
VI

MOBILE CODE, DISTRIBUTED COMPUTING AND AGENTS

J Waldo

Rapporteur: T Rischbeck

VI.2

.1

VI.3

MOBILE CODE, DISTRIBUTED COMPUTING, AND AGENTS

Introduction

Jim Waldo
Sun Microsystems, Inc. and Harvard University

1 Network Drive
Burlington, MA 01803 USA

jim. waldo @sun.com

Traditional approaches to di stributed computing. at least those that are based on the

model of Remote Procedure Call (RPC) I. have been built on a number of assumptions
about the environment in which they are to be deployed. These assumptions have led to
the set of abstractions that make up the computational model of such systems. paying
attention to some of the aspects of the system while ignoring others . Such abstractions are
needed if we are to think about general systems at all. But occasionally it is useful to
check the assumptions that underlie such a computational model to make sure that the
environment that shaped those assumptions has not changed so much as to make the
assumptions no longer useful.

It was just such an examination that led to the construction of the Jinitm network
technology system. The Jini system rejects a number of the fundamental assumptions that
have been at the foundation of previous RPC-based systems. In particular. the Jini system

assumes a single underlying implementation language for distributed objects (the Javatm

language) and (via the Java platform) the ability to move objects (including their
implementation classes) from one part of the di stributed system to another.

Because of this use of mobile objects. the Jini system has sometimes been categorized as
a mobile agent system. However. such a categorization is based on an over-simplified
view of mobile agent systems. In fact. there are characteristics of mobile agent systems
that clearly differentiate such systems from the Jini technology. Unfortunately. these
characteristics also make such systems highly unlikely to actually be useful. at least in the
opinion of the author.

Ironically. a number of the problems that are inherent in mobile agent sys tems can be
addressed if those systems are implemented in the kind of environment offered by the Jini
system. By making slight changes to the characterization of mobile object systems they
can be fit into the Jini environment in a simple. consistent fashion that will allow new
approaches to most (but not all) of the basic problems that beset mobile agent systems.

In what follows. we will briefly describe some of the features of the Jini networking
system. and attempt to show how the assumptions of this system are different from those
that have been used in the construction of other distributed system frameworks. We will
then turn to a characterization of mobi le agent systems. showing both how such systems
are intrinsically different from the Jini system. and what some of the basic problems of

I. The classic definition ofRPC is in Birrell and Nelson[l]. However, the approach has a long his­
tory. including the Network Computing System[2], DCOM[3], and the OMG CORBA[4] sys­
tems.

VI.4

such systems are. Finally, we will discuss how agent systems could use the Jini system
approach to solve some of these intri nsic problems.

The Jini Networking System
A full discussion of the Jini networking system[5 j is beyond the scope of this paper.
However, a characterization of some of the major features of the system will. help in what
follows.

The Jini networking system is a distributed infrastructure built around the Java
programming language and envirorunent. The basic communication model is based on
the semantic model of the Java Remote Method Invocation system, in which objects in
one Java virtual machine communicate with objects in another Java virtual machine by
receiving a proxy object which implements the same interface as the remote object This
proxy object deals with all communication details between the two processes. The proxy
object may introduce new code into the process to which it is moved. This is possible
because Java bytecodes are portable, and is safe because of the built-in verification and
securi ty of the Java environment. It should be emphasized that the Jini system uses the
RMI semantic model; it does not require that the communication over the wire be done
using the RMI implementation contained in the Java platform. Since that communication
takes place between the remote implementation and the proxy object that came from that
implementation, it can be done using RMI or by using other communication mechanisms
such as CORBA, XML-based messaging, or a custom communication protocol.

To this underlying communication model the Jini system adds some basic infrastructure
and parts of a programming model. The infrastructure provides a mechanism by which
clients and services can join into the Jini network, while the programming constructs
encapsulate mechanism that allow reliable distributed systems to be built.

The infrastructure centers around the lini Lookup Service. This service provides a place
for providers of a service to advertise their availability, and for clients desiring a service
to find what services are available. Bootstrapping is accomplished using the lini
discovery protocol, by which an entity (either hardware or software) can find a Jini
lookup service when it first connects to the network. The discovery protocol is the
specification of a multicast packet which, when received by a Jini lookup service, wi ll
result in the lookup service sending back to the broadcaster a Java object that implements

the lookup service interface2. This object can be loaded into the process of the sender,
which can then register itself with the lookup service if it wishes to provide (one or more)
services and to query the lookup service for other service providers. Note that a Jini
participant can be both a service and a client of other services.

Services describe themselves by the Java language interfaces that they implement. When
a client wants to find a service, the client will request an object that implements a
particular Java interface. Any object that is an instanceof the requested type can be

2. The discovery protocol is specialized for each kind of network on which Jini systems run. The
one discussed is the discovery protocol for tcp/ip networks. Other discovery protocols, with
other mechanisms, will need to be defined for networks with different properties (such as, for
example, Bluetooth or Firewire networks). However, the result of the discovery protocol wi ll be
the same on all networks--the entity doing discovery will receive an object (or objects) that
implement the Jini lookup service interface.

. I

V1.5

returned to the requestor; in particular, objects that implement a subtype of the requested
type, or which implement a set of types that includes the requested type, may be returned.

The interfaces that encapsulate the programming model center around three sorts of
object interactions. A set of interfaces define the notion of an event noti fication, allowing
an object to export the abi lity to other objects to register for notification when some
conceptual event occurs in the first object. A set of transaction interfaces define a two­
phase commit protocol that can be used by objects to coordinate activities within the
objects . Finally, a leasing interface defines a model of time-based resource allocation, in
which a resource is granted for a renewable period of time, determined by a single-round
negotiation between the resource requestor and the resource granter. Renewal of a lease
can be requested by the holder of the lease, but if the lease is not renewed before the
expiration time of the lease, both the grantor of the lease and the holder of the lease can
assume that the resource that was leased is to be freed for others to use.

The infrastructure within the Jini system uses the Jini programming model. In particular,
the lookup service allows registration of interest in a number of kinds of events, allowing
participants in a Jini network to track changes to the set of services avai lable to them via
the lookup service. Registration of a serv ice within a lookup service is also leased, so that
if a service does not renew the lease the service is deleted from the set of services
available in the lookup service. This has the result of insuring that the lookup service
does not contain service advertisements for services that no longer exist for any period of
time longer than the maximum lease period granted by the lookup service, as such
services will not renew their leases.

From this brief description, it should be clear that the Jini system is tied to the Java
programming language and platform. Java provides a mechanism that allows mobile
objects, including their code, to be safely and efficiently moved from a service to a client
of that service. The Java type system is used to identify services, and the polymorphic
nature of that type system allows requests for a service to be treated as requests for
something that implements at least a certain type, although it may offer more. However,
it should be noted that the requirement for the Java language and platform is only at the
level of the network; non-Java objects can be used to implement a Java network object
that can live within the Jini world.

Mobile Code and Mobile Agents
The use of mobile objects wi th mobile code in the Jini system has led some to
characterize the system as a mobile agent system. The reasoning seems to be something
along the lines of

J) Mobile agent systems use mobile objects
2) The Jini system uses mobile objects
3) Therefore, the Jini system is an mobile agent system

The problem with this argument, of course, is that it is an instance of an invalid argument
form. Just because both Jini and mobile agent systems use mobile objects, it does not
fo llow that the first is an instance of the second. The only way in which an argument like
this could establish the concl usion would be if the first premise were a much stronger
proposition of the form

VI.6

I ') Any system that uses mobi le objects is a mobile agent system

If I') were the first premise of the argument, then it would logically follow from this
premise and the fact that the Jini system uses mobile objects that Jini was a mobile agent
system. But while the argument would be valid, it is not at all clear that it would be
sound. because the new premise does not seem to be true. The proposition stated in I ')
says that the use of mobile objects is a sufficient condition to make a system be a mobile
agent system. While it seems obvious that moving objects (in a loose sense) is a
necessary condition for a mobile agent system (since agents can be equated with objects).
and while it might also be true that most of the systems that make use of mobile objects
have. in fact. been mobile agent systems. the movement of objects does not seem to be
the only thing that characterizes a mobile agent system.

Let us consider a couple of examples of mobile agent systems. of the sort that are often
given in discussions of mobile agents. The first of these has to do with shopping over the
Internet. Rather than requiring that I go out and search the net for the best deal on. say. an
airline ticket from Boston to London. I should be able to send an agent out into the
network to do the work for me. This agent will move from Internet site to Internet site.
finding out what the times. prices. and availability of flights are for the times in which I
am interested. It might simply gather the information and return to me. but a more
common example is one in which the agent. upon finding the best deal. books my travel
(using my credit card numbers. which it keeps securely) and returns to tell me that all has
been done. and when I need to have my bags packed.

A second example shows the power of mobile agents when combined with the kinds of
proximity networks that promise to soon be available. Upon entry into a cab. my personal
agent. which resides on my personal digital assistant (PDA) device. joins into the
wireless proximity network within the cab. Consulting my schedule (also on my PDA).
my agent determines that I am going to the airport. and moves to the location of the cab's
agent. My agent tells the cab's agent where I'm going. The two agents then negotiate a
price (and perhaps a route). my agent pays (again using my credit card information). and
my agent returns to my PDA. entering the transaction into my financial statement.

A final example returns us to the Internet. or at least the World Wide Web. In preparing a
paper. I discover that I have neglected to do the scholarly research expected by the
journal to which I am hoping to submit the work. I don't want to use the simple search
engines. since I know that the number of false positive returns will far outweigh the
number of good returns when I make my query. So I send an agent out on the Web after
telling it the subject of my paper. and my agent jumps around the web and returns to me
the next morning. with the six most relevant papers to my subject.

I don't know if these are real examples of what mobile agent systems are supposed to do.
They are certainly the kind of examples that one sees in the popular press. and I have
been given exactly these examples in conversation with researchers in the field when I
ask for an example of what a mobile agent system could do. However. I have also
discovered that there is considerable disagreement in the mobile agent community about
just what makes up a mobile agent system and what such systems are supposed to do.
Examples like those I have given may well constitute a straw man in which no one

VI.7

believes. However, such examples are the common view of what mobile agent systems
are about.

These examples (and others that I have heard) all have a number of characteristics, which
I have taken to be the characteristics of a mobile agent system. From these examples, I
take the characteristics of a mobile agent system to include

1) the use of active objects, that is, objects that move from place to place and,
when they arrive at a place, are able to obtain a thread of control automatically;
2) the agent will interact with the environment in the various places it finds itself.
Simply moving to a new machine is not enough; the agent moves to that machine
and then finds out information or performs actions at that machine;
3) the agent will obtain information or perform actions on behalf of the person
who sent the agent out on the network;
4) the agent, after doing its work, will return to the person who sent it out on the
network and report the results of the work; and
5) the agent is capable of making decisions on behalf of the person who sent it out
on the network (or, more generally, on behalf of the person whose agent it is).

These characteristics seem to be the ones that make the above examples both interesting
and clear examples of mobile agents. They provide a way of marking a clear distinction
between mobile agents and other distributed systems or simple web crawling. There may
be other characteristics that I have missed, or some that I have overstated or mis-stated.
For example, it has sometimes been claimed that characterization 5) is actually what
distinguishes systems of intelligent mobile agents from mere systems of mobile agents.
Such distinctions may be needed sometime, but not here. These are the characteristics of
mobile agents that I will discuss in what follows.

The first point to make is that, given this characterization of mobile agent systems, the
Jini system is not a mobile agent system. While objects can be mobile in the Jini system,
such mobile objects are not active in the sense of automatically getting a thread of
control. A mobile object in the Jini system must get a thread of control explicitly from the
process to which it has been moved, either explicitly (if the object is a subclass of
Runnable) or implicitly (when some method on the object is called). Mobile objects in
the Jini system may interact with the Java environment on the machine to which they are
sent, but it is much more likely that they will interact with other Jini services that reside
in the network. There is no requirement that a mobile object have the identity of some
principle who sent the object, nor that the object return to any point of origin. Finally,
there is no requirement that mobile objects in the Jini system be capable of making any
decisions on behalf of their sender; indeed, one of the most common forms of mobile
object in the Jini system simply forwards calls on to the service it represents.

In fact, it is just these characteristics which, I will now argue, have doomed mobile agent
systems to be the disreputable ghetto of distributed computing. The very characteristics
that make a system a mobile agent system also make such systems difficult or impossible
to deploy in the real world.

The first characteristic, that of using active objects, means that mobile agent systems blur
the line between the resources that the owner of a particular machine controls and the

VI.8

resources that are controlled by the agents that arrive at that machine. If an agent that
arrives on a machine automatically gets a thread of control on that machine, then the
allocation of computational resource is automatic. This makes little or no difference in
cases when the number of agents arriving is small and the machines are not resource
constrained. But this approach does not scale, either to resource limited machines or to
large numbers of agents.

Large numbers of agents can cause an agent storm, in which even a generally capable
machine can be brought to a standstill by the chance occurrence of a large number of
mobile agents arriving on the machine at the same time. As the number of agents roaming
the network increases, the chance of being hit by such a storm increases. And as the
network moves to being composed of smaller machines (like cell phones and PDAs) the
number of agents that can, in effect, cause a denial of service attack decreases.

The second characteristic, that the agent will interact with the environment on the
machine to which it moves, assumes a homogeneity of destination machines which is
hard to take seriously in a large-scale network. When an agent arrives at a new
destination, how does it know what to interact with? How does it do so? Does it read the
information that it needs from a file, and if so where in the file system does that file
reside? Or does it contact some service on the machine, in which case it needs to know
how to contact that service in a way that works on all of the possible destinations to
which it wi ll be sent.

The third characteristic, that the agent is able to obtain information or perform actions on
behalf of the person who sent the agent, assumes a form of distributed authentication far
more sophisticated that is generally available. For the agent to act on my behalf, I need to
be able to delegate some or all of my identity to that agent. While security systems that
have delegation have been proposed, few have been successfully implemented, and the
problems (such as being able to cancel a delegation or insuring that delegations are bound
in some fashion) are not easily solved.

Further, the security needed for a mobile agent system requires properties that are not
required in general distributed system security. Since the agent is being moved onto a
host, it needs to be able to be authenticated. But when does that authentication take
place? Since the agent is active, by the time the recipient knows that the agent is there,
the agent is running, perhaps able to do damage to the host machine. Further, how does
the agent (since it is often carrying sensitive information, such as credit card numbers and
authorizations) establish trust in the machine on which it is going to run? Since the agent
is living in the address space of a process that was given to it by the machine on which it
is running, the agent can not be sure that it has any secrets from the host machine.

The fourth characteristic, that the agent will return to its machine of origin after it has
completed its work, seems reasonable until we consider the fac t that networks, and the
machines on them, fail. Suppose that the machine on which an agent was running
crashes. How long does the entity that sent out the agent wait for that agent's return
before sending out another? Suppose that the network link from the current machine to
the home machine is down. How long does an agent wait until it gives up the return trip?
The fai lure models for agent systems do not seem well specified, yet any distributed

VI.9

system which does not have a failure model that deals with these kinds of failures will not
enable the building of reliable applications.

Finally, the last characteristic of agent systems, that they be able to make decisions on
behalf of the owner of the agent, the seems to require that we solve at least part of the
traditional problems of artificial intelligence. I have not seen many computer programs
that are very good at making decisions, and certainly not any that I would be willing to
have make decisions on my behalf, whether those decisions have to do with travel plans
or the relevance of papers. I am not saying that such programs are impossible (I remain a
skeptical agnostic on this subject). However, those that seem to come the closest to
having this capability can all be characterized as large programs. Yet mobile agents, if
they are to be useful , need to be small entities that can easily move over the network
without swamping the machines to which they move. Even in moments when I feel most
optimistic about the prospects of artificial intelligence, I don't see such decisions being
made by small, mobile objects that can run anywhere.

For these reasons, I have never taken the claims of the mobile agents community terribly
seriously. The Jini system was certainly not designed as a mobile agent system itself; it
was much more modest in its goals. The Jini system was never intended to be either a
mobile agent system itself, or a system that could be used to construct such systems. The
irony, at this point, is that a number of the problems that have plagued mobile agent
systems can be solved in rather straightforward ways when those systems are based on
the Jini technology and are run in a Jini-enabled network.

New Directions in Mobile Agents
The first problem with mobile agent system is that they employ active objects, and
therefore have automatic access to the resources of the machines to which the agent
travels. A solution to this problem would be to move the agents from one machine to
another as passive objects, but move them to a Jini service (advertised in the lookup
service by its type) which would then be responsible for the granting, at the appropriate
time and at the appropriate priority, of a thread of control to that agent.

The design behind such a scheme is fairly straightforward. The agent host service would
have an interface that would include a receive method, which would take an object of
an Agent type (perhaps simply defined as a Java Runnable). Upon receipt of such an
object, the agent host object could start up the agent, or queue the agent for later
activation, depending on the current load and the policy established by the owner of the
machine onto which the agent had moved.

Building such an agent host is simple. In fact, it is given as an example for the Java
Remote Method Invocation system[6J, under the guise of a compute server. The service
itself is about 30 lines of code. turning that service into a Jini service (which requires
finding a lookup service, registering with that service, and renewing leases on that
registration) requires about 100 more lines of code.

It could be objected that this is, in effect, what current active object agent systems do
under the covers, and so the stated approach is no different from current practice. In one
sense, this objection is correct; from a high level view the description of what happens is
no different. However, when agents are activated by some service rather than by a part of

...

VI.lO

the underlying system, control over the policies used by the service are left with the
owner of the service. If I run an agent host service on my machine, I can control the
conditions under which an agent is activated. All that is required of the agent host is that
it implement a known interface. How that interface is implerriented is up to me, not a part
of a general system. If this is a more general system activity, then I have given up control
(at least in the agent systems I have seen). I could adopt a policy that agents are to be
activated immediately upon receipt, in which case I would be subject to the kinds of
agent storms discussed earlier. But I could also adopt a very di fferent policy (li kely after
experiencing my first major service degradation) which would ration the resources given
over to the arriving agents. The main point is that it is up to me, the owner of the service,
and not up to the agent system.

An agent system that is running in a Jini-enabled network also has a general technique for
finding appropriate information when an agent moves from place to place. Since one of
the major goals of Jini is to allow service discovery over the network by programs, the
mechanisms of lookup by Java type can be used by agents when they reach a new
location to find the services needed (or di scover that such services are not available at the
location). Once an agent gets a thread of control, the agent can find the local lookup
service, and then query the lookup service for objects that present the programmatic
interface that the agent needs for its work.

The major difference between this approach and those that are based on names (such as
file systems) or descriptions (like directory services) is that the Jini style of lookup is
des igned for use by programs rather than people. Naming systems and directory systems
rely on strings, with the semantic information contained in the meanings of those strings.
This is a good system for people, since people are very good at mapping strings to the
meanings represented by those strings . But programs are very bad at this kind of
understanding; those that are even capable of basic understanding are far too large to be
moved around in the fas hion of mobile agents.

Programs, however, are very good at understanding types; something that people tend to
do far less well. Indeed, even programs that attempt to find information using naming or
directory systems translate the name or description into a type (i.e., the methods that can
be used to access the information in the named or described entity). In a sense, using the
type based matching of the Jini system simply allows the agent to eliminate one level of
indirection, mapping directly from the methods that the agent will use to access
information to the entities that can provide that information, rather than having to first
find an entity by name or description and then hope that the entity will support the
method calls that are contained in the agent.

If the Java type system were not polymorphic, this would be the only important
difference between matching by type and matching by string. This is no small difference,
as it means that there is only one level of uniform convention that needs to be agreed to
throughout the system rather than three (the names, the types, and the mappings from
names to types). But since Java is a polymorphic language, the difference is more
significant than just a reduction in the number of required agreemen ts .

When an agent (or any other service client) asks the lookup service for something, it asks
for something that is at least of a particul ar type, although it may be more. Objects that

VI.ll

implement a sUbtype of the requested type can be returned, as can objects that implement
interfaces other than those that were requested. Since the Java language supports
reflection, the client can discover that more has been returned than was requested, and (if
the client knows how) make use of the other methods supported by the object.

For an agent system, this means that agents can make use of services that provide more or
additional information than the agent absolutely requires, or that have evolved (by
extension) since the agent was first written or deployed. By using a type-based lookup,
the agent gets the advantage of an environment in which it can find what it needs in a
simpler fashion, as well as allowing the environment in which the agent works to change
in ways that will not effect the functioning of the agent itself. This is the major functional
difference between the string-based lookups used in naming and directory services and
the type-based lookup used in Jini: in the former, only exact matches are possible, while
in the latter you can match on something which is at least what you are looking for, but
may be much more.

Agent systems built within a Jini framework can also make use of the Jini/Java RMI
security model, which is currently being defined through the Java Community Process.
The draft specification for this security model already includes mechanisms for mutual
authentication of client and service and a time-based delegation model. More important
for use within the agent community, the model provides a mechanism to allow
authentication to occur before objects are reconstructed. This is important, as such
reconstruction generally requires the running of some of the code associated with the
object (the constructor). Unless trust is established prior to the running of any code, the
system would be open to various forms of attack.

This model is layered on top of the existing Java security models, which (while not
perfect) give a model for insuring that bad behavior on the part of downloaded code will
be detected prior to the running of that code, and provides a mechanism to limit the
access of any downloaded code to resources on the destination machine. The security
model tends to err on the side of caution (as is proper for a security model), and use by
the agent community would be a valuable source of input into the continued evolution of
the security mechanisms for the language and platform.

Finally, the implementation of an agent system within the Jini technology model would
begin to provide a failure model that might be of use to the agent community. In
particular, the notion within Jini of a distributed object (that is, one that exists on multiple
machines at the same time) and the Jini programming model of a lease can provide
solutions that can be used in the common cases of failure within an agent system.

Jini encourages the construction of objects that, at least conceptually, live on multiple
machines. The application of this model to agent systems would entail the agent itself
being such a distributed object, with a part that moved from place to place and a part that
stayed on the machine of origin. Partial results that are obtained by the roving part of the
agent can be sent back to the more sedentary fraction of the object as they are obtained.
Such a mechanism would minimize the effects of a machine on which the roaming part of
the agent currently resides failing. Further, since the sedentary fraction of the agent could
be given access to stable storage (something far less likely to be given to the roaming part

V1.l2

of the agent) the temporary results of the roaming agent that were sent home could be
stored in a way that allowed survival of a crash on the home machine.

This model of the agent as distributed object does not help with the problem of what to
do when contact between the agent and the home machine has ceased, either because of a
network failure or because one of the components is on a machine that has failed.
However, the leasing model in the Jini system can provide a mechanism for the two parts
of the distributed agent to coordinate in such circumstances. If the roaming and sedentary
part of the agent have agreed upon a time interval for communication, then when that
time expires without communication having successfully taken place, each part of the
agent can take action appropriate (which can be defined by the individual implementation
of the agent). For example, the roaming part of the agent, upon failure to make contact
with the sedentary part of itself during the time of the lease, could simply cause itself to
cease to exist, knowing that the sedentary part of the agent will assume that this is what it
has done under this circumstance. The sedentary part of the agent, when the lease expires,
can know that it will receive no more communication from the roaming part of itself, and
can either re-initiate a roaming agent (sent out to do only the work that remains) or decide
that it will make due with the partial results that it has already obtained.

There are interesting interactions between these approaches which will only be
understood when systems have been built trying to use them. For example, since this
model makes the roaming part of an agent inactive until granted a thread of control by the
agent host, the lease interval between the sedentary part of an agent and the roaming part
of an agent will need to be long enough to allow for the roaming part of spend some
period of time waiting for a thread of control from an agent service. Perhaps it is possible
for the roaming part of an agent to hand off lease renewal to the agent host until the agent
becomes active, although such a handoff might require that the agent or some part of it be
active prior to full activation, which has certain security implications. Building an agent
system inside of the Jini framework is sti ll a challenge, but some of the challenges at least
seem to have promising avenues for solution.

Unfortunately, the Jini technology does nothing to help with the ability of agents to make
decisions on behalf of the sender of the agent. This is a fundamental problem in agent
systems, and there is nothing in the Jini technology that will help in this. Indeed, much of
the design center of the Jini technology was predicated on the supposition that software is
not capable of making intelligent decisions. The system designers felt that the problems
of distributed computing were hard enough that they did not need to add the problems of
artificial intelligence into the requirements set.

Bibliography
[1] Birrell, A.D. and BJ. Nelson. Implementing Remote Procedure Calls, ACM
Transactions on Computer Systems 2 (1978).

[2] Zahn, L., T. Dineen, P. Leach, E. Martin, N. Mishkin , J. Pato, and G. Wyant,
Network Computing Architecture, Prentice Hall (1990).

VI.l3

[3] Microsoft Corporation, Object Linking And Embedding Programmers Reference,
Version 1. Microsoft Press (1992).

[4] The Object Management Group, Common Object Requesi Broker: Architecture and
Specification. OMG Document Number 91.12.1 (1991).

[5] Arnold, K., B. O'Sullivan, R. Scheifler, J. Waldo, and A. Wollrath, The Jini
Specification, Addison Wesley (1999)

[6] Campione, M. and K. Wallrath, The Java Tutorial Continued, Addison Wesley
(1999).

VI.l4

DISCUSSION

Lecture One

Rapporteur: T Rischbeck

Dr Waldo' s first talk focussed on the advantages the Jini technology offers for distributed
programming. As implementation details are hidden by a Java language layer, thi s means
an "end of the wire protocol hierarchy".

Mr Peine started the di scussion by questioning, whether this comes at the expense of the
"new tyranny of having to use the Java programming language" . However, as Dr Waldo
pointed out, the language approach taken in Jini is more flexible compared to the standard
protocol approach to di stributed programming. In Jini , a small Java by tee ode for the stub
is everything requi red to get a client to "talk" with the server object. As Java bytecode may
be produced by a variety of languages (Dr Waldo: "even a Cobol compiler exists"), one is
not tied to the Java language. Dr Waldo emphasized, that compared to competing
technologies, like Microsoft's ActiveX, security is an inherent feature of the Java platform,
and mentioned as example the JVM's bytecode verification unit.

Professor Mameffe asked for details on how Java's versioning system works -- which he
mentioned as having prime importance for Jini. Dr Waldo explained that Jini supports a
subtyping mechanism and gave as example the implementation of a printing service. This
service would implement a printing interface, exhibiting all methods necessary for client­
control. A stub object, implementing the same interface, is downloaded from a code
repository to clients. Clients then call methods on this stub object to utili se the printing
service in a network-transparent fashion. If at a later stage a colour-pIinting service is
introduced, thi s is described as a sub-interface of the printing interface. Whereas new
clients could be programmed to use the new interface, old Clients could still use the old
interface without breaking.

Dr Waldo went on, that the real problem comes from environment evolution, e.g. the move
from Java 1.1 to Java 1.2. The solution is to only allow interfaces as method arguments.
More complete code could be downloaded on demand. Efficiency problems in such a
setting might be resolved using caching.

Professor Sloman brought up the issue, whether bytecode verification can determine object
termination propelties. This he mentioned would be relevant to di stributed garbage
collection techniques in order to decide whether objects are required for later stages of
program execution or not. Dr Waldo replied that such a feature is not available and was
doubtful whether it could be implemented.

Professor Andre finally concluded the session by refemng to intellectual propelty issues
and their aptitude to capture technologies like Jini . Dr Waldo agreed, that this topic needs
consideration, but also refered to previous discussions.

V1.l5

DISCUSSION

Lecture Two

Rapporteur: T Rischbeck

Professor Randel initiated the di scussion with the observation, that semantics are not
clearly described by the interface definitions in Jini. As an example, he brought up the
cowboy/draw anecdote: Two interfaces are both implementing a draw method. But as he
explained, the meaning can be quite ambigious: Is the destination object a pencil , supposed
to draw a line on canvas, or is it a cowboy who draws his gun? Dr Waldo said that the only
way around is by comments accompanying the interface methods.

The next contribution came from Professor Sloman. He mentioned the similarity between
Carl Hewitt's Actors and nowadays Agents. An inherited requirement, he said, is the need
to include aspects of negotiation and contracts as key notions for any realisitic mobility
model. Dr Waldo replied, that Jini in fact establishes thi s kinds of contracts.

Professor Shrivastava was interested in the scalability of the Jini messaging systems. As he
said, most business computation systems rely on asynchronous communication for
scalability reasons -- those are not provided in Jini. Dr Waldo countered, that truly
asynchronous communication is not desirable, because the sender cannot establish
knowledge about the receiver's reception of the message (e.g., email). Another problem is
failure handling, which deserves serious consideration in di stIibuted systems. In summary,
Dr Waldo expressed the opinion, that aysnchronous communication is great (for
perfOlmance/scalability reasons), unless the network fails, which should be taken into
consideration for distributed systems.

Dr Waldo listed three alternatives to asynchronous messaging:

1. Linda (e.g., shared tuple space, compare JavaSpaces).
2. Caller threads spawned for every call, responsible for collecting the result.
3. Call and acknowledgement; but after sending the acknowledgement, the callee may

proceed asynchronously; Dr Waldo emphasised the difference between
asynchronous calls and asynchronous computation as obvious in this technique.

Professor Marneffe suggested the possibility of extending the TCP/IP protocol to find out
about receiver status in asynchronous communications. Dr Waldo replied with a
classification of four possible failure states:

1. message never received (by callee)
2. machine crash before the transaction
3. machine crash after the tranasction
4. reply lost

A caller cannot know when to send the message again. All solutions rely on a
reestablishment of the communication at a later time. The only viable solution is
transactions, but they are expensive to implement. Dr Waldo suggested the seminal paper
on "end-to-end communcation" for more information on this topic.

4'

VI.l6

Dr Waldo mentioned that the Jini communication model is synchronous, in response to a
question by Dr Ezilchelvan. This was followed by a remark from Professor Randell, that
there might be a tension between a realistic and a "copable" fault model. However, as Dr
Waldo stated, just any fault model is required for agent programmin now. Specifically,
researchers should focus on the question, whether failure semantics in agent system extend
what is already known from distributed systems.

Resource requirements might be a necessary feature to be described in an agent language,
Dr Thomsen remarked. Dr Waldo agreed that it is important to WOlTY about memory and
processor resources an agent demands. An abstraction over resources is required.

Mr Peine pointed out, that the issues Jini tackles have all been dealt with previously. E.g.,
service discovery, resource management, etc. Those are not specific to mobile agents. Dr
Waldo made the statement, that the agent community and the distributed community differ
in the way they are dealing with these issues. Often, he said, those are just ignored in an
agent context.

Finally, Mr Cunningham raised the opmlOn, that he would favour an independent
standards body for the advancement of Agent technology, rather than relying on an
industrial and commercially oriented player, like Sun Microsystems. He mentioned the
Foundation for Intelligent Physical Agents (FIPA, www.fipa.org) as such a standards
body, taking input from many sources, rather than following the "one does it all" approach
which Sun takes.

