
VIn

INTEGRATED MODELLING AND SUPPORT ENVIRONMENTS FOR

INFORMATION SYSTEMS

A SOLVBERG

Rapporteur : M Elph ick

VIII. 1

Paper presented at the 23rd Newcastle-upon-Tyne International
Seminar on the Teaching of Computing Science at University
Level

INTEGRATED
ENVIRONMENTS

MODELLING AND SUPPORT
FOR INFORMATION SYSTEMS

Arne S0lvberg
Information Systems Group

Dept. EECS, The Norwegian Inst. Technology
University of Trondheim

Norway

The invitation to this seminar states that "the role of the
speakers will not be to give conventional research seminars,
but rather to give their views on the present state of the
art and of probable future developments in their particular
area of interest and expertise, and where appropriate to
discuss what part material from this area should play in
computing science curricula, and how it should be taught". I
shall try to keep to this view of the role.

Information Systems Engineering is the discip l ine of
developing and maintaining computerized Information Systems .
In the past these systems have mostly been dev eloped in a
"tailor-made" fashion. Companies have developed their own in­
house systems from scratch. This practice has led t o
increasing maintenance burdens on their OP-departments, and
to embarrassingly high information systems expenses .

Some of the changes that are taking place in system
development practices may be characterized as follows:

the software profession is slowly maturing from garage
ventures into an industry

an appropriate management culture and methodology will
evolve for OP-departments, as well as for software houses

software development is becoming increasingly capital
intensive

software engineering environments will become a costly
must

a number of prescriptive software engineering standards
will emerge

software management and maintenance will increasingly
become major problem areas, and will necessitate the use
of rigorous CAD-methods in software design

the entry ticket price to the professional software market
will increase strongly

VIn. 2

There is currently a clear trend towards increased sharing of
development- and maintenance costs of Information systems
software. Systems are no more constructed from scratch. They
are increasingly assembled from available software
components, which are interfaced and integrated into systems.
Vendor-supplied application platforms will appear in the
marketplace for more and more application areas .

An information system may be viewed as consisting of three
layers:

the organisation layer
. the application software layer
. the computer system layer

Information system design comprises organisational design,
application software design, and computer system configura­
tion, plus appropriate interface design between the layers.

An information system designer will have to participate in
designing all three layers. Even if appropriate design skills
relevant to all three levels are needed, specialisation to
the different levels should be expected. Some of the relevant
skill-areas are

business analysis
socio-technical design
human-computer interface design
functional analysis
software design
database design
performance evaluation
communication system design
computer system configuration
system administration
project management skills, and so on.

Some of the most important developments that will
Information Systems development techniques in the
come are found in the realms of:

application platforms
system development environments
integrated speCification models

influence
years to

An application platform contains basic software functions for
a particular application domain, plus possibilities for the
platform user to add on company-specific software. An
application platform is a vendor supplied "common system". It
is intended to comprise 40-80% of the software that is
required in an information system within some particular
application area. The remaining 20-60% of the application
software define additional behavioral properties of those
information systems that are based on the platform. The add­
ons therefore define the competitive edge of the respective
organisations.The basic idea of a common application platform
is indeed an old one. The new development is that finally the
idea seems to be able to fly.

. I

VIn. 3

A system development environment is a particular type of
platform, which provides an infrastructure for the integra­
tion of available system development tools, beyond the
conventional level of compilers and database systems. A most
important component of system development platforms is the
system encyclopedia (data dictionary, repository, specifica­
tion database), which makes it possible to integrate the
various application systems of a company, so that it may
become possible to obtain control over the evolution of a
company 's software.

An integrated specification model makes it possible to
formally express a system's properties on every level of
abstraction, from the business policy level to the opera­
tional data processing level, such that the specifications
may be formally massaged and analysed. "Automatic
programming" based on functional application systems
specifications may be within reach.

Developments like those indicated above will contribute to
promoting programming from being an art to becoming an
engineering discipline. The preferred talents and skills of
the programmer may be different in the future from what they
have been until now.

The three realms will be discussed in some more detail below.

1. APPLICATION PLATFORMS

Vendor supplied software are usually found in the form of
software libraries e.g. mathematical subroutines, or standard
software systems e.g. spreadsheets, wordprocessors,
simulators. The software is usually void of domain specific
semantical contents. It may therefore be used in a variety of
different users domains, e . g. a wordprocessor may be used by
both medical doctors and solicitors.

An application platform is a vendor supplied collection of
software for some application domain, which may be augmented
by the customer to suit his organisational needs. An
application platform provides a "core" of software components
for standard business functions, plus pre-defined interfaces
for custom-tailored add-ons. Application platforms are
similar to so-called "common systems". The major difference
is that a platform is supplied by computer vendors and
software houses, while "common systems" are usually developed
by a single large company to be used by its many sub­
sidiaries, or by a group of similar companies in order to
share software development and maintenance costs. Examples of
platforms / common systems are airline booking systems, banking
systems.

The rationale for developing an application platform is
economy of scale. Information systems are becoming more and
more complex and expensive to develop and maintain. It makes
sense to share costs through standardisation of business
functions and software. We may therefore expect to see more
platforms in new domains in the years to come.

.1
I

VIII . 4

Figure 1 Four types of relationships between software
vendor and buyer

......... _--_. ----_ ... -

Vendor's
offer

Platform use
by buyer#l

Platform use
by buyer#2

Figure 2 Different buyers may use various parts of
platform supplied application functions

An application platform must have an architecture that
accomodates the need for modifying a standard solution of a
general problem, to fit the local problem at hand . A platform
contains a "core" and local add-ons. The core is supposed
not to be modified, and is therefore to be treated as a
standard software system.

VIII.5

The key question when designing the core is, which functions
to standardise in a typical user environment. Is the core
80%, 60%, 40% or 20% of a typical installation? It can
certainly not be 100% . In that case every bank would be the
same if they used the same application platform. Business
practises are embedded in the application software. The
competitive edge between businesses is found in the local
add-ons!

Application platforms may either be database centered or
program centered. In a database centered view, the platform
is viewed as a database on which programs are hung. In a
program centered view a platform is a collection of programs.
In the program centered view little attention is paid to the
consequences of changing the database. This may easily lead
to incompatible databases at the different installations. If
a company has several installations of the same platform in
different subsidiaries, system integration goals may become
unattainable . One may therefore expect that the successful
platform architectures will be database centered.

Even if application platforms are domain oriented, they will
have to contain a number of general data processing
functions, e.g. word processors. This may lead to problems
with the integration of a platform with other software
packages that are already used by the platform buyer .

User
Supplied
Functions &
DB-schema

Vendor
Supplied
Functions &
DB-schema

Application
Specific
Functions

General
Info. System
Functions

.• Application

Platform

Figure 3 Application platforms may contain general office
functions as well as domain specific application
functions

The platform buyers - the companies - will face additional
problems. Integration of information systems applications is
also tOday a formidable challenge. The databases of the many
information systems that are in operation in a large company
reflect various views of the company and its environment.
Systems integration requires that the databases are

VI II .6

integrated. This requires that a common world view is
developed within the company.

Even if a company is completely free to determine their
database schemas, independently of commercially acquired
application software, it is a formidable job to develop a
common conceptual datamodel for the whole company . One of the
reasons for this difficulty is that those who know enough
about the company to be able to form a consistent worldview
of the company and its environment, usually have been in
management positions for such a long time that they are no
longer candidates for doing systems development work any
more. Software development is the battle ground of the young
and vigorous, who know enough about computers, but too little
about the overall operations of the company to be able to do
a proper integration job. This problem is not going to become
one bit easier to solve when application platforms carry
their own vendor supplied world views into the companies I

G~n~ra l
IS
Functions

Overal l
DB
Schema

Figure 4 Application platform integration within a company

The tasks of the systems designers will be different in a
platform environment than in an environment of custom­
tailored systems. The add-ons will have to be designed
relative to the world-view of the application platform. In
order to be effective, the designers will have to become
platform specialists.

We may crudely divide designers into the four groups of

* computer system designers
* application platform designers
* application system designers, and
* organisation designers

What are the appropriate skills for the four groups of
designers? And who shall educate them?

computer system designers are straightforward to place. They
are the responsibility of the Computer Science Departments
(and the Electronics Departments, and the Telecommunication

. -

VIII . 7

Departments?). The other three categories are more difficult
to place. Should designers of Office Automation platforms be
educated in Business Schools or in Technical Universities, or
both? And what about Civil Engineering platforms? Do
everybody who participate in the design and implementation of
a software platform for road design need to know very much
about road engineering? And on the contrary, does a road
designer need to know very much about his software platform,
except of its functionality?

Is it possible to design an organisation in the future
without having profound knowledge of design options for its
computerised information system? That ~s, office system
platform knowledge may be crucial as a basis for determining
organisational structures.

The organisation of the educational efforts shall, in the
long run, have to be determined by the skill sets that are
needed for the various professions, and how they can be most
rationally provided in teaching.

2. DEVELOPMENT ENVIRONMENTS: INFORMATION SYSTEMS SUPPORT
FOR INFORMATION SYSTEMS DEVELOPMENT

Information systems used to be built from scratch, because
there were few, if any, components available to base the new
systems upon. This is not the case any more. Information
systems are increasingly being built through the re-use,
modification, integration and interfacing of commercially
available software components. Programming, in the original
meaning of writing commands for a computer to follow, is not
as dominant an activity as it used to be only a few years
ago .

More of the total effort of a development project has been
shifted from the actual writing of the software, to finding
out which software to write. This change has come about
because too many projects failed, in order to secure that the
software is useful for some worthwhile purpose when it is
finally written.

Furthermore, because the information systems development
process is team oriented, rather than individual oriented,
much effort has to be used to ensure effective communication
within teams and between teams. Much effort has also to be
used in order to ensure that team members know enough of what
is going on in their projects, so that they do not make wrong
design decisions out of ignorance.

Important trends in this change of the information systems
development process, from relying on programming skills
alone, to emerge as an engineering design discipline, are:

* Increased need for practical ways of managing the many
persons and tasks that make up the cooperative process of
designing and building an information system.

VII I .8

* Increased need to move from ad hoc development strategies
to a strategy based on engineering principles, e.g. the
development of standards for programming and for specifi­
cations.

* Increased availability of a larger variety of computerized
tools for the support of the various systems development
tasks, in addition to the well known tools for the support
of the programming task, e.g. tools for diagramming, code
generation, testing, verification, and so on.

The many persons/many tasks problems are enhanced when the
information systems engineering department is given a
geographically decentralised organisational structure. The
tendency to decentralize operations has increased in most
enterprizes over the last couple of decades. The information
system engineering departments are no exceptions to this
trend. Decentralised systems development environments must
therefore be supported . Particular emphasis must be given to
improved communication, in order to enhance the individual
information system engineer's level of understanding and
knowledge of the system to be built.

In spite of the recognition of the need for standardization,
there is a plethora of available development methods,
specification techniques, and programming languages. There
is , so far , no indication of that the industry, as a whole,
will settle for a broad agreement on standards for informa­
tion systems development in the forseeable future. Therefore,
support systems must be able to incorporate various
techniques and tools as they become available and are offered
in the marketplace.

During the 1980's a large number of so-called CASE-tools have
been developed and marketed. CASE is an acronym for Computer
Assisted Software Engineering. Most of the tools are based
on system development techniques that originally was intended
for manual use by humans, e.g. data flow diagramming. Few
CASE-tools have so far taken advantage of the potential of
doing more sophisticated analysis of the specifications,
provided that the specifications can be more formally
expressed. Many of the CASE-tools provide graphical support
for drawing diagrams only . Their usefulness is therefore
quite limited.

Legend :

I Rarely thot.lgh1 0/ as CASE

I :~.:,;: Sometime. tnought 0/ u CASE

111 Otten tnought 01 .. CASE

• Atwayl thought 0/ • CASE

Figure 5 What is a CASE tool

VIII. 9

Given these trends, we may propose some requirements which a
support system for information systems development should be
expected to satisfy:

* The scope must be so wide as to support system development
and maintenance through all phases of a system's life cycle.
Various system development methods, project sizes, and
system types should be supported equally well.

* The project management aspects of systems development must
be supported in a flexible manner, so that the support
system can be adapted to whatever management strategy that
a company may choose to implement.

* Relevant project information must be supported in such a
way that it can be made available to all project partici­
pants, as needed. Project information is to be understood
as software, systems documentation, company standards,
company adresses, tools indices, and the like.

* Easy communication among project participants must be
facilitated. This comprises end users communicating with
the information system engineers, designers communicating
their perception of end user requirements to the imple­
menters, the communication among designers and among
implementers, and finally, the transfer of knowledge of
the whole program system, on every abstraction level, to
the staff responsible for the future maintenance of the
information system.

* The re-usability of software components and the asso­
ciated documentation must be supported. The development
of modularised software systems must be supported and
stimulated. This means in particular that solutions to
the problems of the interfacing of software components
must be provided for.

VIn . 10

* Tools must be provided for effective software configu­
ration management, and for version control of associated
specification documents. This is of particular importance
in a decentralised engineering environment, where the
need to keep control of versions of design components,
their interrelationships, and the status of each version
is pressing .

Several of the preceding requirements go well beyond what can
reasonably be expected by the current state-of-the-art (as of
1990). A support system for information systems design should
therefore be designed in an open-ended manner, so that new
techniques may be applied as they appear in the market place.

Contemporary support environments consist of
tools for analysis, design, and code generation
specification database(s)
specification database manager

The various environments differ in how integrated and
comprehensive they are with respect to the system development
process. A most comprehensive specification database may
consist of four (overlapping) clusters of specifications:

a "world model" of the target system and its environ­
ment
a model of the software and data of the application
system
a model of the various configurations of the
application
a model of the development organisation

Repository structure lor Information systems development

Targ et system Component manipulation Component administrat ion Development organisation

lile
Bu siness policy

/~,or
Milestone

Domain knowledge

System component
J--_\-_Task

~
Business area

r-~ __ L
Project member

Resource

EXPERIENCE DATA

Figure 6 Repository structure Information systems
development

There are several ways of organising the tools
toolsystems. Individual tools for analysis, design,
generation carry their own specification databases which

into
code
are

VIII. 11

based on different views of information systems. These tools
are mostly incompatible. The output of an analysis tool can
usually not be used as input for a design tool, without being
transformed and augmented by a human designer .

Analyst/designer workbenches organise tools for target domain
modelling, requirements capture, software and database design
within a common user interface. Most workbenches support
several overlapping, incompatible tools. The specifications
captured by the tools are stored in the workbench data
dictionary. The granularity of the data dictionary may differ
from document level to a more integrated approach, in the
various workbenches.

Figure 7 Analyst/designer workbench

An integrated CASE environment (ICASE) is a workbench
consisting of compatible tools for the various life cycle
phases, so that the output from one tool can serve as the
input to the next tool, from requirements capture to code
generation. The granularity of the ICASE repositories is on
the level of modelling constructs.

An IPSE is an Integrated Project Support Environment. The
term used in USA is "software engineering environment". An
IPSE provides tools for all phases of the life-cycle. The
granularity of the design objects tend to be that of a
document rather than a more fine-grained approach. The focus
is on managing the systems development and the associated
design products. First generation IPSEs have mostly separated
their project management database from the design product
database. Next generation IPSEs are expected to integrate the
two. The database manager provides version and configuration
control facilities for the IPSE.

VIII. 12

Software Development
Process Management

SEE Kernel
Process Handling
1/0 Facilities

Database Management
Distribution Support
User Interface Support

Specific Tools
- Requirements Analysis
- Architectural Design
- Detailed Design
- Coding and Unit Testing

System Integration
- Maintenance

Figure 8 IPSE architecture

Basic Tool Services
Version Control
Configuration Management
Automatic System Building
Document Preparation
Document Management
Basic Data Structure Manipulation
Security
Host-Target Communication

Software Development
Process Management
- Project Management
- Change Request Management

IBM's AD/Cycle and Repository Manager is so far the most
ambitious framework that has been proposed by a vendor _
AD/Cycle has the structure of an application platform for
application system development. The repository manager is at
the heart of the system. "A repository is a database of
specifications". CASE tools are viewed as add-ons in the
platform architecture, and may be acquired from third-party
suppliers.

The weak pOint in todays situation is found in the lack of a
comprehensive system specification model. The consequense of
this deficiency is that the CASE-tools will remain incompa­
tible for the forseeable future. The next section will
discuss possibilities for model integration.

Independently of the quality of the available CASE tools, it
seems that the overall quality of the new systems development
environments is now so high that we may expect that they will
replace the older, conventional environments during the next
10-15 year period. Which consequenses, if any at all, should
th i, s have for our curricula? Fairly few of our graduates will
be involved in platform design. Some of them will be involved
in CASE-too l design, probably in an add-on fashion to some
platform. Nearly all of them shall have to do all of their
development work within the new environments.

VIIL l3

APPLICATION DEVELOPMENT TOOLS

CROSS UFE CYCLE

ADPS AS/PAS

REQUIREMENTS I ANALYS IS/ 1 PRODUCE I BUILD/TEST I PRODUCTION
DESIGN MAINTENANCE

ENTERPRISE MODELLNG ~UAGES TEST & MAINTAIN

Knowledgeware Cobol, RPG, C, Fonr.n, Software Analysis Test Tool
Index Technology PLJ1, Inspect Workstation Interactive Test Tool
Developmate Cobol /SF

Ge>ERATORS CCCA

Cross System Product ESF
ANALYSISIDESIGN CSP/AD PWS

Knowledgeware
Cross System ProducU370 RS

Index Technology
Bachman I<NO'M.EDGE BASED SYSTEMS

Expert System Environment
Knowledge Tool
The Integrated Reasoning Shell

APPLICATION DEVELOPMENT PLATFORM

CUA Graphical PWS PDFIWSP TOOL SERVICES PDF·SCLM

AD INFORMATION MODEL REPOSITORY SERVICES Repository Manager
Dictionary Model Transformer

Figure 9 AD / Cyc l e framework

CUA Gu ideline.

~~~~~~~~~~~~~~~~~~~~~~~Icl~===PWS Services [ Icl AD Work Management 

DO 0 • . . AD Tools 

<I AD Tool Services Interface 

r Object Model 
;.;~~·;.;:;-;<·: ·,,.;.,.;..;-:.,.:-;,,"',,:·:-:,:·;.m,,;..;.,.;.:.:..:..:.;.:·>;·;·;.;..;·;.;·:-:·;.} Repository CP I 

Enterprise Model 

AD Information Model Repository Services 

Design Model Technology Model 

Figure 10 AD/ Cyc le platform architecture 



VIII.14 

3. INTEGRATED SPECIFICATION MODELS 

To bring large and complex information systems into existence 
is a team effort involving both the development team and 
various user communities. In the process one has to consider 
the political and economic interests of the parties . In 
particular, the information systems requirements documenta­
tion is the result of coordinating differing, or even 
conflicting opinions and needs. This necessitates the use of 
languages for communication within the team, and for 
communication between the team and the users. 

The most critical problem in developing information systems 
is the communication problem. It is crucial to the success of 
the system that the users can participate in the development 
of the information system requirements because the users are 
the specialists of the application domain where the 
information system is built. 

In the development of information systems, there are at least 
two language levels. One is the programming language level, 
e.g., COBOL, DML . The other is the application language 
level, e.g., the set of user-oriented concepts developed for 
a payroll application. Computer professionals and users 
communicate in the application level language. Therefore, if 
the development and definition of the application language is 
not properly taken care of, communication between software 
designers and software users may be distorted. 

3.1 Most modelling approaches are either process-oriented, 
data-oriented or logic-oriented. 

Process-oriented approaches take as a starting point the 
description of the processes of the system. This approach was 
first adopted in the information systems area, where the 
specification of the infbrmation processing functions within 
the organization was emphasized. The descriptions of the 
processes are usually supported by a separate data model that 
contains a description of the data structures that are 
manipulated by the processes. 

Data-oriented approaches take as their starting point the 
description of data structures and data semantics. The 
approach stems from the database area, where the specifica­
tion of the data items, records, and their relationships were 
focused . A representative modelling tool belonging to this 
category is the Entity-Relationship or ER data model. After 
it was proposed, the ER model has been used to model reality 
as well as modelling data . 

In a logic-oriented approach, knowledge about the application 
is represented by a set of formal assertions, such as logical 
formulae. These assertions constitute a theory of the 
application in much the same way as the specification of a 
deductive database. Events and operations that affect the 
knowledge base are specified as derivation rules. A 
derivation rule states that when a set of conditions is true, 
then its consequences must also be true. That is, it is 



• 

VII I. lS 

specied WHAT is to be done when the conditions are true. In 
this sense, a logic-oriented approach aims at specifying WHAT 
the informationsystem is going to do rather than HOW to do 
it. In the processoriented approach, the emphasis is on HOW 
the information system is to process the information rather 
than WHAT it is supposed to do. Therefore, the logic-oriented 
approach has a higher degree of data processing independence 
than the two other approaches. However, logic-oriented 
approaches are more difficult to implement and the perfor­
mance is usually low. 

3.2 Modelling approaches may be classified in the temporal 
dimension 

In information system modelling one may divide the methods 
into static, dynamic, temporal and full time-perspective 
approaches. 

A static model describes only a snapshot of an application 
problem. A static modelling approach results in a data model 
e.g. an entity relationship model of teachers, students and 
courses . It does not reflect the evolution of the application 
such as the assignment of courses to teachers. In a static 
model, it is assumed that the events of assigning courses to 
teachers are considered outside the model. Static models are 
adequate for applications involving many complex objects and 
relationships and a small number of events and operations. 

Static models are easy to construct, understand, and check. 
However, many applications require considering the dynamic 
aspect of applications,where the transition from one state of 
the system to another needs to be modelled . For example, a 
retail company information system supporting automated 
replenishment of parts may require modelling the transactions 
which affect the stock levels of parts. In some applications, 
e.g., office information systems, temporal properties 
involving sequences of states are required to be modelled as 
well as time points and intervals. 

Static approaches provide facilities for describing only a 
snapshot of the application. Variants of this type may 
include process models which can be interpreted as computer 
instructions. The imperative style implies a prescription for 
the software design. In this approach only one state of 
reality is explicitly considered at a time. Static approaches 
were proposed and focused by the mid-1970's. 

Dynamic approaches provide facilities for modelling the state 
transitions without considering the mechanisms that achieve 
them in full detail. For example, an event or operation can 
be specified by using a precondition and a postcondition. 
When a system state satisfies the precondition, the event can 
take place, or the operation can be performed. In the 
resulting state the postcondition is true. In this approach, 
two states are explictly considered at a time i.e., the 
prestate and the poststate. Dynamic approaches started to be 
investigated during the late 1970's. 

Temporal approaches allow the specification of time dependent 



VI I I.1 6 

constraints such as 'age must not decrease', etc . . In 
general, sequences of states are explicitly considered in 
this type of approach. Temporal approaches started to be 
investigated in the 1980's. 

Full time perspective approaches emphasize the important role 
and particular treatment of time in modelling. A full-time 
perspective approach eliminates notions such as states, 
operations, processes, transactions, etc. . The number of 
states that are explicitly considered at a point in time is 
infinite. This approach was also introduced in the 1980's. 

3.3 Specification languages 

A specification language is a structure of modelling 
constructs which is used for specifying the properties of the 
system that is being designed. Important roles of a system 
specification are: 

to serve as a common reference frame for communication 
among a system's developers 

to serve as a model of reality, offering insight into 
the application domain 

to serve as a basis for validation and evaluation 

to serve as a basis for implementation 

to provide documentation in order to facilitate system 
modifications and enhancements 

Specification languages may be informal e . g. natural 
language, or they may be formal e.g. mathematical languages. 
Most contemporary information systems specification languages 
are informal, e.g. diagrammatic languages used for sketching 
system relationships. 

The informal specification languages are mainly used as 
communication tools for systems developers discussing about 
the functional properties of their systems. Formal languages 
are mostly used on a rather detailed modelling level, if they 
are used in practice at all. 

We have previously stated that the communication issue is the 
single most important issue when developing information 
systems. Specification languages which do not support 
communication about systems issues among systems developers 
do not stand any chance at all of being accepted as important 
development tools. Effective communication can only take 
place if what is communicated can be understood. The issues 
must therefore be simplified as much as possible. Unnecessary 
detail must be abstracted away. 

Contemporary specification languages are supporting the 
simplification process through specialisation. The languages 
are tailored to the appropriate abstraction levels during the 
development lifecycle. Dataflow diagrams are used during the 
functional design, call trees or structure digrams are used 



VIII.17 

during for software module design, and programming languages, 
decision tables etc. are used during the detailed design of 
processing rules. 

New specification languages are proposed for every new 
purpose that requires some particular set of parameters to 
describe the system in their particular view. One example is 
models and specification languages for performance evalua­
tion. Because performance evaluation tools need to have 
access to particular system parameters, the system has to be 
modelled with this particular purpose in mind. Models which 
have been developed for other purposes can not be used, as 
long as the language specialisation strategy is used. 

3.4 Can a new, high level specification language be 
developed? 

Specification languages with automatic abstraction facilities 
would improve the current situation. A "super language" would 
contain sufficient modelling constructs for the specification 
of every conceivable system detail. In addition, abstraction 
facilities would be available, so that e.g. a data flow 
diagram could be derived from the detailed algorithmic 
specification, plus a specification of the systems structure. 
This situation is clearly beyond the current state of the 
art. 

Automatic abstraction can be achieved to some limited extent. 
We have been able to demonstrate abstraction by extending a 
modified Petri net model with pre- and post-conditions 
specified in 1st order logic. Pre- and post-conditions for 
the net as a whole may be derived formally. So the net is 
replaced by a transition on a higher level of abstraction, 
with appropriate pre- and post-conditions. For this model we 
have thus achieved the constructivity property with respect 
to pre- and post-conditions. This net model is called a 
behaviour net model (BNM), because some aspects of system 
behaviour may be specified. BNM specifications are executable 
in the sense that they may be automatically translated to 
Prolog code, and may therefore be regarded as a rapid 
functional prototyper. 

To some extent we have been able to adapt the same technique 
to a specification language which has communicational 
properties similar to dataflow diagrams. In fact, conventio­
nal dataflow diagrams may be automatically abstracted from 
our specification language. In addition, we are able to 
automatically produce industrial code (ADA-code) from the 
specifications. We have developed a solution to C-code 
generation, but have so far no implementation . 

We have still not been able to find a satisfactory solution 
to the specification of detailed processing rules. So far we 
either have to formulate ourselves in a logic style, or in a 
datamanipulation style. We are not satisfied with this, but 
have so far found no good solution to rule-formulation. 

This and 
indicate 

other developments of specification 
that a "super-language" may be developed 

languages 
over the 



= 

VII I.1B 

next decade. Such a language will combine logic-orientation 
with process-oriented and data-oriented approaches. The key 
concept of a "super language" is "constructivity" , that is, 
it must be possible to formally derive the external 
properties of a system structure when the properties of its 
components are known, so that the system structure can be 
r e placed by a "black box " with the properties of that system. 



VIII . 19 

DISCUSSION 

Rapporteur: Michael Elphick 

Lecture One 
Professor Gelenbe observed that as the automation of development processes 
increased, so the notion of a "finished program" became more vague . The 
result would be that more careful attention should be paid to version 
management in future . The speaker agreed that, although the platforms 
provided some forms of version management, this was a very large, important 
and difficult area. Although sufficient mechanisms were available, he felt that 
it was particularly important to consider the choice of granularity of version 
control. They had looked at the control of engineering drawing control in the 
North Sea oil industry, where it was typical for a new version to be required in 
about two weeks, and as many as 15 companies might be involved in the 
process. 

Professor Shepherd asked whether it was Dr. Solvberg's view that the 
availability of such development platforms meant that there would be a lesser 
role for "traditional" computer scientists in future? The speaker felt that the 
requirement might be less relatively (but not in absolute terms). although with 
the development of larger systems, the performance evaluation aspects would 
become a problem ; such analysis needed to be possible at higher levels of 
abstraction than at present. 

Professor Girault raised the question of the availability of tools for ensuring the 
correctness of synchronisation and coherence of objects. In response, the 
speaker said that there was a lack of sufficiently good models for this at 
present, and that building more complex systems would stretch their ability to 
the limit. There was a lot to learn in this area. 

The question of the possible takeover of Software Engineering by these 
application platforms and the proper role of Computing Science teaching 
provoked a number of comments: Professor Gelenbe felt that Computing 
Science should keep to the fundamental topics, while Professor Shepherd 
commented on the lack of communication between specialists in areas which 
overlapped in fact . Dr. Solvberg argued that it was not in fact feasible for 
application system development to be carried out completely by civil engineers, 
for example, and that Computing Science students should be taught how to 
cooperate rather than compete. 

Finally, Professor Randell drew an analogy between his negative reactions to 
the increasing complexity and incoherence of this area and similar reactions by 
many to the introduction by IBM of the System/360 architecture . The 
subsequent development of more competitive and evolutionary systems (Unix, 
etc.) was encouraging and a counter to the influence of monetary power. Was 
there anything similar to hope for in this area? Dr. Solvberg replied that the 
present lack of integration in modelling would mean that these environments 
would not be as effective as their designers hoped, but that there would be a 
gradual improvement as better modelling constructs were developed. 



-= 

VIII . 20 

Lecture Two 
Professor Girault commented that several different types of diagrams had been 
presented, and asked whether the non-uniform interface would not be 
confusing for the user. Dr. Solvberg said that these often referred to different 
levels of description, and that some (such as the first one shown) could be 
disastrous for some users. Professor Girault went on to ask about the type of 
validation analysis performed; this was really complicated in many cases (such 
as the FIFO ordering in a Petri net analysis, implied by the use of files in a 
system). The speaker agreed that this was difficult and (at present) not always 
possible: there was a need to find reasonable limits to what can be done. 

After Dr. Sorensen had asked why C had been thought desirable, when the use 
of Ada seemed more satisfactory, Professor Randell referred to more structured 
extensions of languages like C (for example C++). Dr. Solvberg noted that the 
use of C as a target language required a structural transformation of the 
specifications; however, they were satisfied with the use of Ada for code 
generation at present. Finally the speaker mentioned that they had been 
involved in a couple of ESPRIT projects, with some work in progress involving 
the use of temporal analysis. 




