VI

EXPLOITING PARALLELISM IN SIMULATIONS

| MITRANI

Rapporteur: Rdelemos

VI.1

Explofting Parallelism in Simulations

Albert G. Greenberg
AT&: T Bell Laboratories
Murray Hill, NJ 07974, USA

Isi Mitrani
University of Newcastle upon Tyne
Newcastle upon Tyne, NE1 7RU, UK

Boris D. Lubachevsky
AT& T Bell Laboratories
Murray Hill, NJ 07974, USA

1. Introduction

The simulation of a discrete event system is traditionally regarded as the process of generat-
ing an operation path that represents the system state as a function of time. This normally
entails the use of a global clock and an event list. In the last few years, much effort has
been devoted to the task of splitting the simulation process into a number of sub-processes
and executing the latter in parallel on different processors [1, 2, 3, 4, 5]. For example, when
simulating a queueing network, the ideg.might be to allocate each processor to a node,
or a group of nodes, and let it handle the corresponding events, taking care of possible
interactions with other processors. At best, the degree of parallelism obtained by such an
approach will be equal to the number of nodes, and in general may be much smaller [4, 5].

We propose new methods that do not limit the degree of parallelism in this way. The
concepts of “time” and “event” are no longer present explicitly, and the necessity for the
event list disappears. In section 3, we consider the problem of simulating a long run of a first
in, first out (FIFO) G/G/1 queue 6], using P processors. A simple algorithm is presented for
computing the arrival and departures times of the first N' jobs in time proportional to N/ P,
for large N. The algorithm does not rely on any regenerative properties of the queuc. We
propose similar methods to obtain similar speedups for acyclic fork-join queueing networks
(section 4.1), acyclic queueing networks (section 4.2), and series of queues with bounded
buffers (section 4.3). Moreover, we obtain new serial simulation methods for these networks,
which compare favorably with their event list counterparts. Some experimental results on
the efficiencies of the serial and parallel simulations of the G/G/1 queue are reported. In
the full paper, we will describe parallel simulation.algorithms for some queueing systems
subject to breakdowns or having multiple priority classes.

A key idea behind our simulation methods is to pose the simulation problem mathe-
matically using recurrence relations. When the recurrence relations are of a certain type,
the problem of solving them reduces to the parallel prefix problem [7]. By exploiting the
connection to parallel prefix, the recurrences can be solved quite efficiently in parallel (8, 9).
A second basic problem we face in the simulations is merging two sorted lists. Fortunately,

VL.2

this problem can also be solved efficiently on paralle] processors [10]. A simple, practical
parallel merge routine is described in the Appendix.

In the case of the G/G/1 queue, the recurrence relations define the sequences of arrival
and departure instants. For this simple system, if the object of interest is the waiting
time, it would also be possible to use Lindley's recurrences [G]. However, the latter do not
contain enough information to reconstruct the sample path, and do not generalize to other
systems. Recently, Baccelli and his coworkers have used recurrence relations in studies
of a variety of stochastic systems, including acyclic fork-join networks [11] and certain
generalized stochastic Petri nets [12]. In their work the recurrences serve as the starting
point for the study of ergodicity (stability) conditions and for the derivation of stochastic
orderings and bounds. Similar recurrences serve as the starting point for developing our
parallel simulations.

Chandy and Sherman [13] pointed out parallel simulations might be written that de-
couple the physical system being simulated from the parallel processor, and thereby achieve
speedups greater than the number of objects in the physical system. However, our methods
and results do not overlap with theirs. In [13], a general parallel relaxation method for
simulation was proposed. It could be that the simulation methods proposed here may be
fruitfully combined with relaxation to handle queueing systems where our methods are not
directly applicable.

All of the queueing systems considered here can viewed as if all (random) choices can
be made at the times that jobs arrive, without regard to the state the system happens to
be in. Specifically, a job’s route through the network and service demands along the route
do not depend on the disposition of other jobs in the network. It seems more difficult to
obtain simulations with massive parallelism if, for example, the routing depends on the
state the jobs see while in the network, as would be the case if routes are dynamically
adapted in response to congestion. Howevér, work in progress on simulating multiple access
protocols such as Aloha [14) suggests it may be possible to achieve very large speedups for
some systems where interactions between components are more complicated than considered
here.

2. Parallel Processing Model

We shall assume the following simple parallel machine setup:

e The number of processors P available for the computation is fixed, independently of
the parameters of the simulation problem.

o The processors share a common memory.

o There is a barrier synchronization mechanism; that is, 2 mechanism under program
control that delays the start of a computation until all P processors have completed
the previous computation. We shall use this mechanism sparingly.

These assumptions suit the Sequent Balance 21000, the machine available for our experi-
ments.

However, our parallel simulation methods are applicable on a wide variety of other
parallel architectures. The methods call on a small number of basic parallel processing

VI.3

3+

queue length 2

1,__ S

0

0 A A D, A; D,
time
Figure 1: Example sample path.

operations: linear recurrence computation, paralle] prefix computation, and parallel merg-
ing. These operations have been widely studied and programmed for a great variety of
architectures: including systolic arrays, hypercubes, butterflies, ultracomputers, meshes,
etc. [15).

3. The G/G/1 FIFO Queue

Consider the G/G/1 queue with interarrival times (a;);>1 and service times (§;)i>1. Let A;
denote the time the i*» job arrives and D; the time the i** job departs. Assuming the queue
operates FIFO, forall { > 1,

Ai = Aiar+a (3.1)
D, (Dic1 V Aj) + 6 (3.2)

Il

where Agp = Do = 0 and z V y denotes the maximum of z and y. Equation (3.1) restates
that the a; are the job interarrival times. Equation (3.2) states that the i** job starts
service either at time D;_; or at time A;, depending on whether the job sees a busy queue
on arrival or an idle one, respectively. The i'* job’s sojourn time is D; — A;. The queue
length trajectory or sample path is obtained by merging the sequences (A4;);>1 and (D;)i>1,
as shown in Figure 1. ' !

We pose the problem of simulating the G/G/1 queue as that of computing, for a given
integer N 2 1, the quantities (4;)1<i<n and (D;)1<cicn. We shall touch on the ancillary
problems of generating the random variables (aihicicn and (6)i1<icn, computing sojourn
time statistics, and computing queue length statistics.

n

VI.4

Recurrences (3.1) and (3.2) give a simple, efficient serial (one processor) simulation
method. Some results of experiments comparing the efficiency of this solution to that of
the conventional event list method [16] are reported below.

In our parallel solution, an efficiency /memory tradeoff leads us to organize the compu-
tation into batches. Let B > 1 be an integer parameter, which we assume for simplicity
divides N, the total number of jobs to simulate. First, we assign all P processors to simulate
the first B jobs, computing (A)1<i<p and (Di)icicp. Second, we assign all P processors
to simulate the next B jobs, computing (A;)B+1<i<2B and (Di)B+1<i<2B, and so forth. It
turns out the computation’s efficiency suffers if B is too small compared to the number
of processors P. To support the computation we need two vectors of memory locations of
length B which are successively overwritten with the 4;’s and D;’s of the current batch.

Let us consider the computation for the first batch. Succeeding batches are handled
similarly. The quantities (A;)1<i<B are the partial sums of the interarrival times (@i)i<i<B.
Computing these partial sums is a special case of the parallel prefix problem [7]. In the
following simple parallel solution [17], the processors are indexed k = 1, 2, ..., P, and
the batch of a’s is partitioned into portions of size m = [B/P] or smaller; the notation
a A b = min{a, b} is used.

1. In parallel, for each k = 1, 2, ..., P, let processor k compute the block of partial sums,
Al =ai+aic1+ ...+ apotyme

fori=(k=1ym+1,(k=1)m+2,...,(km)AB. If (k=1)m > B then processor k is
idle.

2. Compute the partial sums (see rema‘r!-: below),
A;:: im+AEk—l)m+"'+A:ﬂ’
fork =1, 2, ..., while km < B.

3. In parallel, for each k = 1, 2, ..., P, let processor k compute the block of final results,
Ai = A: + Az-ls

fori=(k-1ym+1,(k-1)ym+2,...,(km)A B. Here Aj = 0 by definition. Again,
if (k= 1)m > B then processor & is idle.

Phases 1 and 3 require order B/P time. Phase 2 can be carried out in order log, P time
using, for example, Stone’s recursive doubling method [18, 17], Alternatively, phase 2 can
be carried out in order P time using one processor. On machines (such as the one used in
our experiments) where the cost of barrier synchronizing between the three phases is order
P and P is small, there is nothing to gain by the log, P solution.

It remains to compute the departure times (D;)i<i<B. The key is to observe that (3.2)
is a linear recurrence in the semiring [19] on the real numbers where V is the addition
operator with identity —oo, and + is the multiplication operator with identity 0. For
example, verifying that multiplication distributes over addition, we have

a+(bve)=(a+b)V(a+ec)

VIS5

With the understanding that matrix multiplication is carried out in the (Vv,4) semiring

rewrite (3.2) as
Di - 6t' Aa' + 6: D{_1
[0]‘[_00 0][0 l (3:3)

a matrix linear recurrence [9, 8]. The computation of (D;)i1<i<p may be handled similarly
to that of (Ai)i<i<B, except that the partial sums are replaced by the partial products of
the 2 x 2 matrices that arise in (3.3). We shall call on the identities,

7z i vl _ [atn (@twn)Va

ER B ey B
l T I2]_ly1] = [(11+91)V(1‘2+y2)]' (3.5)
-0 0 V2 Y2

Note that both products require two standard additions and one maximization.

Let M; denote the 2 x 2 matrix on the right hand side of (3.3), and again let m = [B/P].
The departure times (D;);1<i<p may be extracted from (vi)i<i<B Where

which in turn may be computed as follows.

1. In parallel, for each & = 1, 2, ..., P, let processor k compute via (3.4) the block of
partial products,
M{=M; -Mi_y-.... Mg_1)m41,

fori=(k-=1m+1,(k-=1)m+2,. ., (km)AB. If (k= 1)m > B then processor k is
idle.

2. Compute via (3.4) and (3.5),
Vi = M - M{i_1)m * My + V0, (3.6)
fork=1,2, ..., while km < B.
3. In parallel, for each k = 1, 2, ..., P, let processor k compute the block of final results,
¥ = M -ty

fori=(k-1)m+1,(k=1)m +2,...,(km)A B. Here vy = vo by definition. If
(k= 1)m > B then processor k is idle.

The time complexity is of the same order as in the computation of (A;)i1<i<p. The
matrices (M{)1<i<p consume an additional 2B memory locations; the second row of each
such matrix is [-o0o0 , 0], which need not be stored. An additional O(P) memory locations
supports the rest of the variables.

To summarize, the whole computation requires order

e P+ B memory locations,

VI.6
¢ B/P +log, P time.

Note that, for B > Plog, P, the algorithm processes B jobs in order B/P time, which is
optimal to within a constant factor.

Up to now we have assumed that the random variables (ai)i<icn and (6;)1<cicn were
given. In many applications, these are assumed to be independent and so can be generated
on the fly, on demand. Computation of sojourn-time statistics is easily added to phase 3
of the (D;)i<ic<ny computation. Just let each processor tally statistics for the D, that it
computes. At the end of the computation, combine the P tallies.

Given the (Ai)ici<p and (D;)i<i<p sequences, the sample path can be generated up
to time Ap. To compute the sample path, merge the two sequences up to that time. A
simple efficient parallel merge algorithm is described in the Appendix. The resulting merged
sequence, (.5;), implicitly determines a sequence of +1's and —1's marking the times when
the queue length jumps up one (A4;’s) and down one (D;’s). The partial sums of this £1
sequence give the queue lengths at the times of the jumps, and the differences between
successive S; give the times between jumps. With this information, queue length statistics
can be computed efficiently in parallel. Computing the partial sums of the £1 sequence is
vet another instance of the parallel prefix problem, and may be handled in the same way
as the computation of (A)i<i<p. Departures D; > Ap must be held in store until the
computation for the next batch.

Experiments

In our experiments, we chose the interarrival times (a;)1<i<n and service times (&)i<,<n
be families of independent, identically distributed uniform random variables. We relied on
the default random number generator supported by the machine, a Sun 3/260 for the serial
experiments and a Sequent Balance 21000 for the parallel experiments. In the parallel exper-
iments, each processor used a private copy of the generator initialized with a different seed.
(See [20] for a more sophisticated way to provide the processors with quasi-independent
random number streams.) In addition to computing (A4;)i<i<n and (D;)i<i<n, the average
sojourn time, 1/N TN (D, - A;), was tallied.

To contrast solving recurrences (3.1) and (3.2) to simulate the G/G/1 queue with the
conventional event list method, we coded both methods in the SIMULA language. SIMULA
provides convenient, low level support for the event list method. In all trials, the recurrence
mecthiod turned out to be at least twice faster than the event list metliod.

A code implementing the parallel G/G/1 simulation method was written in the C lan-
guage for the Sequent Balance 21000. As mentioned above, barrier synchronization takes
O(P) time on this machine, so we could perform phase 2 of the (A;)i1<i<n and (Dh<icn
computations serially in O(P) time without significantly further lessening efficiency. In
principle, the running time for simulating each batch of jobs should be on the order of
B/P + P, and so the total time taken should be on the order of (N/P)(1+ P?/B). That
is, the speedup should be linear with the slope increasing with B.

We carried out a series of experiments, varying the batch size B from 50 to 50000 and
the number of processors P from 2 to 16. In each experiment a total of N = 10° jobs were
simulated. Timing results are given in table 1. It is immediately clear that the algorithm is
inefficient for small B, becomes efficient (doubling the number of processors almost halves

VI.7

batch size | number processors
2 4 8 16
50 | 487 315 176 256

100 | 445 255 176 160
500 | 409 213 118 75
1000 | 405 207 109 64
5000 | 401 202 103 56
10000 [401 202 104 55
50000 | 407 208 109 59

Table 1: Parallel G/G/1 Simulation Results: The table gives the running times (in secs)
for the parallel simulation of N = 10° jobs, for a variety of batch sizes B and numbers of
processors P.

the running time) for moderate B, and then becomes slightly less efficient for larger B.

The initial inefficiency is explained by the cost of processor coordination on the Sequent,
a relatively coarse grained parallel processor. In our implementation the computation for
each batch uses six barrier synchronizations, one for each of the three phases of the compu-
tations for A; and D;. Moreover, the total number of barrier synchronizations is larger for
smaller values of B because the total number of batches to do, N/ B, is larger. An execution
profile revealed that even in efficient cases, such as B = 10° and P = 16, about 40% of a
processors time was taken by the systems fork/join mechanism, which we used for barrier
synchronization. About 10% was taken by random number generation, about 15% by the
actual (double precision) computation, and the rest by a variety of overheads, including
input and output. Efficiency dipped for very large B because of the added overhead in
dynamic memory allocation. This dip disappears in experiments where N, the number of
jobs simulated, is larger.

4., More Parallel Simulations

In this section we discuss parallel simulation methods for a variety of other queueing systems.

4.1. Acyclic Fork Join Networks

Acyclic fork-join (AFJ) queueing networks arise naturally in the performance analysis of
parallel processing and flexible manufacturing systems [11]. Indeed, the parallel processing
codes developed for this paper are simply and accurately modelled as AFJ networks. Queues
in series and series-parallel queueing networks are special cases of AFJ networks.

An acyclic fork-join network consists of an acyclic network of FIFO queues, which serves
a single stream of jobs whose interarrival times are given by the sequence (ay)n>1. An
example of an AFJ network is depicted in figure 2. There are V nodes, indexed i = 1, 2,
..y V, connected via a set of directed edges E. As the network is assumed to be acyclic, we
may label the nodes so that each edge (i,7) is such that j > i. If (¢, 7) is an edge, we say j
is a successor of i and i is a predecessor of j. Nodes are assigned to integer levels as follows.

VI.8

A node with no predecessors belongs to level 0. Any other node belongs to the level one
greater than the maximum level of its predecessors.

A single copy of each job visits each node; at node i the n'* job’s service requirement
is a random variable 8. There is a single arrival stream, determined by the sequence of
interarrival times (@,)n>;. On arrival, a copy of the n'h job is routed to each node at level 0.
The edges leading out of each node model a fork and those leading in model a join. At every
level except the last, after a node completes a job, a token for that job is routed to each of
the node’s successors. A copy of the job itself arrives to a given node instantaneously after
the node has collected a token for that job from each of its predecessors. At the last level,
no further work is propagated, though there is an implicit join. That is, a job’s departure
time from the whole system is the time that the last copy completes service at the last level.

More formally, let variables A} and D. denote the times that node i receives and
completes the processing of its n'* job, respectively. All nodes i at level 0 receive their n'*
job, for n > 1, at time ' 7

A} = Ap_y 4+ 0n, (4.1)

where Af = 0. For each node j at any level > 0, the n*" arrival coincides with the maximum
of the completion times of the n** job from each predecessor of node j: for n > 1,

Ai=\/ Dj. (4.2)
(i,7)eB

Since the nodes operate FIFQ, the variables D} ’s satisfy the same recurrence as before:
Di = (Di_, Vv A}) + 6, (4.3)

where D} = 0. Letting F denote the set o‘f nodes at the last level, the departure of the nt"
job, for n > 1, from the network as a whole occurs at time

B, =\ B, (4.4)
1eF

To simulate the network, we solve the recurrence relations as functions of the interarrival
times (ay;)n>1 and service times (6:',),121,15.-5‘/. This is straightforward to do serially: For
n = 1, 2, 3,... compute the variables describing the course of the nth job starting at level 0
and increasing level by level, using the results of the computation for the (n — 1)* job.

Tlie parallel computation may be organized in a variety of ways, the simplest of which
is to step through the network level by level, processing the nodes one by one at the current
level, using the G/G/1 parallel simulation method. Specifically, let us compute arrival and
departure times in batches of nominal size B. The time and memory required will each
be on the order of V times that needed used to simulate the G/G/1 queue as described in
section 3. Thus, for large B, the time requirement becomes optimal, order V. B/P, at the
cost of a memory requirement of V. B. As will be clear, by exploiting the special structure
of the network, sometimes the memory requirement can be much reduced. For example, if
the network is a series of queues, just order B memory is needed.

In brief, the computation for the first batch may be performed as follows. Let K be the
maximum level, and let Fy, 0 < k < K denote the set of nodes at level k. Assign all P
processors to:

VI.9

Figure 2: An acyclic fork-join queueing network.

1. Compute the arrivals (Aq)1<n<p as in the computation of the G/G/1 queue. This
determines the arrivals (A})1<n<p for nodes icFo.

2. For k =1, 2, ..., K, and for each node 7 at level k£ compute (AL)ISHSB via (4.2).
(If several nodes at level k have the same subset of nodes as their predecessors, the
corresponding sequence of arrival instants needs to be computed only once.) Then
compute (D;)IS"%SB via (4.3) as in the computation for the G/G/1 queue.

3. Compute the departure times (Dy)1<n<B Via (4.4).

4.2. Acyclic FIFO Queueing Networks

In this section we consider acyclic queueing networks, of the usual (not fork-join) type,
where jobs arrive at arbitrary nodes, follew arbitrary paths in the network, and then de-
part. Viewed separately, each node operates as a G/G/1 queue. We focus on networks
of degree two—each node has at most two edges leading in and at most two leading out.
The discussion easily generalizes to higher degree networks, though the time and memory
needed for simulation increases with the degree.

There may be several classes of jobs, where each class has its own probabilistic routing
rule controlling the choices of paths through the network. The routing rule is assumed to
be state independent or oblivious, meaning that a job’s route is a random function only
of its class and index in the arrival sequence for that class. Unlike the fork-join networks
of section 4.1, overtaking is possible. Jobs that arrive and depart from the same node but
follow different paths may depart in a different order than the order in which they arrive.

Some important examples of acyclic queueing networks of this type are the networks
used for routing in high speed switches and in parallel computers, such as the various
Banyon networks [21, 22]. Figure 3 depicts an example of a three node acyclic network,
which albeit simple, exhibits splitting and merging of job streams, and the possibility of
overtaking. The nodes are labeled X, Y, and Z. We assume that there are two arrival
class, determined by two sequences of random interarrival times. One class consists of jobs
that enter at ¥ and follow the path Y Z. The other class consists of jobs that enter at X
and follow either the path XY Z or the path X Z; a job in this class takes the former path
independently with probability p and the later with probability 1 — p. We shall return to
this example (specifying it further) below.

VI.10

Now, consider a single node in an acyclic network, with two incoming edges, labeled i
and j and two outgoing edges, labeled u and v, as shown in figure 4. Assume that each job
carries the information whether it is to be routed out along u or along v. Let

o (Al)n>1 and (Af,)nzj denote the sequences of arrivals of jobs along edges 7 and j,

¢ (An)n>1 and (Dy)n>1 the sequence of arrivals of jobs as seen by the node in question
and the corresponding sequence of departures, and

o (Dy)np1 and (D})n> the subsequences of (Dp)n>1 of jobs routed along u and v.

Simulation of the job flow through this node can be done in three steps: merge, solve,
split. The arrival sequence (A,)n>1 is the merge of (A;)n_;:l and (A'j;)nZ‘.l- Given (A;)n>1,
solving the G/G/1 recurrence (3.2) provides (Dy)n>1. With (Dy)s>1 in hand, we can split
off the subsequences (D!),>1 and (D%)n>1. It is straightforward to carry out these three
step procedure serially, and to devise an efficient serial network simulation algorithm based
on such a procedure.

Our ideas for a comparable parallel method are:

o Use a parallel merge procedure to form (An)n>1.
¢ Use the parallel method for solving a single G/G/1 queue to compute (Dy)n>1-

e Use a parallel enumerate/pack procedure (described below) to split out the subse-
quences (D})n>1 and (D})n>1-

Efficient parallel merging algorithms are known [10]. A simple, efficient parallel merging
procedure appropriate for our purposes is described in the Appendix. Of course, we have
already discussed the parallel computation of the job departure times for a G/G/1 queue.
An enumerate/pack procedure takes as input a vector composed of two sequences, and
produces as output two vectors holding the two subsequences separately. Splitting out
the two subsequences may be accomplished by the following parallel “enumerate/pack”
procedure. Suppose the jobs in the (Dyn)n>1 sequence are held in the machine’s memory in
a buffer. Consider the jobs to be routed along edge u as marked 1 and those to be routed
along edge v as unmarked. Use segmented parallel prefix computation (a simple variant
of the original method, where unmarked inputs are skipped over) to determine the partial
sums of this sequence and, for each 1 > 1, put the i** job into the i** slot of a memory
buffer allocated for the subsequence (DY)n>1. Reversing the ordering and applying the
same method provides the jobs in (DY)n>; in another buffer.

To adapt these ideas to produce a realizable simulation method, we must deal with
memory limitations. In this paper we propose a very simple parallel method similar to the
method described in section 4.1 for AFJ networks. At a high level the idea is, as before,
to work in iterations, first generating a batch of new arrivals for each class of jobs, and
then pushing (most of) those arrivals through the network, level by level, node by node
using parallel merge, solve, split routines at each node. Efficiency is gained by the parallel
processing of large numbers of jobs per iteration. Though the method is adequate for small
networks, it is rather wasteful of memory so more sophisticated methods (currently under
investigation) are needed for large networks. We shall illustrate the method by giving the
details for the three node example of Figure 3.

VI.11

Returning to this example, let us suppose that the long term arrival rates of the two job
classes are known: Ax for the class entering the network at node X and Ay for the other.
A job is represented as a record, with fields to hold the arrival time to the network (needed
to tally sojourn times), the arrival time to the current node, and the departure time from
the current node. The computation is organized in batches of nominal size B. We shall use
several vectors of job records as buffers associated with the edges of the network:

¢ buffer Jy of size B[Ax/(Ax + Ay)] associated with the edge leading into X',
¢ buffer Jy of size B[Ay /(Ax 4+ Ay)] associated with the edge leading into Y, and

e buffers Jxy, Jxz, Jyz, and Jz, each of size B, associated with the edges X'}, X Z,
Y Z, and the edge leading out of Z.

At each iteration, these vectors will be overwritten. At most B jobs will be processed per
iteration. The sizes of buffers Jx and Jy were chosen taking into account the arrival rates
for the two job classes, so that, for large B, the number processed will be close to B. It is
not crucial that each of the other buffers be large enough to hold all B jobs, but it makes
the algorithm simpler.

The first iteration proceeds as follows.

1. (Generate Arrivals) Fill buffers Jx and Jy with jobs by solving the G/G/1 recurrence
(3.1) using the appropriate interarrival times. Let f be the minimum of the arrival
time of the last job in Jy and the arrival time of the last job in Jy. All jobs with
arrival time < f shall be processed in this iteration; the others are held back for the
next iteration and are not considered further in this iteration.

2. (Process Node X) Solve the G/G/1'recurrence (3.2) to compute the departure times
for the jobs in Jy. Toss a coin with bias p for each job in Jy to determine whether it
takes the edge to Y or the edge to Z, and use the enumerate/pack procedure to split
out the two resulting job streams into buffers Jxy and Jyz, sorted by their departure
times from node X.

3. (Process Node Y') Merge the jobs in Jxy (keying on the departure times from X)
with the jobs in Jy (keying on the arrival times to Y'), storing the resulting sequence
in buffer Jyz. Solve the G/G/1 recurrence (3.2) for these jobs to compute their
departure times from node Y.

4. (Process Node Z) Merge the jobs in Jyz with those in Jxz (keying on the newly
computed departure times), and store the result in Jz. Compute the departure times
for these jobs, and tally network sojourn times.

At any subsequent iteration, the only additional problem is including the jobs left over
from the previous iteration in one of the buffers Jx or Jy. A simple solution is to manage
those buffers circularly so that, without any special bookkeeping, each can be filled to
capacity at each iteration. We chose the sizes of buffers Jy and Jy taking into account the
arrival rates for the two job classes, so that about B jobs on average should be processed
per iteration.

We are developing serial and parallel simulation codes for this example network. Pre-
liminary results tell the same basic story as that for the G/G/1 simulation codes.

VI.12

X VA
Figure 3: An acyclic queueing network.

i\—
gl e v

Figure 4: One node in an acyclic queueing network.

4.3. FIFO Queues in Series with Bounded Buffers

In this section, we treat series of queues with bounded buffers, motivated mainly by the
study of production lines [23]. An example of four queues in series is depicted in Figure
5. The k'* server serves the k** buffer in FIFO order, eventually forwarding the jobs to
the (k 4 1)** buffer. This server may block (stop working) if, in particular, the k** buffer
is empty or the (k + 1)** buffer is full. Several specific blocking rules can be modelled; for
concreteness, we consider only transfer blocking and minimal blocking [23].

Assume that there are K queueing stations, indexed k =1, 2, ..., K'. Station k consists
of a FIFO server and a buffer with finite capacity Cx > 1. An infinite buffer precedes station
1 and acts as the source for jobs. An infinite buffer follows station K and acts as the sink
for jobs. We label these two infinite buffers 0 and K + 1 respectively. In a moment, we will
define transfer blocking and a corresponding system of recurrences, describing the system’s
sample path. We will then do the same for minimal blocking. It turns out, once again, that
the recurrences are linear in the (V, 4) semiring, but are higher order than the recurrences
for the G/G/1 queue. The order increases with the number of queues and the maximum
buffer size.

1 2 3 4

=T @ Nl ¢ Tl @ N @ N
00 (o)) C; Cs Cy 00

Figure 5: Four queues in series

VI.13

Transfer Blocking

Under the transfer blocking rule, the server at each station & continuously attempts to serve
jobs from buffer &, blocking if buffer k is empty or buffer £+ 1 is full. Specifically, after each
service completion, if buffer k+1 is not full, then the newly completed job is instantaneously
transferred to buffer k 4+ 1. Otherwise, the server is blocked until the instant a slot opens
in buffer k + 1, at which point the job is instantaneously transferred.

Let us define variables A‘ri, &k, and T,’f, referring to the n'* job handled at station k, as
the time the job arrives to the buffer, the service time requirement at this station, and the
time service is completed at this station, respectively, for n = 1, 2, ..., and £ = 1, 2, ...,
K. The following recurrences [23] determine these variables (and thereby the entire sample

path):

Af:+1 = T:—:ll v Aﬁii—ck (4.5)
T:+1 = (Ai+l & Aﬁ“) F 6:—}-1) (4.6)

where by definition 79 = 0 and AK+! = TX. Equation (4.5) states that the (n + 1)** job
arrives at station k when either the job is completed at the preceding station (if station &
is unblocked at that time), or when the (n+ 1 — C)** job arrives to the next station. The
justification of (4.6) is that the (n+1)*" job goes into service at station k either the moment
the job arrives (if the server is free at that moment), or the moment the n** job moves to
the next buffer.

Substituting (4.6) into (4.5), we are led to
Afpr = (A1 + 83D V(A + 8233) V ARt o, (47)

Upon solving (4.7) for the AX’s, substituting into (4.6) gives the Tx’s. To solve (4.7) we
require an ordering of index pairs that puts (n + 1,k) higher in the order than the indices
(n, k), (n+1,k=1),and (n+1-Ck,k+1) appearing on the right hand side of (4.7). A little
thought leads to the pairing function J(n,k) that achieves the desired effect economically
by ordering index pairs along diagonals as illustrated in Table 2. Moreover, J(n, k) is easily
computable. Under this ordering, (4.7) becomes a linear recurrence in the (V, +) semiring,
of order M < KC,,,, where Cpror = C1 V...V Ck is the maximum buffer capacity. That
is, the i** term in the recurrence depends only on terms ¢t — 1, ¢ —2, ..., { — M.

Minimal Blocking

Minimal blocking uncouples serving jobs from transferring jobs between buffers and thereby
achieves higher throughput [23]. Whereas under transfer blocking, the buffer at station k
holds only jobs awaiting service at this station, under minimal blocking the buffer may also
hold jobs that have already completed service at this station. Completed jobs are held until
slots open up in the next buffer. Specifically, if after a service completion at station k buffer
k + 1 is full, then the job remains in buffer k. However, server k is set to work on the next
uncompleted job in its buffer, if there is one. The instant a slot opens up in buffer k+1, the
oldest completed job present at station k is transferred to fill the slot, without interrupting
the server at station k.

Under minimal blocking, the recurrence relation for completion times becomes

Th = (Af s vIE) 4 8,4, (4.8)

n k

1 2 3 4 5
1 1 2 4 7 11
2|1 3 5 8 12 16
3| 6 9 13 17 21
410 14 18 22 26
5115 19 23 27 31
6

20 24 28 32 36

Table 2: Pairing function J(n,k),for K =5,1 <k < K, and n > 1.

and the recurrence relation for AX is unchanged. The justification for (4.8) is that service
for job n + 1 starts either the moment the job arrives (if the server is idle at that moment),
or the moment the previous job completes service at this station.

The two recurrences are now interdependent so one set of terms cannot be eliminated
by substituting one equation in the other as we did for transfer blocking. However, using
the pairing function J(n,k) to totally order the terms of each recurrence and applying a
standard transformation, we can obtain a single linear recurrence of order about 24 Cy,az,
which determines both the A’s and the D’s.

Simulation

It is straightforward to solve the recurrences serially, following the order J(n, k) depicted
in Table 2. This gives a simple, efficient serial simulation method.

To obtain a comparable parallel method, we need only a fast parallel method for solving
M1 order linear recurrences. As in section 3, where we described an algorithm for first order
recurrences, this problem can be reduced to solving a first order linear matrix recurrence
(8]. Adapting the algorithm of [8], the first N terms of such a recurrence can be computed
using P processors in time proportional to

NMw-1

I
where w is the exponent of the matrix multiplication algorithm used: w = 3 for the standard
algorithm, w = 2.81 for Strassen’s algorithm. Once again, to limit the memory locations

needed to a nominal number O(B), the computation can be organized in N/B iterations,
where B terms of the recurrence are computed in each.

+ MY

5. FINAL REMARKS

Posing simulation problems using recurrence relations opens up possibilities for new ap-
proaches to proving that some systems cannot be simulated with a high degree of paral-
lelism. For example, Kung [24] has shown that in general a recurrence of algebraic degree
> 1 can be sped up by at most a constant factor, regardless of how many processors are

VI.15

available. Working backwards, if one can show that simulating a given discrete event system
solves a hard recurrence in the sense of [24], then there can be no efficient parallel simulation
of that system.

APPENDIX

In this section we sketch a simple, practical parallel method for merging a sorted list of
length N with another of length M, in time proportional to (N + M)/P +log,(N + M). In
our applications, we can often control N and M so that the maximum of the two is as large
as we like, and the log,(N + M) term is swamped. We are grateful to Andrew Odlyzko for
proposing the method.

Suppose the input lists are presented as vectors A and B of N and Af locations re-
spectively, sorted in increasing order. Assume for simplicity that all elements of the two
lists are distinct. A vector F of N 4 Af locations is to hold the merge of A and B, also
sorted in increasing order. Let m = [(N + M)/P]. The key observation is that given the
P percentiles of F,

F[m], F(2m], F[3m], ..., F[Pm A (N + M)],

it remains only to carry out P independent, standard serial merges of sublists of A and B
filling in the < m elements between percentiles. In brief,

1. In parallel, for each k = 1,2, ..., P, let processor k determine f = F[(km)A (N + A)],
and determine the indices of the largest elements of A and B that are < f.

2. In parallel, for each k =1, 2, ..., P, let processor k fill in
Fl(k=1)m +1),F[(Kk-1)m+ 2],..., F[km A (N + M)]
using the information computed in step 1.

Step 2 is carried out in time proportional to m, via the standard serial merge procedure.
A little thought shows that the task of each processor k at step 1 is essentially the same as
that of searching two sorted lists of equal length j for the j** largest element in the merge of
the two lists, which can be done via a binary search method in time proportional to log, j.
The time for step 1 is proportional to log,(N + M).

VI.16

References

(1] K.M. Chandy and J. Misra. Distributed simulation: a case study in design and verifi-
cation of distributed programs. IEEE Transactions on Software Engineering, SL-5(5),
1979.

(2] B.D. Lubachevsky. Efficient distributed event-driven simulation of multiple-loop net-
works. Communications of the ACM, 32(1):111, January 1989,

[3] J. Misra. Distributed-discrete event simulation. ACM Computing Surveys, 18(1):39-66,
March 1986. ’

[4] D.M. Nichol. Parallel discrete-event simulation of fcfs queueing networks. In Parallel
Programming: Ezperience with Applications, Languages, and Systems, pages 124-137.
ACM SIGPLAN, July 1988.

[5] D.B. Wagner and E.D. Lazowska. Parallel simulation of queueing networks: Limitations
and potentials. In 71989 ACM Sigmetrics and Performance Evaluation Review and Per-
formance ’89, International Conference on Measurement and Modelling of Computer
Systems (sponsored by ACM Sigmetrics and IFIP W.G. 7.8), special issue 17,1, pages
146-155. ACM Press, May 1989.

(6] L. Kleinrock. Queueing Systems, Volume 1. Wiley, 1975.

[7] R.E. Ladner and M.J. Fischer. Parallel prefix computation. Journal of the ACM,
27:831-838, 1980.

(8] A.G. Greenberg, R.E. Ladner, M. Paterson, and Z. Galil. Efficient parallel algorithms
for linear recurrence computation. Information Processing Letters, 15(1):31-35, August
1982.

(9] L. Hyafil and H.T. Kung. The complexity of parallel evaluation of recurrences. Journal
of the ACM, 24:513-521, 1977.

[10] C.P. Kruskal. Searching, merging, and sorting in parallel computation. /EEE Trans-
actions on Computers, TC-32:942-946, 1983.

[11] F. Baccelli, W. Massey, and D. Towsley. Acyclic fork-join queueing networks. Journal
of the ACM, 36(3):615-642, July 1989.

[12] F. Baccelli. Ergodic theory of stochastic petri nets. Technical Report 1037, INRIA-
Sophia Antipolis, INRIA-Sophia 06565 Valbonne, France, May 1989.

[13] K.M. Chandy and B. Sherman. The conditional event approach to distributed simula-
tion. In Distributed Simulation 1989. The Society for Computer Simulation, 1989.

[14] N. Abrahamson. Development of the alohanet. IEEE Transactions on Information
Theory, IT-31(2):119-123, March 1985.

[15] T. Leighton. An introduction to the theory of networks, parallel computation and vlsi
design, 1989. draft.

(16] I. Mitrani. Simulation Techniques for Discrete Event Systems. Cambridge University
Press, 1982.

YL.37

[17) C. P. Kruskal, L. Rudolph, and M. Snir. The power of parallel prefix. IEEE Transac-
tions on Computers, C-34(10), October 1985.

[18) A.G. Greenberg and B.D. Lubachevsky. A simple efficient paralle] prefix algorithm. In
1987 International Conference on Parallel Processing, pages 66-69, 1987.

[19] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer Algorithms.
Addison Wesley, 1974,

[20] O.E. Percus and M.H. Kalos. Random number generation for mimd parallel processors.
Journal of Parallel and Distributed Computing, 6(3):477-498, June 1989,

[21] T.Y. Feng. A survey of interconnection networks. Computer, 14:12-27, 1981.

[22] H.J. Siegel, W. Nation, C.P. Kruskal, and L.M. Napolitano. Uses of the multistage
cube network topology. to appear in the Proceedings of the IEEE, 1989.

[23] D. Mitra and I. Mitrani. Control and coordination policies for systems with buffers.
In 1989 ACM Sigmetrics and Performance Evaluation Review and Performance 89,
International Conference on Measurement and Modelling of Computer Systems (spon-
sored by ACM Sigmetrics and IFIP W.G. 7.8), spectal issue 17,1, pages 156-164. ACM
Press, May 1989.

[24] H.T. Kung. New algorithms and lower bounds for the parallel evaluation of certain
rational expressions. In 6th Annual ACM Symposium on Theory of Computing, pages
323-333. ACM, 1974.

VI.18

VI.19

DISCUSSION

Rapporteur: Rogério de Lemos

Professor Henderson asked what were the implications that storage had, for
example in a computation involving 1016 jobs. Dr Mitrani replied that as far as
shared memory architectures were concerned memory had no effects as all the
grocessors accessed the same memory, and that simulation was carried out in

atches. Dr Mitrani went on to say that in such shared memory systems only the
batch size could influence the required memory size.

Mr Kerr asked if such simulation method could be used in a system like a toll
gate with the purpose to obtain, for example the number of cars of a certain
type that pass the gate. Dr Mitrani replied by saying that once the different
classes of vehicles were defined, then there would not exist any restriction in
using the method.

Professor Randell pointed out that special machines have been built for
simulation, and asked if the simulation method presented could be an
alternative to those machines. Dr Mitrani answered that the method could not
be applied to all kind of problems, for example logic simulation; its application
is restricted to those considered in the lecture, such as the problems where the
jobs arrival times and departure times are related. Professor Randell also asked
if there were other types of architectures, apart from the shared memory
systems where this method could be applied. Dr Mitrani answered that a large
simulations have been realized on a connection machine, but, at the moment,
he had no measures to show.

VI.20

