peTE 
users must use specialized tools to query the peTE 
database, and thus do not receive the benefits of asso
ciative access via a file system interface. The Property 
List DIRectory system implements a file system model 
designed around file properties and offers a Unix fron t
end user interface. Similarly, Virtual Systems permit 
users to hand-craft customized views of services, files, 
and directories. However, neither system provides au
tomatic att ribute extraction (although [Mog86] alludes 
to it as a possible extension) or attribute-ba."ed access 
to their contents. NSE is a network transparent soft
ware development tool that allows different views of 
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a file system hierarchy called environment" to be de
"iined. Unlike virtual directories, these views must be 
explicitly created before being accessed. 

• Wide.,,,,., naming systems such as X.SOO [CCISS]. Pr<>o 
file [Pet88L and the Networked Resource Discovery 
Project [Sch89] provide attribute-based access to a wide 
variety of objects, but they are not integrated into a 
file system nor tlo they provide automa.tic aUribute
based access to the contents of a file system. 

Key advances offered by the present work include: 

• Virtual directories integrate associa.tive access into ex
isting tree structured file systems in a manner that is 
compatible with existing applications. 

• Virtual directories permit unmodified remote hosts to 
access the facilities of a semantic file system with ex
isting network file system protocols. 

• Transducers can be programmed by users to perform 
arbitrAry interpretation of file and directory contents 
in order to produce a desired eet of field-va.lue pain for 
later retrieval. The use of fields allows transducers to 

. describe many aspects of a flle, and thus permits sub
eequent sophisticated aBeociative acceJs to computed 
properties. In addition, trAnsducers can identify en
tities within files as independent objects for retrieval. 
For example, individual mail messages within a mail 
file can be treated as independent entities. 

Previous research supports our view that overloading file 
system semantics can improve system uniformity and utility 
when compAred with the alternative of creating a new inter
face that is incompatible with existing applications. Exa.m
pies of this approach include: 

• Devices in UNIX appear a.s speciaJ files [RT74] in the 
/dev directory, enabling them to be used as ordinary 
files from UNIX applications. 

• UNIX System III ""med pipes [RocSS. p. !S9f] appear 
as special files, enabling programs to rendezvous using 
file system operations. 

• File systems appear as special directories in AuLomount 
daemon directories [CL89, PengO, PW90], enabling the 
binding of a name to a. file system to be computed at 
the time of reference. 

• Processes appear as special directories in Killian's pro
cess file system [I<il84J, enabling process observation 
and control via file operations. 

• Services appear as special directories in Plan 9 
[PPTT90J, enabling service access in a. distributed sys
tem through file system operations in the service's 
name space. 

• Arbitrary semantics can be associated with files and 
directories using Watchdogs [BPSS], Pseudo Devices 
[WOSS]. and Filters [Neu90], enabling file system ex
tensions such as terminal drivers, network protocols, X 
servers, file access control, file compression, mail no
tific&tion, user specific directory views, heterogeneous 
file access, and service access. 

• The ATTIC system [CG9!] uses a modifien NFS server 
to provide transparent access to automatically com
pressed files. 

( )-1 ~~~~~tr ~ 
,uU}Qr: smith 

lTI~r_.dr.o 
r lC Doris: In it_ lid,. _rev 
tllDerls: movrJdr JeCl 
Impor ts: malloe 

Irom: smith 

( mall .hl )-1 ~:~~~crr ~ to: Jones 
subject: meetlf'19 
tellt: fin! 

author. smith 

( prop. tell )-I~=~~r~ !!tcllon: IntroductIon 
text: brvtnnlnq 
tewl: dlstrlbut,<I 

Figure 1: Sample Transducer Output 

3 Semantic File System Semantics 

Semantic file systems can implement a wide variety of se
mantics. In this section we present one such sema.nlics lha.t -
we have implemented. Section 6 describes some other pos
sibilities. 

Files stored in a semantic file system are interpreted by 
file type epecific transducers to produce a set of descriptive 
attribute& that enable later retrieval oUhe files. A,n attribute 
is a field. value pair, where a field describes a property of a file 
(such u itfJ author, or the words in its text), and a value is 
a string or an integer. A given file can have many attributes 
that have the same field name. For example, a text file would 
have as many text: attributes as it has unique words. By 
convention, field names end with a colon. 

A user extensible lron,ducer table is used to determine 
the transducer that should be used to interpret a given file 
type. One way of implementing a transducer table is to 
permit users to store su btree specific transd ucers in the 
subtree's paren t directory, and t.o look for an appropriate 
transducer at indexing time by searching up the directory 
hierarchy. 

To accommodate files (such 8.8 mail files) that contain 
multiple objects we have generalized the unit of associative 
access beyond whole files. We call the unit of associative 
Access an entity. An entity can consist of an entire file, an 
object within a file, or a directory. Directories Are usigned 
a.ttributes by directory transduc~rs. 

A transducer is a filler tha.t takes as input the contents of 
a file, and outputs the file's entities and their corresponding 
attributes. A simple transducer could treat An input file u 
a single entity, and use the file's unique words u attributee. 
A complex transducer might perform type reconstruction 
on an input file, identify each procedure as an independent 
entity and use attributes to record their r~con8tructed types. 
Figure 1 8how8 examples of an object file transducer, a mail 
file transducer, and a TEX file transducer . . 

The semantics of a semantic file system can be readily 
extended becau!e users can write new transducers. Trans· 
ducers are free to use new field names to describe special 
attributes. For example, a CAD file transducer could intro
duce a drawing: field to describe a drawing identifier. 

The associative access interrace to a semantic file sys
tem is based upon querie! that describe desired attributes 
of entities. A query is a de8cription of desired attributea 
tha.t permits a. high degree of selectivity in locating entities 
of interest. The result of a query is a set of files and/or 
directories that contain the entities described . Queries a.re 
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boolean combinations of attributes, where each attribute de
scribes the desired value of a field. It is also possible to ask 
for all of the values of a given field in a query result set. 
The values of a fi eld can be useful when narrowing a query 
to eliminate entities that are not of interest. 

A semantic file syst em is query con jis tent when it gu ar
antees query results that correspond to its current contents. 
If updates cease to the contents of a semantic file system it 
will eventually be query consis tent. This property is known 
as convergent consis tency. The rate at which a given imple
mentation converges is adminis tratively determined by bal
ancing the user benefits of fast convergence when compared 
with t he higher processing cost of indeXing rapidly changing 
entities multiple times. It is of course possible to guarantee 
that a semantic file system is always query consistent with 
appropriate use of atomic actions. 

In the remainder of this section we will explore how con
junctive queries can be mapped into tree-structured path 
names. As we mentioned earlier , this is only one of the pos
sible interfaces to the query capabilities of a semantic file 
system. It is also possible to map disjunction and negation 
into tree-structured names, but they have not been imple
Illented in our prototype and we will not discuss them . 

Queries are performed in a semantic file system through 
use of vir tual directories t o describe a desired view of file 
system contents. A virtual directory is computed on de
mand by a semantic file sys tem . From the point of view of a 
client program , a virtual direc tory is indistinguishable from 
an ordina~y directory. However, unlike ordinary directories, 
virtual directories do not have to be explicitly created to be 
accessed. 

The query facilities of a semantic file system appear as 
virtual directories at each level of the directory tree. A 
jie.ld virtual directory is named by a field , and has one entry 
for each possible value of its corresponding field. Thus in 
/515, th e virtual directory / s1s/ovner: corresponds to the 
owner: field. The field virtual directory /515/ owner: would 
have one ent ry for each owner that has written a file in /s1s. 
For example: 

Yo Is -F /s1s/owner: 
jones/ root/ smith/ 
'l. 

The entries in a field virtual direc tory are value virtual 
d irectories. A value virtual directory has one ent ry for each 
entity described by a fi eld-value pair. T hus the value vir
t ual directory /sfs/ovner:/smith contains entries for files 
ill /sfs that are owned by Smith . Each entry is a sy mbolic 
link to the file. For example: 

Yo Is -F /sfs/owner:/smith 
bio.txte 
'l. 

paper. text! prop. text! 

When an entity is smaller than an entire fil e, a view of 
the file can be presented by extending file naming semantics 
to include view specifications. To permit the conjunction of 
attributes in a query, value virtual directories contain field 
vi rtual directories. For example: 

Yo Is -F /sfs /ovner: /smith/ text: / resume 
bio.txtt! 
'l. 

A pleasant property of virtual direc tories is their SYll· 

ergistic interaction with existing file system facilities. For 
example. when a symbolic link names a virtual directory 
the link describes a computed view of a file sys tem. It is 
also possible to use file save programs, such as tar. on vir
tual directories to save a computed subset of a file system. 
I t would be possible also to generalize virtual directories to 
present views of file systems with respect to a certain time 
in the past. 

A semantic file system can be overlaid on top of an or
dinary file system, allowing all file system operations to go 
through the SFS server. The overlaid approach has the ad· 
vantage that it provides the power of a semantic fil e sys tem 
to a user at all times without th e need to refer to a distin· 
guished directory for query processing. It also allOWf' the 
server to do indexing in response to file system mutation 
operations. Alternatively, a semantic fil e system may cre
ate virtual directories that con tain links to the files in the 
underlying file system . This means that subsequent client 
operations bypass the semantic file sys tem server. 

When an overlaid approach is used field virtual directo
ries must be invisible to preserve the proper operation of 
tree traversal applications. A directory is invisible when it 
is not returned by directory enumeration requests, but can 
be accessed via explici t lookup. If fi eld virtual directories 
were visible, the set of trees under / sfs in our above ex
ample would be infinite. Unfortunately making directories 
invisible causes the UN IX command pwd to fail when the 
current path includes an invisible direc tory. It is possible to 
fix this through inclusion of unusual .. entries in invisible 
directories. 

The distinguished field: virtual direc tory makes field 
virtual directories visible. This permits users to enumerate 
possible search fields. The field: directory is itself invisi
ble. For example: 

'l. 15 -F /sfs/field: 
author:/ exports: / 
category :/ ext: / 
date: / imports: / 
dir: / name: / 

owner: / 
priority: / 
subject:/ 

text:/ 
title :/ 
type:/ 

Yo 15 -F /sfs / field: /t ext: /semantic/ovner :/ jones 
mail.txtt! paper.text! prop. text! 

The syntax of semantic file system path names is: 

<sfs-path> : ;::: /<pn> I <pn> 
<pn> ... <name> I <attribute> 

<field-name> I <name>/<pn> 
<attribute>/<pn> 

<attribute> : := field: I <field-name>/<value> 
<field-name> : ;- <string>: 
<value> : := <string> 
<name> ..• <string> 

The semantics of semantic file sys tem path names is: 

• The universe of entities is defin ed by the path name 
prefi x before t he first virtual directory name. 

• The contents of a fi eld virtual directory is a set of 
value virtual directories, one for each value that the 
field describes in the universe. 
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Figure 2: SFS Block Diagram 

• The contents of a value virtual directory is a set of 
entries, one for each entity in the the universe that 
haa the athibut.e described by the name oC the value 
virtual directory and its parent field virtual directory. 
The contents of a value virtual directory defines the 
univeree of entities for its subdirect.ories. In the ab
sence of name conflicts, the name of an entry in a 
value virtual directory is its original entry name. Ent.ry 
name conflicts are resolved by assigning nonce names 
to entries. 

• The contents of a field: virtual direct.ory is t.he set 
oC fields in use. 

4 Semantic File System 1""lementation 

We have built a semant.ic file system t.hat implements t.he 
NFS [SGJ{'85, Sun89) protocol as its external interface. To 
use the search facilities of our semantic file system, an Inter
net client can simply mount. our file system at a desired point 
and begin using virt.ual direct.ory names. OUf NFS server 
comput.es t.he cont.ent.s of virtual directories as necessary in 
response t.o NFS lookup and readdir requests. 

A block diagram of our implementation is shown in Fig
ure 2. The dashed lines in the figure describe process bound
aries. The major processes are: 

• The client proce!s is responsible for generating file sys
tem requests using normal NFS style p&lh names. 

• The file .erver procell is responsible for crea.ting vir
tual directories in response to path name based queries. 
The SFS Server module implements a. user level NFS 
server and is responsible for implementing the NFS in
terface to the system. The SFS Server uses directory 
fault! to request computation of needed entries by the 

Virtual Directory module. A fauiting mechanism is 
used because the SFS Server ca.ches virtual directory 
reeults, and will only fa.uit when needed informa.tion 
is requested the first time or is no longer cached. The 
Virtual Directory module in turn caUs the Query Pro
cessing module to ac~ually compute t.he contents oC a 
virtual directory. 

The file server process records file system modifica
tion events in a. write-behind log. The modification . 
log elimina.tes duplica.te modification events. 

• The indezing proceu is responsible for keeping the in
dex of file system contents up-ta-date. The Index Mu
ter module examines the modification log generated by 
the file server process every two minutes. The index
ing process responds to a. file system modification event 
by choosing an appropriate transducer for the modi
fied object. An appropriate transducer is selected by 
determina.tion of the type of the object (e.g. C source 
file, object file, directory). If no special transducer is 
found a default tra.nsducer is used. The output of the 
transducer is fed to the Indexer module that inserts the 
computed attributes into the index. Indexing and re
trieval are based upon Peter Weinberger's BTree pa.ck
age [Wei) and an adapted version oC the refer [Les) 
software to maintain the mappings between attributes 
and objects. 

• The mount daemon is conta.cted to determine the root 
file handle oC the underlying UNIX file system. The 
file server process exporLs its NFS service using the 
.ame root file handle on a distinct port number. 

• The kernel implements a. standard file syst.em t.hat is 
used to store the shared index. The file server process 
could be integrated into the kernel by a VFS based 
implementat.ion [KleS6] of a.n semantic file system. We 
chose to implement our prototype using a user level 
NFS server to simplify development. 

Instead of computing all oCthe virt.ual directories tha.t are 
present in a. pa.th name, our implementation only computes 
a virtual directory if it is enumer&ted by a client readdir 
request or a lookup is performed on one of its entries. This 
optimiza.tion allows the SFS Server t.o postpone query pro
cessing in the hope that further attribute specifications will 
reduce the amount of work necessary for computation of the 
result set. This optimization is implemented as follows: 

• The SFS Server responds to a lookup request on a 
virtual directory with a 100kup..not...1ound (a.ult to the 
Virtual Directory module. The Vidual Directory mod
ule checks to make sure that the virtual directory name 
ill syntactically well (ormed a.ccording to the gra.mma.r 
in Section 3. If the na.me is well formed, t.he directory 
fault is immediately satisfied by calling the create-<iir 
procedure in the SFS Server. This procedure creates a 
placeholder directory that is used to sa.tisfy the dient's 
original lookup request.. 

• The SFS Server responds to a readdir request on a 
virtual directory or a lookup on one of its entriee with 
a fill..directory fault to t.he Virtual Directory mod
ule. The Virtual Directory module collects all oC the 
attribute specifications in the virtual directory path 
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name and passes them to the Query Processing mod
ule. The Query Processing module uses simple heuris
tics to reorder the processing of attributes to optimize 
query performance. The matching entries are then ma
terialized in the placeholder directory by the Virtual 
Directory module that calls the create..link proce
dure in the SFS Server for each matching file or direc
tory. 

The transducers that are presently supported by our se
mantic file system implementation include: 

• A transducer that describes New York Times articles 
with type:, priority: , date: , category: , subject: , 
title:, author: , and text: attributes. 

• A transducer that describes object files with exports: 
and imports: attributes for procedures and global 
variables. 

• A transducer that describes C, Pascal , and Scheme 
source files with exports: and imports: attributes 
for procedures. 

• A transducer that describes mail files with from: , to: , 
subject: , and text: attributes. 

• A transd ucer that describes text files with text: at
tributes. The text file transducer is the default trans
ducer for ASCII files. 

In addition to the specialized attributes listed above, all 
files and directories are further described by ovner, group, 
dir , name , and ext attributes. 

At present , we only index publicly readable files . We are 
investigating indexing protected files a.') well , and limiting 
query results to entities that can be read by the requester. 
We are in the process of making a number of improvements 
to our prototype implementation. These enhancements in
clude 1) full support for multi-host queries using query rout
ing, 2) an enhanced query language, 3) better support for 
file deletion and renaming, and 4) integration of views for 
entities smaller than files. Our present implementation deals 
with deletions by keeping a table of deleted entities and re
moving them from the results of query processing. Enti
ties are permanently removed from the database when a full 
reilldexing of the system is performed. We are investigating 
performing file and directory renames without reindexing 
the underlying files. 

5 Results 

We ran a se ries of experiments using our semantic file system 
implementation to test our thesis that semantic file systems 
present a more effectiv e storage abstraction than do tradi
tional tree structured file systems for information sharing 
and cOlllmand level programming. All of the experimental 
data we report are frOIll our research group's file server using 
a semantic file system. The server is a Microvax-3 running 
UN IX version 4.3bsd. The server indexes all of its publicly 
readable files and direc tories. 

To compact the indexes our prototype system recon
st ructs a fuU index of the file system contents every week. 
On 23 July 1991 , full indexing of our user file system pro
cessed 68 MBytes in 7,771 files (Table 5).' Indexing the 

otal flle system size 326 M tlytes 
Amount publicly readable 230 M tlyte!' 
Amount with known trans ucer 68 M Bytes 

_Number of distinct attributes 173 ,075 
Number of attributes indexed 1,042,832 

Type Number of Files KBytes 

01 ject 871 8,503 
::iource 2,755 17.991 

ext 1.871 20.638 
L ther 2.274 21,187 

Total --1,171 68.319 

Table 1: User File System Statistics for 23 July 1991 

Part of index SIze m f\ Bytes 

~n~ex fables 6,621 
3.398 n ex rees 

Total 10,019 

Vhase 'rune (hh'mm) 

Directory Enumeration 0:07 
Determine r -j e -I-ypes 0:01 

ransduce Uirectory 0:01 
rans uce Object 0:08 

Trans duce Source 0:23 
Transduce Text 0:23 
'['ransd uce Other 0:24 
Build Index Tables' 1:22 
Build Index Trees 0:06 

Total 1.36 

Table 2: User FS Indexing Statistics on 23 July 1991 

resulting 1 million attributes took 1 hour and 36 minutes 
(Table 2). This works out to an indexing rate of 712 
KBytes/ minute. 

File system mutation operations trigger incremental in
dexing. In update tests simulating typical user editing and 
compiling, incremental indexing is normally completed in 
less than 5 minutes. In these tests , only 2 megabytes of 
modifi ed fi le data were reindexed. Incremental i~dexing is 
slower than full indexing in the prototype sys tem beca"use 
the incremental indexer does not make good use of real mem
ory for caching. The full indexer uses "10 megabytes of real 
memory for caching; the incremental indexer uses less than 
1 megabyte. 

The indexing operations of our prototype are I/O bound. 
The CPU is 60% idle during indexing. Our mea.<)urements 
show that transd ucers generate approximately 30 disk trans
fers per second, thereby saturating the disk. Indexing the 
resulting attributes also saturates the disk. Although the 
transducers and the indexer use different disk drives , the 
transducer-indexer pipeline does not allow I/O operations 
to proceed in parallel on the two disks. Thus , we feel that 
we could double the throughput by improving the pipeline 's 

2 in parallel with Transduce 

I: 



structure. 
We ~xpect our indexing strategy to Icale to larger file IYS

terns because indexing is limited by the update rate t.o a file 
system rather than its tot.al storage capacit.y. Incremental 
processing of upda.tes will require addit.ional read bandwidth 
approximately equal to the write traffic that actually occurs. 
Past studies of Unix file system activity (OCH·S5] indicate 
that update rates are low, and that most new data is deleted 
or overwritten quicklYi thus, delaying slightly the processing 
of updates might reduce the additional bandwidth required 
by indexing. . 

To determine the increased latency of overlaid NFS op
erations introduced by interposing our SFS server between 
the client and the native file system, we used the nh:teetone 
benchmark [LegS9] at low loads. The delays observed from 
an unmodified 'client machine were smaller than the varia
tion in latencies of the n&live NFS operations. Preliminary 
measurements show ·that lookup operations are delayed by 
2 ms on average, and operations that. generate update noti
fications incur a larger delay. 

The following anecdotal evidence supports our thesis that 
a semantic file system is more effective than traditional file 
systems for information sharing: , 

e The typical response time for the first 118 command on 
a virtual directory is approximately 2 seconds. This 
response time reflects a lubstantial time savings over 
linear search through our entire file system with ex
isting tools. In addition, subsequent Ie commands re
spond immediately with ca.ched results. 

We ran a series of experiments to test how the number 
of attributes in a virtual directory name altered the 
observed performance of the Ie command on a virtual 
directory. Attributes were added one a.t a time to ar
rive at the final pa.th name: 

/efe/text:/virtual/ 
text:/directory/ 
text:/ee.anticl 
ext:/texl 
ovner:/gifford 

The two properties of a query tha.t affect its response 
time &Ie the number of attributes in the query a.nd 
the number of objects in the result set. The effect of 
an increase in either of these factors is additional disk 
accesses. Figure 3 illustrates the interplay of these 
(actors. Each point on the response time graph is the 
average of three experiments. In a separate experiment 
we measured an average response time of 5.4 seconds 
when the result set grew to 545 entities. 

e We began to use the semantic fi le system as soon as 
it was operable to help coordinate the production of 
th is paper and (or a variety of other everyday tasks. 
We have found the virtual directory interface to be 
easy to use. (We were immediately able to use the 
GNU Em_cs direclory edilor DIRED [81_87)10 submil 
queries and browse the results. No code modification 
was required.) At least two users in our group reex
amined their file protections in view of the ease with 
which other users could locate interesting files in the 
system. 
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Figure 3: Plot of Number of Attributes vs. Response Time 
and Number of Results 

• Users outside our research group have successfully used 
the query interface to locaLe information. including 
newspaper articles. in our file system. 

e Users outside our research group have failed to find 
files for which no trAnsducer had yet been installed. 
We &Ie developing new transducers in response t.o thele 
failed q ueriel. 

The following anecdotal evidence supports our thesis that 
a semantic file system is more effective than traditional file 
systems for command level programming: 

e The UNIX shell pathname expansion facilities inte
grate well with virtual directories. For exa.mple, it is 
possible to query the file sy.tern (or all dvi files owned 
by a particular user. and to print those whose namel 
begin with a certain sequence of characters. 

• 8ym bolic links have proven to be an effective wa.y to 
describe file system views. The result of using such a 
.ymboHc link as a directory is a dynamicaJly computed 
set of files. 

6 Conclusions 

We have described how a semantic file sy~tem can provide 
associative attribute-bued accel8 to the contents of an in
formation storage system with the help of file type specific 
transducers. We have also discussed how this access can be 
integrated into the file system itself with virtual directories. 
Virtual directories are directories that are computed upon 
demand. 

The results to date are consistent with our thesis that 
semantic file systems present a more effective stonge ab
straction than do traditional tree structured file systems for 
information sharing and command level programming. We 
plan to conduct further experiments to explore this thesis 
in furLher detail. We plan also to examine how virtual di~ 
rectories can directly benefit application programmers. 
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Our experimental system has tested one semantics for 
virtual direc tories , but there are many other possibilities. 
For example: 

• The virtual directory syntax can be extended to sup
port a richer query language. Disjunctive queries would 
permit users to use "orn in their queries , and would 
also offer the ability to search on multiple network se
mantic file systems concurren tly. 

• Users could assign attributes to file system entities in 
addition to the attributes that are automaticalJy as
signed by transducers. 

• Transducers could be created for audio and video files. 
In principle this would permit access by time , fram e 
number, or content [Nee91]. 

• The data model underlying a semantic file system could 
be enhanced. For example, an entity-relationship model 
[Cat83] would provide more expressive power than sim
ple attribute based retrieval . 

• The entities indexed by a semantic file system could 
include a wide variety of object types, including I/O 
devices and file servers. Wide-area naming systems 
such a<; X.500 {CeI88] could be presented in terms of 
virtual directories. 

• A confederation of semantic file systems, possibly num
bering in th e thousands, can be organized into an se
mantic library system. A semantic library system ex
ports the same interface as an individual semantic file 
system , and thus a semantic library system permits 
associative access to the contents of its constituent 
servers with existing file system protocols as well as 
with protocols that are designed specifi cally for con
tent ba'Sed access. A semantic library system is im
plemented by servers that use content based routing 
[G LB85] to direct a single user request to one or more 
relevant semantic fi le systems. 

We have already completed the implementation of an 
N FS compatible query processing sys tem that forwards 
requests to multiple hosts and combines the results. 

• Vi rtual directories can be used as an interface to other 
systems, such a'S information ret rieval systems and pro
gramming environment support systems, such a'S PCTE. 
We are exploring also how exis ting applications could 
access object repositories via a virtual directory inter
face. It is possible to extend the sem antics of a seman
tic file system to include access to individual entities 
in a lIIal~n er suitable for an object repository [G091]. 

• Relevance feedback and query results could be added 
by introducing new virtual directories. 

The implementation of real- time indexing may require a 
su bstantial amount of computing power at a semantic file 
se rver. We are inves tigating how to optimize the task of 
real-time index.ing in order to minimize this load. Another 
area of research is exploring how massive parallelism [SI{86] 
might replace index.ing. 

An interesting limiting ca<;e of our design is a system that 
makes an underlying tree structured naming sys tem super
fluous. In such a system all directories would be computed 

upon demand , including directories that correspond to tra
ditional tree structured file names. Such a system might help 
us share information more effectively by encouraging query 
based access that would lead to the discovery of unexpec t.ed 
but useful information . 
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DISCUSSION 

Rapporteur: Dr Robert Stroud 

Lecture One 

III.ll 

Professor van Rijsbergen expressed surprise that the Wall Street Journal and New York 
Times had agreed to making their editions available in electronic form. Professor Gifford 
confirmed that he had obtained permission for up to 1000 users to have access to current 
topics. For the purposes of his study. it was important to provide both today's 
information and a retrospective view. The newspapers were willing to cooperate because 
they got value from the study - this was the only data published about how people 
accessed their material. 

Professor Larcombe wondered how it would be possible for the New York Times to stay 
in business if it were to be made available in electronic form because readers would be 
able to filter out advertising material automatically. In response. Professor Gifford 
explained that there were two kinds of advertising: non-discretionary which you were 
forced to read. and discretionary which you had to request explicitly. The advertisers 
liked discretionary advertising because they knew that the customer had asked to see it. 
He predicted that we would see more and more discretionary advertising in electronic 
media. For example. MTV was essentially music adverts packaged as entertainment. 
This idea would spread to on-line media with advertisements appearing as informative 
articles. Organisations such as the New York Times would charge advertisers for the 
right to supply such information via a channel with the NYT stamp. 

Dr Berners-Lee asked about the problem of bias in such programmes. Professor Gifford 
agreed that standards of practice were required so that people knew they were watching 
an advert. However. it would also be possible to provide a service by which consumers 
could pay for unbiased information without a slant. Professor Randell observed that this 
was a nice idea and not something that was available today. 

Professor van Rijsbergen remarked that the query language proposed for accessing the 
database was not content-based and this limited the flexibility of the system as it couldn't 
cope with semantic ideas below the level of the query language. 

Someone else asked how the system dealt with queries that could be handled by more 
than one database and was told that the system would process queries at the least 
expensive site. Query routing was based on a simple fIrst-order theory that used a series 
of content labels for databases and servers to identify the lowest cost database. 

Professor Lincoln asked whether the system covered sport or other journalistic areas 
where articles were often written in a "cutest" style. If writers habitually used funny 
words and avoided standard formats. it would be diffIcult to organise such material by 
theme. For example. how would the system deal with a headline such as "Hix nix stix 
pix" (which can roughly be translated as "People who live in the country don't like films 
which patronise their lifestyle")? Professor Gifford explained that headlines were 
considered to be editorial and were not included as part of the Associated Press news
feed from which he obtained the articles. However. the system did use a standard for 
tagging newspaper articles by author. category. priority. etc. Records were organised as 
attribute/value pairs and it was possible to search inside the text field of a record but 
otherwise there was no semantic analysis. 

Dr Berners-Lee asked whether the user needed to be aware of how the database was 
organised. Professor Gifford replied that this was not necessary because the system 
automatically restricted queries to an allowable range of values. For example. if data was 



III. 12 

organised by time, the user wouldn't see this. However, the system would be unable to 
answer a question that didn't involve a valid time range covered by the database (e.g. you 
couldn't ask about next week's stock prices!). If your query didn't mention time, the 
system would suggest an alternative query with an appropriate range restriction. For 
example, in response to a query about all movie reviews in the NYT, the system would 
offer a query about movie reviews in the NYT from 1990 onwards. This automatic 
expansion of queries was so useful that many users had become too lazy to type queries 
in full and preferred to use this feature as a query completion facility. Professor Lincoln 
described this facility as a sort of "bait and switch". 

Dr Berners-Lee suggested that nobody would want to specify a full query in any case. 
What they wanted was not "tell me everything" but "tell me what's interesting". Wasn't 
this a problem in practice? For example, a query about sport in Ethiopia might yield 500 
pages of information. Professor Gifford agreed that it was useful to be able to bound the 
universe of data so that you knew what the result of your query described. 

Professor van Rijsbergen thought that the -system provided a very primitive form of 
relevance feedback. If a simple query didn't produce satisfactory results, the obvious 
thing to do was to change the query which could be expanded automatically according to 
a universal scheme. However, Professor Gifford felt that the system of query completion 
was complementary to relevance feedback. He also remarked that the system supported 
query macros which were a powerful feature. Ordinary people didn't want to use query 
languages - this was too much like programming. Instead, they needed higher level 
semantic idioms (e.g. graphical icons, drop-in boxes), not algebra. 

Professor Gifford explained that the use of a broadcast medium to distribute articles had 
nice privacy properties because articles could be filtered locally according to private 
preferences stored in a user profile. Unlike a client/server system, queries would never 
have to leave home. Professor Randell asked if queries could escape from the local 
machine if a user changed their interests but was told that this would only be a problem 
if they didn't change their user profile at the same time. 

Dr Russell was concerned about the confidentiality issue which was addressed by local 
processing. Would this still happen with a commercial system? For example, some firms 
monitored your use of in-store credit cards to target what you buy. Without proper 
regulation, the temptation to monitor such usage would be irresistible. In response, 
Professor Gifford remarked that Times-Warner-Atlanta were already providing a variant 
of his service that allowed people to browse channels. The real fear was transactions 
involving multiple entities. 

Professor Tedd said that the use of Teletext broadcasts on TV channels had the potential 
to be extended. Teletext had proved to be remarkably effective in the UK, providing 
discretionary advertisements to a real market (e.g. advertising vacancies on courses). He 
thought that the way forward was to collect data at the receiving end to reduce latency 
and make the system more interactive. Professor Gifford agreed that the economics of 
broadcasting made this attractive and predicted digital TV broadcasts would contain 
extra information of this kind. The TV of the future would be more like a workstation. 

Mr Ainsworth asked whether there would be any significant difference if users could 
only access broadcast information and there was no feedback channel. Professor Gifford 
replied that although he couldn't do a controlled experiment, he believed that there would 
be a difference. A duplex channel only provided a marginal improvement over a simplex 
channel unless the user wanted retrospective information. However, duplex was useful 
for active advertisements and executing transactions, For example, an active car advert 
might gather information about what you wanted and then let you dial out for more 
details. 

: 
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Professor Randell asked if anyone had looked at the impact on the community of the 
much larger French Minitel system which was orders of magnitude greater in size. 
Professor Gifford thought that people had been forced to use Minitel because their 
telephone books had been taken away but Professor Randell assured him that the 
introduction had been voluntary and you were allowed a choice. He said that Minitel was 
accessible from other systems and had become incredibly embedded into the French 
system to the extent that numbers in adverts and graffiti were universally understood to 
refer to Minitel pages. The Internet was years behind Minitel in terms of visibility to the 
general population. Professor Gifford replied that what he knew of Minitel was 
anecdotal. He had not seen any studies of how it was used or where the traffic went. 
Indeed, some of the traffic carried by Minitel would not be allowed in the US. For 
example, the French newspaper Liberation was reputed to have demonstrated that the 
network was being put to criminal use by using it to locate the services of a contract 
killer! 

Dr Berners-Lee described how he was in the process of moving from Switzerland to 
France and said that the lack of a Minitel connection was causing a crisis - you couldn't 
order things in France without one! He wondered if there were Internet gateways onto 
Minitel - currently he had to pay by minute for connection and pay the information 
provider too. He would like to set up a gateway to Minitel from the World-Wide Web. 

Professor Lincoln said that adverts were already being filtered on Cable TV - if you 
accepted them, the price was lower. Professor Gifford thought this was very interesting -
people were not used to paying for information. He wondered what people would be 
prepared to pay for on the Internet. 

Lecture Two 

Whilst Professor Gifford was explaining that updates to the index were performed in the 
background, Professor Randell asked a question about consistency. If a user had just 
added something to the file system, how soon before it could be accessed via a virtual 
directory? Professor Gifford explained that the system currently guaranteed an index 
update every 5 minutes but that the user couId specify how eager the updates should be. 

Mrs Foster asked how the system dealt with scaling if information was duplicated on 
several servers. Professor Gifford explained that the system would refuse to search more 
than a certain threshold number of servers. This forced you to route queries more 
explicitly by specifying enough terms to narrow the search. The precise threshold could 
be administratively controlled and it was hoped that content labels would be informative 
and allow routing. Although it was fundamentally easy to describe files that were on 
every server, the system would refuse to process such queries. Instead, the user interface 
was intended to provide an easy progressive discovery of the desired information. 

Dr Russell hoped there weren't too many interesting queries that failed this test, 
otherwise people wouldn't use the system. Was there a hidden assumption here? 
Professor Gifford said that he was assuming that people were at least willing to describe 
documents using a higher level attribute such as organisation, area, library or project. 

Professor van Rijsbergen suggested taking a random server and returning the information 
obtained as a typical example of what was available. Professor Gifford agreed that this 
was a possibility but said that the problem was knowing whether something was 
exemplary or not. In any case, the query expansion facilities provided by the system 
made it possible for people to do this themselves. Professor van Rijsbergen said that in 
some contexts the user might want to rank servers and take the top one. This was not 
possible using the current architecture. Professor Gifford agreed but suggested using 
attributes to represent the veracity of each server. 
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Professor van Rijsbergen said that he would want to avoid a dumb response - trying 
again could be constructive if the system had indicated that there were 14 possibilities 
for example. Professor Gifford replied that his intention was to make the User Interface 
responsive but that there could be no magic. Given 220 servers, each with 2 16 files, you 
were looking in a sea of 236 files and would need 36 bits of information to identify a 
particular fIle and 20 bits to identify a particular host. Without those 36 bits, you couldn't 
get to a file - you needed lots of bits to get to things. In a hypertext system, each link 
contributed so many bits and you had to add them all up to reach your target. This issue 
was complementary to the kind of interface Professor van Rijsbergen was proposing. 

Professor Brown asked if it was possible to use the system to select a set of files (e.g. a 
list of citations). Professor Gifford said that this was sometimes useful (e.g. to print a set 
of News files) but that often you wanted to use the result of an interaction to get a new 
query. They had not tried this - typically, they would create a new virtual directory 
indexed on some distinguishing attribute. 

Dr Stroud asked whether it was possible to retain transparency in the presence of content 
routing. The Unix system call interface was not flexible enough to provide the feedback 
needed to make content routing work in practice if the only way to express associative 
lookups was by using Unix pathname syntax. Professor Gifford agreed that a transparent 
command-line interface was less appropriate for accessing remote file servers and 
advocated the use of graphical browsing tools instead. 

Professor Wheeler asked how the system dealt with encrypted fIles if the transducer was 
unable to read their contents. Professor Gifford replied that it was still possible to index 
files based on other file system attributes such as ownership and creation date. 

Professor Brown asked for references and was told that a paper at the last OS conference 
had described the implementation in great detail. A copy of a paper which first appeared 
in ACM SIGOPS December 1991 would be provided for the report. 

Professor Whitfield was unable to resist asking what he described as a silly question 
about the use of: as a separator to indicate a semantic query on a virtual directory. This 
wouldn't work on a Macintosh which used: in the way that Unix used / as the pathname 
separator. In Professor Whitfield's view, it was important to pick an appropriate set of 
abstractions for the user's environment. For a Macintosh, these would include a graphical 
interface with the ability to drop icons in folders representing virtual directories. 
Professor Gifford's system was great for Unix but wouldn't port to the Macintosh in its 
current form. In response, Dr Stroud argued that the representation of queries was a 
lexical detail for the end-user's system and the underlying protocols would be unaffected. 
For example, NFS already had to deal with this problem in order to provide transparent 
access to heterogeneous file systems and used a protocol that looked up each segment of 
a pathname one directory at a time, without relying on any particular naming convention. 

Professor Randell felt that with this diversion into the more abstract areas of Computer 
Science, it was time to bring the discussion to a close and thanked Professor Gifford for 
his two talks. 


