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In this paper, we present a general approach to obtain the exact stability condition of 
systems with resource sharing. Two kinds of allocation disciplines are studied: 
1.- the allocation may be performed in parallel: as soon as a resource is free , if a customer 
is waiting, the allocation begins. 
2.- the allocation is performed in series: the allocation queue is constituted with only one 
server, and the customers are treated in series. 

We apply our results to different communication systems. In particular we develop a 
general model for connection-oriented transport model in computer networks. 

1- Introduction 

In computer science, resource sharing is a very common situation and it is necessary 
to model systems where customers are limited in numbers. This capacity constraint 
generally involves a severe simplification of the model in order to obtain some performance 
results. 

In this paper, we present a general approach to obtain the exact stability condition of 
systems with resource sharing. Two kinds of allocation disciplines are studied: 
1.- the allocation may be performed in parallel: as soon as a resource is free , if a customer 
is waiting, the allocation begins. 
2.- the allocation may be performed in series: the allocation queue is constituted with only 
one server, and the customers are treated only in series. 

We apply our results to different communication systems. In particular we develop a 
general model for connection-oriented transport model in computer networks. In such 
networks the flows of POUs (Protocol Data Unit) are controlled through window 
mechanisms. A PDU may only be transmitted if the maximum allowed number of 
outstanding POU's for which a positive acknowledgement has still to be notified to the 
transmitter (the window size) is not reached. When this limit is reached and still more 
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PDU's have to be forwarded, the sender stops transmitting and waits for acknowledgement. 
In this model, the resources to be shared are line capacities and buffers of the packet 
switching nodes. This is taken into account through the window flow control sizes. 

There is a large number of papers concerning resource sharing and blocking. Refer 
for example to [1] for a survey of this literature. We are interested here in the maximum 
throughput of a general network. The evaluation method which is the subject of this paper 
has quite general assumptions. Actually, it applies accurately when a solution is known for 
the equivalent closed network. 

2- The basic models 

2.1- The parallel allocation resource sharing queue 

The first model under study is shown in Fig. 1. The first queue provides the 
allocation of the common tokens (or credits or resources). This queue is composed of c 
parallel independent servers. Each server corresponds to a resource available in the 
network. These resources are shared between at most c customers. A customer enters the 
system if at least one token is available. If no server is free, the customer has to wait for an 
idle server. When a customer enters an allocation server, he spends here a time 
corresponding to the allocation of the resources necessary to go accross the network. Let W 
1 be the mean allocation service time. When a customer leaves the allocation server, he 
enters the network; but, the server of the allocation queue remains blocked until the 
customer leaves the network and releases the token (or the acknowledgment of the departure 
comes back to the allocation queue). 

allocation queue 
1 

queueing 

network 

Figure 1: the model under study 

The queueing network may be quite general with the assumption that we can obtain 
the steady state probabilities of the different queues. Namely, the network may be a Jackson 
network [9], a BCMP network [10], a Kelly network [11] or an "insensitive" network [12]. 
It may also be a more general queueing network where, when closed, the conditions of the 
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MVA technique or other iterative methods hold. Moreover, numerical techniques and 
approximations may also be applied. The allocation queue may have a general renewal 
service time process. 

2.2- The series allocation resource sharing queue 

In this case, the allocation queue has only one server and the allocation of a resource 
is provided in series. The total number of resources is still c. The resources are represented 
by tokens and a customer must catch a token to enter the network. The token becomes free 
again when the customer leaves the network. The token comes back to the idle token queue 
immediately, or after a time spent to go across back the network as illustrated in Fig. 2. 

This figure uses as the first station a semaphore queue representation. A customer 
can enter the network only if his service time in the allocation queue is completed and a 
token is available (simultaneously). 

allocation queue 

idle token queue 

Figure 2: the series allocation resource sharing queue 

Two different schemes are possible: 
I- when the idle token queue is empty and a customer enters the service ~, he is served. At 
the end of the service time either a token is available and the customer enters the network or 
no token is available and the customer is blocked in the server. As soon as a token arrives in 
the idle token queue, the customer enters the network. 
2- when the idle token queue is empty and a customer enters the service ~, he is blocked 
and he waits for a token before beginning his service time. 

3- The general solution 

We are interested in the maximum throughput of the system. This is equivalent to 
compute the stability condition of the system. We use all along this paper the result given by 
Lavenberg [13] : the maximum throughput A is obtained saturating the first queue and 

looking at the outputs of the system under some assumptions to be satisfied by the network 
(mainly the service process must be conservative). If A is the arrival rate (for any renewal 

arrival process) in the allocation queue, the system will be stable if A < A. 
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If we assume a saturated first queue, the total number of customers in the system is 
c. When a customer leaves the network, another one enters it immediately. Therefore, the 
maximum throughput is obtained studying the closed queueing network shown in Fig. 3, 
where c customers are being served or are consuming allocation time in the relevant queue. 

allocation queue 

queueing 

network 

Figure 3: the closed queueing system 

If E[n) is the mean number of servers under the allocation phase, i.e. the customer's 
resource allocation period, the maximum flow is: 
A = Il E[n) 
and the stability condition is: 
'A. < A. 

The allocation queue in the closed queueing system may be modelled as an infinite 
server station. It turns out that the service distribution of this station may be general if 
classical BCMP, Kelly or "insensitive" networks are provided as the queueing network. 

In both series allocation cases the maximum throughput is obtained assuming at least 
one customer is waiting in the allocation queue, i.e. assuming a saturation condition. It 
turns out that for case 1, we have to consider the closed model shown in Fig. 4 with c+ 1 
customers. The queueing network is limited to c customers that implies blocking 
phenomenon on the idle token queue with the service Il. This case is generally more 
complicated to solve. 
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queueing 

network 

limited to 

- ___ -.:c:'customers 

case I : c+ I customers; case 2: c customers 

Figure 4: the equivalent closed model 

For case 2, we have the same closed model but with only c customers in the network. No 
blocking occurs. 

If Ai i =1,2 are the throughputs of the previous closed models for cases I and 2 

respectively, the stability conditions are: Al < Al and A:2 < A2 

4- Example 

Let us consider a simple example. We consider that the network is a single FIFO 
queue with exponentially distributed service times with parameter y. This ensures the 

BCMP theorem is satisfied. 
We have to compute E[n] the mean number of customers in the allocation server 

considering the associated closed model with c customers. It follows 

A = ~ E[n] = ~ L k
1
G(1/k1 !)(W)kl(l/y)k2 

where G is the normalizing constant of the closed BCMP network. 
Another possibility to obtain A might be to compute the mean response time E[t] of 

the closed network; i.e. the time between two consecutive passages of the same customer at 
the same place. We shall obtain: A = c / E[t] . A last possibility might be to compute the 

probability that the second queue is not empty I-P2(O); in this case: A = Y ( I - P2(O)). 

Now, assume a series allopcation scheme and a network composed of a single 
queue with exponentially distributed service times with parameter y. 

Case 1 
It is exactly equivalent to assume that the second queue has a finite capacity of c+ I and no 
blocking can occur. We obtain easily: 

A\S(-l.l) = \F(1,~) + \F(I;y) 6c+1 
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with 

9c+ 1 = \F(l , \B(\F(Y,Il»\s\UP8(c+ 1)+ \B(\F(Y,Il»\s\UP8(c) + ... + I) 

because 

A-l.l = {WI if prob(n>O), WI + II if prob(n=O) 

where n is the number of customers in the idle token queue. 

This result has already been published by several authors: Hunt[14] , Neuts [IS], 
Konheim and Reiser[16], Pujolle and Potier [17], but using different ways. 

Case 2 
As the total number of customers is c, there is no blocking and the stability condition may 
be obtained directly studying the equivalent closed model. We can use the computation 
developed in the preceding section. We obtain: 
A\S(-1.2) = \F(l,Il) + \F(l,y) 9c 

5 . Multiciass resource sharing 

We can assume that several classes of customers are allowed. We assume that only 
the parallel allocation resource sharing process and the series allocation with scheme 2 are 
permitted. These assumptions avoid a blocking situation. If the resources are modeled by a 
BCMP network, the stability condition is obtained closing the different chains and solving 
the network. If customers can change of class, they belong to the same chain and the 
resources are common. But, for two different chains corresponding to a partition of two 
classes of customers, the resources are different. Let i=l,oo.,M the subchains and ci be the 

number of resources for the chain i. 

Example 

Let 3 classes of customers be denoted by 1,2 and 3 respectively and with arrival 
rates A1> A2, A3 respectively. The model is shown in Fig. 5. 
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queue 1 

A 1 

r-- queue 2 

•• ~L ________ ~~~I~I ___ .~ __ ~ 

Figure 5 : a model with three classes of customers 

A customer of class 1 leaves the system after the service'Y2 and regenerates a token. 

A customer of class 2 has to go through queue 1 and queue 2, then leaves. Customer of 
class 3 is routed to queue 2 then leaves the network. The ergodicity condition of such a 
system is obtained solving the closed system. In fact, the stability condition is given by an n 
dimensional surface: if a queue is not saturated the maximum throughput of the other queues 
are increasing. We are interested in the case where all the queues are saturated 
simultaneously. 

If the limited number of customers of class I, 2 and 3 are 2,4 and 4 respectively, we 
have to solve the closed model with 3 subchains. If we assume that 11,12 = 1 (the service 

rate is identical for the 3 classes of customers) and III = 112 = 113 = 00, namely the allocation 
time is negligible, we obtain the following ergodicity condition: 

Al < 0.35 

1..2 < 0.35 

1..3 < 0.18 

We can develop more sophisticated models of resource sharing and blocking 
systems. It is possible to assume that the central queueing system may have constraints. For 
example, one or several queues of the central system may have finite capacities. Let us 
study the tandem queueing system with limited capacities. 
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First we want to obtain the ergodicity condition or what it is equivalent, the 
maximum throughput, of the queueing system shown in Fig. 6. 

~1 ~2 ~3 

~·L--I _1L....L--l1 ~I 0 0 01------+· 
Figure 6: the three servers in tandem 

We use the series blocking discipline number 1. Let' note a blocked state. It is 
equivalent to solve the closed system with c = 3 customers. The queueing network is 
composed of three queues. The two last ones have a [mite capacity of m = 1. 

The state diagram is illustrated in Fig. 7. We have: 

A = ~3 P( server 3 is busy) = ~3[1 - P(3,O,O) - P(2,I,O) - P(2',I,O)] 

If ~l = ~2 =~3 =~, we obtain: 

A = [22/39] ~. 

This value has been obtained by Hunt [14]. 

~3 

Figure 7: the state diagram of the three servers in tandem 
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We can solve more complex systems. However, the rate matrix increases very 
quickly. Let us assume identical service rates (iJ. =1) and identical buffer capacity m in each 
station. The maximum throughput A for a tandem queueing system composed of N limited 

capacity queues in series (the total number of queues is N + 1) is obtained: 

N=2 N=3 N=4 N=5 
m=1 0.564 0.514 0.485 0.466 
m=2 0.670 0.631 0.607 
m=3 0.734 0,700 
m=4 0.776 0.747 
m=5 0.807 

This values have been obtained by Hillier and Boling [15] using another numerical 
technique. 

With the value m=l, for 100 stations in series, we obtain a throughput of 0.254. 
Then, it seems that when the number of queues in tandem goes to the infinity the throughput 
tends to 0.25. 

We have assumed that all the service times were exponentially distributed. Now, by 
the same technique we can assume that the service time distribution is more complex. The 
solution is obtained either exactly using a markov solver or approximately using an 
approximate solution as Marie's method or MY A method for large networks. In the sequel, 
we apply the MY A approximation available in the QNAP package. If all the service times 
have an Erlang 2 distribution, we obtain: 

N=1 N=2 N=4 N=IO 
m=1 0.69 0.61 0.55 0.52 
m=2 0.75 0.67 0.60 0.57 
m=3 0.83 0.78 0.73 0.70 
m=5 0.90 0.87 0.84 0.81 

If all the service times have an Hyperexponential distribution with a squared 
coefficient of variation equal to 2 (with two servers), we obtain: 

N=1 N=2 N=4 N=1O 
m=1 0.43 0.32 0.25 0.24 
m=2 0.59 0.49 0.44 0.40 
m=3 0.66 0.58 0.55 0.49 
m=5 0.75 0.68 0.64 0.61 

For an hyperexponential distribution with a squared coefficient of variation equal to 
10 (with two servers), we obtain: 
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N=1 N=2 N=4 N=10 
m=1 0.32 0.20 0.15 0.12 
m=2 0.51 0.41 0.35 0.31 
m=3 0.54 0.44 0.38 0.33 
m=5 0.58 0.48 0.41 0.38 

, 
If now, instead to have a limited capacity per node, we have a global limited capacity 

for the whole stations except the first one. For three stations in series, the model to solve is 
shown in Fig. 8. 

113 

Global limitation 

Figure 8: the global limited capacity model 

The state space is the same as in the three queues in series plus the state (l ',2,0). 
This implies that the maximum throughput is slightly greater than the maximum throughput 
of the three servers in tandem. We obtain the ergodicity condition as: 
A = 113[1 - P(3,0,0) - P(2,1,0) - P(l,2,0) - P(l',2,0)] 

If all the service rates are equal to 11, the maximum throughput is: 
A = [164/255] 11. 

6 - Applications to computer networks 

6.1- Study of a connection-oriented cell switching network 

The A1M (Asynchronous Transfer Mode) proposal is a connection-oriented 
network providing a cell switching network. We are interested in evaluating the 

performance of such a technique when an end-to-end window flow control is provided. 
A call request cell is issued by the sender to form a connection between the sender 

and the receiver. It permits to negotiate a Quality Of Service (QOS) between the two ends of 
the connection. We assume that the negotiation leads to a window flow control size of W. 
Namely, up to W outstanding cells may circulate in the network on the virtual circuit under 
study. Depending upon how the implementation of the protocol is provided, different kinds 
of managements of intermediate nodes may be taken into account 

As a first approach, we assume that the call request cel! is defming a route inside the 
network and that all the cells follow this virtual circuit. One possible model is drawn in Fig. 

9. 
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allocation queue 

'Y 

c::::==r- ---{ 3 

'Y 
1 

Figure 9: a virtual circuit 

'Y 
2 

The quantity N is the number of nodes to go through and 1l-1 is the time to execute 

the code of the A TM level protocol. Depending on the machine which executes this 

software, the allocation queue is in parallel or in series. We assume here, the machine is a 

multiprocessor working on several different packets in the same time. We assume that the 

packet lengths are exponentially distributed. This involves that the service times are 

exponentially distributed with parameters 'Y1 ''Y2' .... 'YN depending on the capacity of each 

line. 

The maximum throughput of the virtual circuit depends upon the window size W 

and the number of nodes in tandem. If we assume 'Yi = 1, i = 1,2,3, .. . ,N, we obtain the 

results depicted in Fig. 10 with the assumption that W 1 is negligible in comparison with 'Y. 

1 

0.5 

Maximum 
throughput 

N=3 

N=5 

N=l 

1 

W = window size 

2 5 10 

Figure 10: maximum throughput vs W, for different values of m. 

As an example, the maximum throughput for a virtual circuit controlled by a 

window width of 2 for 5 nodes in series is 0.36 if the mean transmission time is 1. 
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Now, the buffers of the cell switching nodes are shared with other virtual circuits. 
Moreover, senders are used to forward packets of virtual circuits going to the same 
following node. The problem is to know the total throughput of the system when the 
buffers are shared by a large number of virtual circuits. Assume that the model is a common 
route for a total of k virtual circuits and that each virtual circuit is controlled by a window 
flow control with the same size: W. 

When solving the closed equivalent model, all the infmite queues may be grouped to 
built only one infinite queue. The total throughput is obtained considering just one class 
with W.k resources, namely W.k customers in the closed network. It turns out that the 
maximum throughput of each virtual circuit is 1I.!k the solution obtained through the closed 

network with one chain and W.k customers. This implies the throughput of each virtual 
circuit is decreasing with k since A is approximately 'Y when W.k is large. 

6.2- A connection-oriented packet level protocol with capacity constraints 

We assumed in the previous models that the number of buffers in each node is 
infinite. However, this capacity is finite and is allocated through the call request packet. 
When the call request packet is going across the network, it reserves resources at each node. 
If a node has no longer resources to allocate, the call request packet is refused and the 
virtual circuit cannot be established. In most of the packet switching networks where an 
end-to-end window flow control is defined (size is W), a total of cpW intermediate buffers 

are reserved such that statistically the probability of overflow be negligible. The quantity cp 

is the overallocation factor that we are going to describe. 
If 9 is the utilization of a virtual circuit, on the average W9 packets are along the 

route. The value of 9 ( 0 :s; 9 :s; 1 ) may involve an overallocation of buffers such that only 

cpW buffers are reserved in the network where cp is a function of 9. The quantity cp is 

generally defined as a value greater than the maximum value of 9 measured in the network 
in a whole day. 

If W is the window flow control size, the call request packet will reserve only cp W 

buffers in each node. The problem is to find what is the best allocation of buffers along a 
virtual circuit. For example, if W = 10 for a virtual circuit with 4 nodes and cp = 0.25, the 

call request packet will reserve 2.5, 2.5, 2.5, 2.5 buffers in each nodes. At the total NWcp 

buffers are reserved. Assume in a first time that cp = 1 and that we want to allocate an integer 

number of buffers. With the same example (W=1O and N =4) the question is: what 
following series yield to the best throughput? 

223 3 
3 3 2 2 
133 3 
322 3 
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In the sequel. we assume a series allocation queue with scheme 2. Indeed. we have 
chosen this discipline because it works as in computer communication systems. We shall 
assume that all the service time are exponentially distributed with the rate Yi, i = O ..... N. 

The model with capacity constraints is now: 

---1·11 ==t-O- capacity m 
1 

capacity m 
N 

Yo ..J 

1 

Figure 11: the model with capacity constraints 

where mj is the maximum buffer size at node i. i = 1 ..... N to m and L mj = W. We. 

assume that the first node is composed of the allocation queue. 
Using the technique described in section 2. we have to solve the associated closed 

queueing system. In this model. a blocking situation occurs when a customer tries to enter a 
full queue. A packet which cannot enter a node is rejected. A rejected NPDU returns to the 
server of the preceding station and get another round of service independent from the one it 
received before. This is known as rejection blocking model and it is described in Perros 
[18] and Caseau and Pujolle [19]. 

We assume that mean service times are identical Yj = 1. i = O. 1 ....... m. The mean 

allocation time is equal to the mean service time of the other stations. The closed associated 
network is shown in Fig. 12. The total number of customers is W. 

This system can be solved using a numerical approach when the number of queues 
in series and the number of customers are sufficiently small. Using the Markov method 
developed by Stewart [19]. models with 10 queues in series and 20 customers can be 
solved. Moreover. MY A analysis allows to obtain the solution for huge network. 

The result we obtain (but without a formal proof) on all the tested patterns shows it 
is necessary to advantage the stations situated in the middle of the system. More a station is 
near from the middle of the system. more it should be advantaged. This result has been 
obtained by Hillier and Boling for small tandem queueing systems [20]. 

.. 
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infinite queue capacity m 1 capacity m N 

W customers 

Figure 12: the closed queueing system for studying capacity constraints 

The general importance of a queue is as follows (1 is the most important queue, 2 is 
less important than 1,3 is less important than 2, etc) 

odd .............. ,4321234 ............. . even .......... ,43211234 
This symmetry may be explained regarding at the reverse process which is 

optimized by a symmetrical approach. 
For example, for 4 nodes and a window flow control size of 10 the best 

performance is obtained by the series: 2 3 3 2. 
If the window flow control size is only 9, for 4 stations, it is the second or the third 

station which must be enforced. We obtain the following series: 2 3 2 2 or 2 2 3 2. 
For 8 as a size, the balanced state 2 2 2 2 is optimum and for a total capacity of 11, 

the two following states are equivalent 3 3 3 2 or 2 3 3 3. 
In the real network, if the overallocation factor is 0.1 with a window of 10, the 

resources reserved at the respective nodes will be: 0.2 0.3 0.3 0.2. However, this does 
not seem to be the best allocation if the study is performed in the following way: let W* = 
iw/<p 1 an integer. For example, if W = 10 and <p = 0.1, W* = 100. We obtain as the best 
solution: 

23 27 27 23 
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Rapporteur: Jonathan Spencer 

Lecture one 
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Professor Randell stated that the presentation gave the impression of ever 
increasing complexity. This raised the question of where modelling fitted into 
the design process. Professor Pujolle felt that it was essential to have 
modelling tools and that simulation can make the complexities of network 
systems far easier to handle: an accurate model should lead to an accurate 
system. Professor Randell asked what modelling had been used in the debate 
on whether to use 32-bit or 64-bit cells? Professor Pujolle answered that none 
had been used. Professor Shepherd commented that modelling is normally 
used after design decisions have been made but went on to note that DQDB 
originated in Australia and a lot of modelling was done to determine fairness. 
Another participant pointed out that performance and fairness are competing 
aims. Professor Shepherd also noted that it was a model which had shown 
that Ethernet could not possibly work. 

Lecture Two 
Mr Hughes asked what use are models, given that there are problems 
predicting traffic in systems such as an ATM? Professor Pujolle agreed that 
modelling arrivals was not easy, but felt that modelling was useful 
nonetheless. Professor Randell asked whether the development of .specialised 
environments and tools for complex systems was deskilling? Professor Pujolle 
explained that the idea was to put all our models together and let the user 
adjust the parameters e.g. node numbers. Although specialised models have 
been developed the results obtained so far are unsatisfactory. Mr. Hughes 
suggested that two kinds of interface are required: one for the specialists (the 
modellers) and another which is domain-oriented (for the customer) . 
Professor Randell asked whether these interfaces might help the users who 
need protecting from themselves e.g. in the interpretation of results? Mr. 
Hughes thought this was the only approach. Professor Gelenbe raised the 
problem of paradigms in which the modellers talk in terms of queues and 
performance, while the users talk in terms of CPUs and MIPS. The terminology 
must be restricted to the correct sphere. Modelling is sophisticated and must 
be kept away from the users although this is not deskilling . The 
solutions/results are distinct from the statistics and interpretations drawn 
from them. 
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