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Consider a tandem network of N service stations, or cells, with jobs coming from the 

outside into cell I, moving from cell k to cell k + I (k = 1,2, ... , N - I ), and leaving 

after cell N . Cell k contains one or more servers, and a finite buffer space where a limited 

number of jobs may reside before, during, and after receiving service (see Figure 1.1) . 

el-+~I~ciE~LLOJ+r.,CELL 2 f-oo ... 
FLOW' 

·OF 
JOBS 

CELL N 

Figure 1.1 A tandem network of cells with finite buffers 

Clearly, the space restrictions imply that the operation of any cell is influenced by that 

of cells both 'upstream' and 'downstream' from it in the network. Thus tbe policy 

governing the flow of jobs between cells is an important factor affecting the performance 

of the system. Our object is to examine, compare and evaluate a number of these policies. 

The original motivation for tbe study was the modeling of production lines in 

manufacturing facilities. Of particular interest is a cell coordination scheme pioneered by 

the Toyota company, and called 'hnban', after the Japanese word for card [1·9). The 

model which we abstract from the substantial literature on manufacturing practices uses a 

fixed number of hnbans, or cards, circulating within the confines of each cell, in order to 
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signal the status of the cell's inventory to its neighbors. Those signals may trigger job 

transfers between cells independently of the service processes that are in progress . 

It should be pointed out, however, that the usefulness of our models is not restricted to 

the manufacturing area . Another field of applications is that of computer 

communications, where messages are buffered , processed and transferred from node to 

node . Here too, given appropriate information and data handling facilities, one could 

envisage different buffering policies that would influence the performance of the system 

(see, for instance, [10·14)) . 

Several existing and novel policies for the control and coordination of cells in tandem 

are described in Section 2. These include the classical transfer or manufacturing blocking, 

a policy which we call 'minimal blocking', 'shared buffers' and the kanban discipline . 

Certain equivalences among them are established. Estimates for the performance 

" characteristics of the kanban policy ate obtained by analyzing first an individual cell in 

isolation (section 3), and then combining the results of that analysis with an approximate 

model of the interaction between cells (Section 4). The accuracy of the approach and its 

application to performance evaluation is examined in Section S. 

This paper shares with references 13·20 the general approach of decomposing the given 
~ . 

system into smaller, tractable subsystems and then approximately expressing the 

interaction between the subsystems in a coupling procedure. The contexts and the contents 

are however very diverse. 

2, Description Bnd Comparison of Policies 

2.1 Transfer or manufacturing blocking 

We start with what is perhaps the simplest and best-known buffering policy [10,13]. 

see Figure 2.1. 



VI . 2S 

~TATION1 
SOURCE 1111110 

STATION 2 

~ I 1110-+·· ·· 
STATIONN 

Figure 2.t. Transfe r or manufacturing blocking. 

There are N stations, numbered 1, 2' 00" N. Assume that station I is preceded by an 

inexhaustible pool of jobs requiring processing, while station N is followed by a similar 

sink for completed jobs . Station k contains a single server and a buffer capable of holding 

up to Ck jobs (k = 1,2 '00" N) . If, at any time, there are jobs present in the buffer, one 

of them is occupying the server while the others are waiting to do so . When a service 

terminates , the completed job moves to station k + 1 (for k < N), provided that the 

, 
latter'S buffer is not full . If that buffer is full, then the job is blocked: it remains in 

station k, continuing to engage the server and preventing the start of a new service . As 

soon as a space becomes available in station k + 1, the blocked job moves there, freeing 

the server. All moves are instantaneous . 

Note that there can never be an empty space in buffer I (because of the inexhaustible 

source) . nor a blocked job in buffer N (because of the infinite sink). In all other stations a 

buffer location may be empty, occupied by a job waiting for or receiving service, or 

occupied by a blocked job (at most one location can be in this last state). Another feature 

of this system is that a service completion event in one station may trigger a number of 

simultaneous movements of blocked jobs in preceding stations . Information about the 

state of a station is assumed to be instantaneously available to its neighbors . 

Thus. under the transfer blockinl policy, a server that has just completed a service is 
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unable to start a new one when either 

(i) tbere are no jobs requiring service in the attached buffer, or 

(ii) the following (downstream) buffer is full. 

A more formal description of the evolution of the sample paths for tbis model can be 

given by means of a set of recurrence relations . Let A! and r;, be the instan ts when tbe 

nth job arrives at tbe k lil station, and completes service there , re spect ively 

(k = 1,2, ... , N; n = 1,2 ... ). Obviously, tbe instant wben the nth job departs fr om the 

k th station is A~ + I if k < N, and r;, if k = N. Also, denote the service time of job n at 

server k by s!. 

For tbe transfer blocking discipline, we bave 

A k - ( .... -1 Ak+1 ) n + 1 - max lii+1, n+l-Ck I (2 . I ) 

.... _ (Al Ak+I) + l 
lii+1 - m~ n+1' n $n+1 , (2.2) 

for k = 1,2, ... , Nand n = 1,2, .... By definition,:r,: = 0 and A~+I = T"~' . To see thaI 

(2. I) and (2.2) hold, note tbat tbe (n + l)th job enters station k eitber when it completes 

service in station k - I (if it is not blocked tbere), or when the (n + I - Cd· job enters 

station k + 1. Similarly, tbe (n + 1)1iI job starts service in station k either immediately 

upon entry (if the buffer tbere is empty), or wben tbe nth job enters station k + I . 

Relations of the above type are useful in comparing different control policies 121] . 

A related discipline is sometimes referred to in the literature as 'communication 

blocking' [10]. Under it, the server in station k cannot start a new service if buffer k + 1 

is full . Conceptually, manufacturing blocking and communication blockiD, are "milar 

(although their performance characteristics are different), since in both cases at most one 

job may be blocked in eacb station. 
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2.2 Minimal blocking 

Consider the following less restrictive, blocking rule: when a completed job in station k 

is unable to move to station k + I (because the buffer there is full ) , it remains in buffer k 

but does not continue to engage the server. The latter is free to start a new service , 

provided that there is a job requiring one. Thus, of the jobs present in buffer k, some 

may be waiting for service, some may be blocked, (having completed their service but 

being unable to move) and one may be in service. When a dep.arture from station k + I 

occurs, one of the blocked jobs in station k moves instantaneously to station k + 1, 

without disturbing the service that might be in progress. 

We call this control policy 'minimal blocking'. In justification of the name, note tbat 

now a server is idle only when tbere are no jobs requiring service in its buffer.' 

The core of this control policy is the functional separation of the tasks of serving and 

moving. Tbe first is associated with tile actual processing or manufacturing and the second 

with moving jobs from station to station, i.e. material band ling in the manufacturing 

context. These two become separate, concurrent processes. 

The minimal blocking policy can be described by a set of sample patb evolution 

equations analogous to (2.1) and (2 .2). In fact, (2.1) applies to this system with out 

modification, while (2.2) is replaced by 

(2 .3) 

The change is explained by noting that, under minimal blocking, the (n + l)th job starts 

service in station k either immediately upon arrival (if the server is idle), or when the nth 

• While this paper was being prepared, it came to our notice tbat tbe same policy was introduced and 
analyz.ed approximately in (14] . We use a different approximation method that reflects more closely the 
interaction between cells. 
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job completes service (rather than when it departs). 

It seems intuitively obvious that transfer blocking causes more server idleness . and 

should therefore lead to lower throughput of jobs. than minimal blocking . Indeed. a 

stronger statement concerning the sample paths of the two systems can be established 

rigorously by induction on nand k in the evolution equations. 

2.3 SYSTems wiTh shared buffers 

A more efficient use of storage space is achieved. if the job handling facilities allow it. 

by sharing buffers among several servers . Such a sharing increases resource utilization by 

reducing the likelihood that servers are deprived of work through either blocking or 

starvation [11.12). 

Suppose that in a multi-station system such as the one depicted in Figure 2.2. the 

servers are grouped into cenrers indexed 1.2 . .... N. Center k contains the servers (k. I). 

(k. 2) ..... (k. mk) which cooperate by pooling their space allocations and sharing tbe 

resulting buffer space of capacity Ck . 

SHARED BUFFER SPACE SHARED BUFFER SPACE 
--~~ r---;~--~ r---. 

CAPACITY Ck CAPACITY Ck ' 1 

SERVERS 

CENTER k CENTER k·1 

Figure 2.2: Centers. each with several servers and a shared buffer. 

A job is able to enter center k if a free location is available. Having entered. the job waits 

and receives service first by server (k. I). then by server (k. 2) and so on. until it is served 
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by server (k. mk)' At that point the job either leaves (if the following buffer is not full ) . 

or becomes blocked . The blocking may be of tbe transfer type. whereby the job continues 

to occupy server (k. mk) and prevents it from starting a new service. or it may be minimal. 

with tbe job remaining in the buffer but releasing server (k. mk) . 

Consider first a shared buffer system with transfer blocking. To describe the evolution 

of its sample path. introduce the instants A~·} . when the nth job 'arrives' at server (k. j) in 

center k U = ).2 •...• mk)' Of these. only A~' 1 is truly an arrival point: the job enters the 

buffer then. After that. arriving at a server means being ready to receive service by it. 

Also. let -r.,.} be the instant when the nth job completes service at server j in station k . 

Then. by the argument leading to equation (2.1). we can write 

Ak. 1 - (...1-1,,,,._, Ak+I,1 ). k - 1 2 N 
11 + 1 - max 1 n + 1 I 11 + 1-C.' - I I ' •• I t (2.4) 

where ~,mo = 0 and A~+I.I = r;:,"'N by definition. For servers 2.3 . .. .. mk in station k. 

an arrival coincides with a service comptetion at the preceding server: 

A k.} - .... ,}-I . k - I 2 N " - 23m n - i It , - I P", I - , " •• I k · (2.5) 

On the other hand. a job starts service at a server either immediately upon arrival (if the 

server was idle) or then the preceding job vacates it. Hence. denoting the service time of 

job n at server j in station k by s~'}. we can write an equation similar to (2 .2) for the 

completion instants: 

TNI = max(A~·}+I. AHI) + S~'~I ; k = 1.2 ... . . N, j = 1.2, .. .. mk . (2.6) 

Here. A~·m.+t is defined as being equal to A~+l,1 if k < N. and to r;:,mN if k = N . 

2.4 Shared buffers wirh minimal blocking 

The minimal blocking shared buffer system differs from the transfer blocking one only 

in the handling of a blocked job at the last server in a center . Now every server may start 

a new service as soon as the old one is completed (provided that there is a job requiring 
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service). The evolution equations (2.4) and (2.5) continue to hold without modification, 

whi le (2.6) is replaced by an equation similar to (2.3): 

.... ,j - max( .... '] A k .] ) + S k .] . k - I 2 N 1,, +1 - l"n t n+1 "..,. 1 , - . " .. . , j = I, 2, ... , mk . (2 .7) 

It should be pointed out that the tandem arrangement of servers within each station is 

not the only one that can be envisaged . One could imagine shared buffer centers where 

jobs follow more complicated route s among the servers, including feedbacks, before 

exiting . For any given rou ting and blocking policy, it would be possible to write a set of 

evolution equations similar to (2.4)-(2 .6) or (2.4), (2 .5) and (V). 

2.5 Kanban 

The kanban policy was introduced in connection with manufacturing production lines 

and is still discussed primarily in that context. We shall therefore use the manufacturing 

terminology in describing our model. 

MANUFACTuRING 
CENTER 

~ 1:::J!!il9 ' , , , , , 

BUL1.ET"~ 
BOARD .. ~ , , , , , , , 
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---il----
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, , , , , , 
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CELL II. 

JOIN OF PART 
8 CARD 

As shown in Figure 2.3, • kanban cell consists of 

Figure 2.3 

i. a manufacturing center (in the fiiUre this contains a single server and its queue; 

. ' however, we also allow network, of leveral servers and queues in series); 
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ii . an outpu t bopper. wbere jobs are placed after completing service; 

iii . a bulletin board. wbere requests for new jobs are posted . 

In cell k there is a fixed number. Cb of cards. or kanbans (Ck ~ 1) . A job must 

acquire one of these cards in order to enter the cell . and must continue to bold it 

througbout its sojourn tbere . Tbu s, the total number of jobs in tbe cell can ne ver exceed 

Ck . Unattached cards may be found only on the bulletin board. and are tben cons idered 

as requests for new jobs. We assume that each server is tbe manufactur ing cen ter of ce ll k 

bas buffer space large enougb to hold all Ck jobs (k = 1. 2 . ... . N ). Hence. importantly. 

no incremental blocking due to finite buffers is introduced in the manufacturing centers of 

cells . 

Suppose that Q is a job tbat bas just left tbe manufacturing network in ce ll k - 1. and 

R is tbe card attached to it. Both Q & R move to tbe ou tpu t bopper of cell k - 1 . 

• 
wbereupon tbere are two possible courses of action: 

a . if the bulletin board in cell k is empty. tben Q & R wait in tbe output hopper of cell 

k - 1; 

b . if tbat board is not empty. tben tbe following moves occur instantaneousl y: Q is 

transferred from cell k - I to ce ll k. where it picks a waiting card and go. , to the 

manufacturing network; R goes to the bulletin board of cell k - 1; 

In tbe case (a), Q &: R wait until a card appears in tbe bulletin board of cell k, at 

wbicb point the moves described in (b) occur to tbe leading Uob & card) pair in the output 

hopper (which may not be Q & R) . 

Tbe above rules imply tbat tbe output hopper in cell k - I and tbe bulletin board in 

cell k cannot be nonempty simultaneously. In particular, the bulletin board in cell 1 is 

always empty because that cell is preceded by an inexhaustible pool of jobs . Similarly . tbe 
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output hopper in cell N is always empty because it is followed by an inexhaustible pool of 

demands . 

We shall now show that tbe difference between the kanban and the minimal blocking 

shared buffer policy is apparent, rather than real. Although the equivalence holds more 

generally, we restrict our demonstration to the specific, simple context which we have 

followed so far in the paper, namely, the tandem configuration . Here the manufacturing 

centers of the kanban cells conta in tandem networks with m k servers in series in cell k . 

The contrasting minimal blocking shared buffer system (see Figure 2.2) has several centers 

arranged in tandem and service is given by the servers in each center in the order that 

they are indexed . 

Proposirion J. 

A kanban system where the kth cell has Ck cards and a manufacturing center of mk 

servers in series (k = 1, 2, ... , N ) , is equivalent to a minimal blocking shared buffer 

system in which the k,h center has mk servers sharing a buffer of size Ck (k = 1, 2, ... , N; 

see section 2.3). 

Proof· 

To establish the proposition, it suffices to consider the following mapping between the 

states of kanban cell k and center k of the minimal blocking shared buffer system: To a 

card in the cell's bulletin board corresponds an empty location in the center; to a Uob & 

card) pair in queue (k, j) of the manufacturing center of the cell corresponds a job waiting 

for, or receiving service at server (k, j); to a Uob & card) pair in the kanban cell's output 

hopper, corresponds a blocked job in the buffer center. With this mapping in mind, a 

glance at the appropriate scheduling and transfer rules shows that conditions under which 

servers may work, and jobs may move between cells or stations, are the same. 
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Alternatively. it is easily seen that the sample path evolution equations for the two 

systems are the same . The equations for the kanban system are precisely (2.4). (2 .5) and 

(2 .7) with A~,j and T';., j respectively denoting the time of arrival at the queue of the server 

(k, j) and the time of service completion there of the nth job at the manufacturing center 

ofcellk (k = 1.2, .... N ;j = 1.2 ..... mk ; n = 1.2 .... ). 

• 
Observe that in the case of a single server in each manufacturing center. i.e. mk "" I 

(k = 1.2 . ... . N). the kanban system is equivalent to the minimal blocking policy applied 

to buffered stations in tandem. the case treated in Section 2.2. The evolution equations 

are (2 .1) and (2.3). 

It is clear from the above results that the kanban cell model provides a rather general 

framework for studying systems consisting of service stations in tandem. In the following 

sections. our task will be the performan~ analysis of the kanban policy or. equivalently. 

the minimal blocking one. For conciseness and simplicity. we shall concentrate on the 

case of a single server in each manufacturing center. i.e. mk = I (k = 1.2 ..... N) . It 

should be emphasized. however. that in the procedure that we give below servers with 

state·dependent service rates are no more difficult to handle than fixed-rate ones . On the 

other hand. a network of several servers in series can be approximated by a single state

dependent server . Hence. our methods can be applied to the general kanban cell model 

(or the general minimal blocking shared buffer system) by simply adding another level of 

decomposition. Thus. the presentation that follows involves no significant loss of 

generality. 

3. AN ISOLA TED KANBAN CELL 

From now on . our aim is to devise efficient and reasonably accurate methods for 
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determining various steady-state performance measures of the kanban system. To 

complete the specification of tbe model. tbe service times in cel1 k wiJI be assumed to be 

i.i .d . random variables distributed exponential1y with mean l / ~k (k = 1.2 •.. . • N ) . Tben 

the system state . defined as tbe vector of integers representing the numbers of cards and 

jobs in al1 bul1etin boards and output boppers . would be a Markov process to wh ich 

ex isting solution techniques could be applied . 

It should be pointed out . bowever . that the exact solution of a large kanban system is 

likely to be numerical1y intractable . This is because the size of tbe state space grows 

exponential1y witb tbe number of cel1s . For example. it is not difficult to sbow tbat . if 

there is a single card in each cel1. then the number of states is approximately equal to 

O.447( 2.618 )N+ I. for large N. 

Clearly. a good approximate solution is desirable. To obtain it. we shal1 de compose 
,. 

the model into semi-autonomous coinponents . Each component consists of a single 

kanban cell supplied with jobs on one band . and witb demands for finished products on 

the other. by two independent Poisson processes . The rates of these processes. for cell k. 

are denoted by Pk and (Tko respectively . At the moment we shall treat these rates as given . 

Later. they will be determined as functions of the basic system parameters. ~ k and 

Ck (k = I. 2 . ... . N) . 

Such a cell is said to be 'isolated'. The flow of jobs and cards through the isolated cell 

k is illustrated in Figure 3.1. 
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Figure 3.1. Isolated kth kanban cell 

There is an external buffer for the incoming jobs, of size Ck - t ; a job which finds that 

buffer full is lost. Similarly, there is an external buffer for the demands for finished 

products, of size CHI; an incoming demand which finds it full is lost. Note that those 

buffer sizes are chosen to coincide exactly with the capacities of the output hopper in cell 

k - I and the bulletin board in cell k + I, respectively. 

Within the isolated cell, the scheduling rules are the same as in the original kanban 

model. A job (from the external arrivals buffer) enters the cell by picking up a card from 

the bulletin board, and together they join the manufacturing buffer. A completed job (in 

the output hopper) leaves the cell by being matched with a demand from the external 

demands buffer; then they both disappear, while the released card goes on the bulletin 

board . 

These rules imply that the external arrivals buffer and the bulletin board cannot be 

simultaneously non-empty. Similarly, the external demands buffer and the output hopper 

cannot be simultaneously non-empty. Hence, the state of the isolated kanban cell k at time 

t can be described completely by a pair of integers, (lk",Jk,,), where -Ck-l :s h" :s Ck 
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represents the numher of jobs in the external arrivals buffer; when I." is positive, it 

represents the number of cards in the bulletin board; when h., = 0, both buffer and board 

are empty , In the same way, Jk" (when negative) represents the number of demands in 

the external demand buffer or (when positive) the number of completed jobs in the output 

hopper, Neither I., nor Jk " nor their sum, can exceed the number of cards circulating in , , 

the cell, Ck , 

The assumptions that have been made ensure that M = {Ik",]k,,); t 2: O} is a finite 

Markov process. The state space, S" of that process, is of a size 

ISkl = (Ck - I + Ck + I)(CHI + Ck + I) - Ck(Ck + 1) /2. The process M is irreducible, 

and therefore it has a steady-state distribution, which we shall denote by {P ij } : 

Pij = lim P(h" = i, h, = j); (i, j) E Sk . 
,~ 

(3.1 ) 

These probabilities satisfy the following set of balance equations: 

= flkfF /,j-1 10 > 0) + Pi - I,j-I 10 :s 0)] 

+ (Tk[P/-I,j+1 10 2: 0) + Pi.}+1 10 < 0)] + PkPi+I.}, (i, j) E Sk, (3.2) 

where I (c) is equal to I if the condition c holds, 0 otherwise; by definition, p,; = 0 if 

(i, j) is not in Sk' Equation (3 ,2), together with the normalizing equation, can be solved 

numerically for reasonably large values of Ck -I' Ck and Ck +1 ' 

Two special cases of isolated cells deserve a separate mention , We know that the 

leftmost cell, k = I, does not ever have to wait for the arrival of new job , This is 

achieved in our model by setting PI = oc and, say, Co = I. The only feasible states are 

those of the form (-I, j), for j = - C 2,,,, , 0,,,, , C I, It is readily seen that the marginal 

distribution of J I,' for t - oc is of the truncated geometric type: 
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- (I - ) I+C , [I - c, +c ,+ ll-1 . - -C 0 p .J - ex ex ex I J - 2.· · · It· ·. , C I • k = 1 . (3.3) 

where ex = f' 1!0' 1' Similarly. the rightmost cell is modelled by sett ing O'N = x and 

CN + I = I; then the marginal dis tribution of IN. , for I - x is given by 

Pi- = ( I - ~ ) ~ i+CN _ ' [I - I3cN-,+ cN+l l- l . i = -CN - I ..... O . .. . CN . k = N.(3.4 ) 

where 13 = flN ! PN ' 

Let Tk be the steady-state thr oughput of parts in isolat ed cell k . That quantity is equa l 

to the average number of jobs th at enter the cell per un it time . Hence we can wri te. for 

k > I. 

( 3 .5) 

Alternatively. since the cell is in steady-state. the throughput is equal to the average 

number of demand s that are accepted per unit time . When k < N. this can be written as 

Tk = O'k[1 - P(Jk = -CH I)l . k = 1.2 .... . N-I . (3 .6) 

Equations (3.5)-(3 .6) will be referred to as the 'fundamental identities' . They will be 

used in the derivation of the approximate solution for the whole system . These iden tities 

have also been obta ined directly from the balance equations (3 .2) . 

The scheme to be descr ibed in the next section is constituted from basic buildin g blocks 

which are the ind ividual . isola ted kanban cells described in this section . In part icu lar the 

viewpoint taken there is that. for each cell index k. the quantities Tko P (h = Ck ) . 

P(h = -C. -I ), P(J. = C.) and P(J. = -CHI) are each functions of two variables. Pk 

and 0'.. The reader should keep this important fact in mind since the notation to express 

it is cumbersome and will not be used . We do not have explicit representations of these 

functions (except for the case of Ck .. 1) but they are implicitly defined by the following 

procedure: for given valu es of the arguments (Pb 0'.) solve the balance equations (3.2) to 

obtain the values taken by these functions . 
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4. EQUATIONS FOR THE COMPLETE SYSTEM 

Let us return now to tbe full kanban system consisting of N cells in tandem, with 

parameters flk and Cdk = I, 2, ... , N). Our aim is to approximate tbat system by a 

sequence of isolated kanban cells, wbere the streains of incoming jobs and demand s for 

finished products at cell k are provided by cells k - I and k + I , respectively 

(Figure 4.1). The parameters of these isolated cells must be such that the performance 

characteristics of the resulting sequence are as close as possible to tbose of tbe kanban 

system. 

,...-----r-----, P2 

p".~ R I CELL 1 ~ CELL 2 

0'1 

Figure 4.1. Model of production line constituted from models of isolated kanban cells . 

Tbe important facts in constituting the analysis of the production line from tbe isolated 

kanban cells are tbe following: tbe external arrivals buffer of tbe isolated cell k (see 

Figure 3.1) is in fact tbe output hopper of cell k - I , and the external demand s buffer of 

the isolated cell k is tbe bulletin board of cell k + 1. Indeed it was witb tbis in mind tbat 

tbe external buffer capacities of cell k(k = 1,2, .. . , N) were set to Ck - 1 and C HI ' 

respectively, witb tbe convention Co = CN + 1 = 1. 

Our present task is to cboose appropriately tbe arrival rate vectors 

P = (P2, P3, .. ·• PN). and a = (0'1,0'2 ... .. O'N - l)' It bas already been decided tbat 

PI = O'N =00. Several considerations may guide the cboice of P and o'. For instance, 

since tbe system is in steady·state, the tbroughputs of all tbe cells must be equal: 

Tk = T k - 1 • k = 2,3 . ... . N. In view of relation (3 .5). this requirement caD be restated as 
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p,[1 - P(l, = ,,:,C,_I)] = T,_ I' 

or, 

p, = T,_ I/[ I - P(l. = -C,_I)], k = 2, 3' 00 " N. ( 4 .1) 

Alternatively, relation (3.6) implies that the equality of throughputs can be achieved by 

requiring that 

C1, = TH II [I - PU, = -CHI)] , k = 1,2 , 00' , N - I. (4.2) 

Another consideration arises from the fact that, in reality, the external arrivals buffer 

of the isolated cell k is the output hopper of cell k - 1. This consideration implies in 

particular that the following equations hold : 

P(l, = -C,_I) = P(J,_I = C, _I )' k = 2,3'00" N . 

Substituting this into (3.5) we get the equations 

• 
p, = T, / [I - P(J,:"1 = C,_I)]' k = 2,3"00' N. (4 .3) 

Similarly. equaling prj, = -CHI) with P(lHI = CHI). together with (3 .6). yields 

C1, = T, / [I - P(lHI = CHI)]. k = 1.2'00" N - I. (4.4) 

Now. consider the set of equations (4 .1) and (4.4) . Their right-hand sides are 

obtained from the solutions of the isolated cell models . and are therefore functions of the 

vectors p and a. Hence. denoting those (vector valued) functions by f and g. respectively. 

(4 .1) and (4.4) take the form 

p = rep. a) 

a = g(p.a). (4.5) 

This constitutes a set of fixed-point equations for the unknown vectors p and C1 . In 

fact. since (4.1) ensures that all throughputs are equal. (4.4) can be rewritten as 

= 
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O"k = TH I/ [I - P(lH I = CHI »). k = 1.2 .... . N - I. (4.6) 

This form of the function g is more ronvenient. both conceptually and numerically. 

because it enables O"k to be expressed entirely in terms of the solution of cell k + I . 

More than one set of fixed-point equations may be obtained. Note that if Tk = Tk -I . 

we obtain an expression for Pk entirely in terms of the solution of cell k - I: 

Pk = Tk-I / [I - P(Jk- 1 = Ck- I ») . k = 2.3 ....• N. (4.7) 

Ideally. we would like to have all three requirements satisfied: '(i) Tk- I = Tk (k > I ). 

(ii) P(lk = -Ck- t ) = P(Jk- 1 = Ck- I ) (k > I ) and 

(iii) P(Jk = -CHI) = P(lHI = Ck + l ) (k < N). However. that ideal is unattainable 

because those three requirements yield a total of 3(N - I ) equations for only 2(N - I) 

unknowns. The proposed approximation based on equations (4.1) and (4.6) achieves 

objectives (i) and (iii). while that based on (4.2) and (4 .7) achieves (i) and (ii). Both 

approaches are reasonable . but it turns but that the latter is slightly more accurate than the 

former . Other approximations are also possible . For example. using (4 .6) and (4 .7) as 

the fixed-point equations yields quite acceptable results. although none of the above three 

requirements are exactly satisfied . 

To solve numerically a set of fixed-point equations of the type (4.1). one would 

normally use an iterative procedure . Starting with some initial estimate of p and 0". say 

Po = (ILt. 1L2.· .. . ILN -I) and 0"0 = (1L2. 1L3 ... · • ILN). the iterations proceed acrording to 

P. +1 = f(p •• 0".) 

0". +1 = g(P •• O".)· 

The rate of ronvergence depends. in general. on the particular approximation adopted. 

The ron vergence of the iterative procedure to a solution does not. a priori. preclude 

the existence of other solutions. However. we ronjecture that in the cases that we are 
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ronsidering. the SOlution of the fixed-point equations is unique . That belief is based on 

certain properties of an isolated kanban cell. for which there are strong intuitive 

arguments. but no formal proof. 

The existence of a solution also seems difficult to establish (except in one special case. 

where it follows from Brower's fixed-point theorem) . We can report that. in the course of 

a rather extensive experimentation program. the iterations have never failed to ronverge . 

To summarize. the results presented in the next section. if not from simulations. are 

obtained from the solution of the following system of fixed-point equations. (4.2) and 

(4.7). in the unknowns P2. PJ •...• PN and "I. "2.···. "N-I: 

In these equations it is tacitly understood that Tko P(Jk = C.) and P(Jk = -CHI) are 

each function of P. and "'; these functions have been defined in ronnection with the kth 

isolated kanban cell and are evaluated by the procedure summarized at the end of the 

preceding section. 

S. NUMERICAL RESULTS 

Here we report on some experiments performed with our models . Figure 5.1 

illustrates several features from the analytic solution of two separate production lines 

which differ only in that one has I card while the other has 2 cards in each cell; the two 

lines are identical in having 20 cells each and the service rate in every cell is identically 4. 

Among the features displayed in Figure 5.1 which prevail rommonly is. first. the tendency 

of the inventory in individual cells to decrease with increasing distance from the head of 
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Ck == 2, fLk == 4 
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k, CELL INDEX 
Results f r om computations for analytic (fixed- point) approximat i on f or the 
kanban syst em in a production l ine wi t h 20 cells. Throughput i s 1." 9 for 
Ck :; 1 and 2. 30 for Ck ,,2. Total Inventory is 13 . 93 for Ck " 1 an d 29 .01 
fo r Ck :; 2. 
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the line . The numerical agreement between simulations and analysis for the individu al 

cell inventories is rather good and in line with the agreement in total inventory wh ich is 

examined in detail later. The analytic method generates solutions P2. P3 ... · • PN which 

monotonically decrease . while CTI. CT2 . .... CT N -I monotonically increase . In uniform lines. 

i.e . where Ck and fl k do not depend on k. a natural symmetry exists: CTN-k::: PH I . 

k=I.2 ..... N-1. 

The number of iterations required for solving the fixed point equations in p and CT 

depends on N. the number of cells in the production line. and on the convergence or 

termination criterion. A typical criterion required that the Lx-norm of the difference of 

two consecutive vectors be less than 10- 3 . For this criterion. the number of iterations 

ranged from 37 for N = 6 to 70 for N = 24. 

Figure 5.2 shows the analytic approximations. and the simulated values. of the 

throughput and the total inventory in 6' system of 6 identical kanban cells . The service 

rates are held constant while the storage capacity (numher of cards in each cell) is varied. 

If the simulation results are treated as exact (the half width of the confidence intervals for 

the throughput values is 0 .01) then the relative error of the approximation is seen to vary 

in the range 0.2%-5%. Moreover. the larger the number of cards per cell. the smaller that 

relative error becomes . 

Figure 5.3 displays similar plots. except that this time the number of cards per cell is 

held constant. while the number of cells varies. Again there is a good agreement between 

approximations and simulations. with relative errors in the range 0.3%-7%. However. a 

reverse trend is observed: the larger the system. the larger the relative error . Note that 

the system throughput is an increasing function of the number of cards per cell. but a 

decreasing function of the number of cells . This is because the presence of more cards 

reduces the opportunities for blocking. whereas that of more cells increases them. 
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NUMBER OF CELLS , N = 6 
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Figure 5 .2 Throughput and Total Inventory of a production line, f or 
var ious numbers of car ds uniformly dist rib uted over t he 
cells i n the li ne . 
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Figure ·5.3 Through put and Total Inventory o f production lines ",i th 
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Another point of interest is that , whereas the inventory is an almost linear function of the 

system size (number of cards or number of cells), the throughput is highly non·linear. 

Figure 5.4 shows a comparison between a IO·cell kanban system and the corresponding 

sequence of ten buffers in tandem under transfer or manufacturing blocking . 10 this 

comparison C! is the number of cards in cell k of the kanban system shown in Figure 1.1 

and it is also the buffer capacity (inclusive of the server's position) of station k in the 

system shown in Figure 2. I; also C! = C 2 = . . . = CN and iJ.! = iJ.2 = ... = iJ.N· 

When the number of cards per cell (or number of spaces per buffer) increases, both the 

throughput, T. and the total inventory, L, increase, in each system. The curves plotted in 

the figure represent the relationship between T and L. It can be seen that the kanban 

system achieves the same throughput as the buffer system but with a lower inventory. or. 

alternatively. the same inventory with a higher throughput. However, that statement 

should be qualified by the remark that," in practice, we are dealing not with continuous 

functions but with discrete values of C! . The figure shows that, for a fixed C!. both the 

throughput and the inventory in the kanban system are larger than those in the buffer 

system. 

• 



45 

40 

35 

>- 30 
0:: 
0 
I-
z 
W 
> 25 
z 
-1 
<[ 
I-

20 0 
I-

15 

10 

Figure 5 . 4 

2 

VI.47 

NUMBER OF CELLS, N =10. 
MANUFACTURI NG/SERVICE RATE, 
fLk==5,1:s k:s N 

THE j'TH POINT ON EACH CURVE 
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Thr oughput -inventory relationship compared for buffers in 
tandem (manufacturing blocking) and the kanban system in 
a production line yi th 10 cells. 
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DISCUSSION 

Rapporteur : Rogerio de Lemos 

During the lecture Professor Littlewood asked what purpose the cards served in 
the Kanban policy . Dr Mitrani answered that they control the flow of parts into 
a cell in terms of how many parts and in what points. Mr McCue also asked if 
twice as much buffer space was required per cell. Dr Mitrani replied that the 
cards are a conceptual notion used to make the picture clearer - cards do not 
occupy space. 

Mr Hughes asked whether the ranking ofthe minimal blocking (Kanban) policy 
as better than the transfer blocking policy, in terms of throughput, was based 
on any numerical simulation . Dr Mitrani answered negatively . He also pointed 
out that only the basic mathematical relations were used in the induction 
analysis, and stated that the use of numerical simulation methods are necessary 
only in the case where a quantified throughput is needed . 

After the lecture, Professor Rogers asked if the transfer times between two 
nodes were taken into account . Dr Mitrani replied that there were two 
possibilities in considering these times, either you assume that they are part of 
the service of the node, or one could introduce artificial nodes between any 
two nodes and consider these nodes to have a very large buffer space. Still 
concerning this latter approach, no approximation was needed, and its only 
disadvantage was that the analysis should be realized with twice the number of 
nodes. 

Professor Marie made the observation that constant service ti mes were 
assumed to be a good assumption in manufacturing, and asked whether they 
could be used in such analysis. Dr Mitrani answered that as far as the sample 
path description equations are concerned, any type of distributive function 
could be considered. 

Professor Littlewood asked Dr Mitrani for an intuitive explanation of the bell 
shape like curve that arises through the optimisation of space allocation. Dr 
Mitrani explained that the left hand extreme nodes only influence the nodes to 
the right of it, and as you move along, more dependencies will be introduced, 
more interactions will take place, and thus implies the need of more buffer 
space. Related to this issue Dr Holt asked if a symmetric bell shape could always 
be expected. Dr Mitrani replied saying that in this case symmetry was obtained 
because it was assumed equal service times for every node, but in general it not 
to be. 

Professor Girault asked if such work has been applied in more compl icated 
networks. Dr Mitrani answered negatively, and said that most of the examples 
presented during the lecture were based mainly on manufacturing and not on 
protocols, but such studies will be considered in the future. Dr Mitrani went on 
to say that both applications have some distinct characteristics, such as the 
transfer time between nodes; in manufacturing the transfer times are much 
smaller than the service times. 
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