
VI

EXPLOITING PARALLELISM IN SIMULATIONS

I MITRANI

Rapporteur: R de Lemos

...

I
i

I

'1

....

1. lntrod uction

....

VLI

ExploItIn g ParallelIsm In SImulatIons

Albert G. Greenberg
AT&T Bell La boratories

Murray Hi U, NJ 07974, USA

lsi Mitrani
llni,·ers ity of Newcastle upon Tyne

l'iewcastle upon Tyne, l\El 7RU , l'!,

Boris D. Lu bachevsky
AT&T BeU Laborat ories

~! u rra)' HiU, l\ J 07974, USA

The simulation of a discrete el·ent system is traditionally regarded as the process of generat
ing an operation pat h that represents the system state as a function of time . This normally
entails the use of a global clock and an event list. In the last few years, much effort has
been devoted to the task of splitt ing the simulation process into a number of sub-processes
and executing the latter in parallel on different processors [1,2 , 3,4,5). For example, when
simulating a queueing network , the ide~,might be to allocate each processor to a node,
or a group of nodes, and let it handle ' the corresponding events, taking care of possible
interactions with other processors. At best, the degree of parallelism obtained by such an
approach will be equal to the number of nodes, and in general may be much smaller [4, 5J.

We propose new methods that do not limit the degree of parallelism in thi s way. The
concepts of "time" and "event" are no longer present explicitly, and the necessity for the
event list disappears. In section 3, we consider the problem of simulating a long run of a first
in, first out (FIFO) G/G/I queue [6J, using P processors . A simple algorithm is presented for
computing the arrival and departures times of the first 11' jobs in time proportional to 11'/ P,
for large 11'. The algorithm do<~ not rely on any regenHatil'e properties of ti, e qUEue \Ye
propose similar methods to obtain similar speedups for acyclic fork-join queueing networks
(section 4.1), acyclic queueing networks (section 4.2), and series of queues with bounded
buffe" (eection 4.3). Moreover, W'e obtain new serial simulation methods for these networks,
which compare favorably with their event list counterparts. Some experimental results on
the efficiencies of the Ielial and parallel limulationl of the G/G/I queue are reported . In
the full paper, we will describe parallel simulation algorithms for lOme queueing systems
subject to breakdowns or having multiple priority clasae •.

A key idea behlnd our simulation methods is to pose the simulation problem mathe
matically using recurrence relations. "'hen the recurrence relations are of a certain type,
the problem of solving them reduces to the parallel prefix problem [7). By exploiting the
connection to parallel prefix, the recurrences can be solved quite efficiently in parallel [8, 9J.
A second basic problem we face in the simulations is merging two IOrted lists_ Fortunately,

=

VI. 2

this problem can also be sol\'ed efficiently Oil parallel processors [J OJ. A simple, practical
parallel merge routine is described in the Appendix.

In th e case of th e G/G / I queue, the recurrence relations define the sequences of arrival
and departure instants. For this simple system, if the object of interest is the waiting
time, it would also be possible to use Lindley's recurrences [OJ. However, the la tter do not
contain enough information to reconstruct the sample path, and do not generalize to other
systems. Recently, Baccelli and his coworkers have used recurrence relations in studies
of a variety of stochastic systems, including acyclic fork.join networks [11 J and certain
generalized stochastic Petri nets [12J. In their work the recurrences serve as the starting
point for the study of ergodicity (stability) conditions and for th'e derivation of stochastic
orderings and bounds . Similar recurrences serve as the starting point for de\'eloping our
parallel simulations.

Chandy and Sherman [13J pointed out parallel simulat ions might be written that de·
co uple the physical system being simulated from the parallel processor, and thereby achieve
speedups greater t han the number of objects in the physical system. However , our methods
and results do not overlap with theirs. In [13J , a general parallel relaxation meth od for
simulation was proposed. It could be that the simulation methods proposed here may be
fruitfully combined with relaxation to handle queueing systems where our methods are not
directly applicable.

All of the queueing systems considered here can viewed as if all (random) choices can
be made at the times that jobs arrive, without regard to the state the system happens to
be in. Specifically, a job's route through the network and service demands along the route
do not depend on the disposition of other jobs in the network . It seems more difficult to
obtain simulations with massive parallelism if, for example, the routing depends on the
state the jobs see while in the network, as would be the case if routes are dynamicall y
adapted in response to congestion. However , work in progress on simulating multiple access
protocols such as Aloha [14) suggests it may be possible to a.chieve very large speedups fo r
some systems where interactions between components are more complicated than considered
here.

2. Parallel Processing Modlll

We shall assume the following simple parallel machine setup:

• The number of processors P available for the computation is fixed, independently of
the parameters of the simulation problem.

• Th. proceason share a common memory.

• TheN ia a barrier synchronization mechanism; that is, a mechanism under program
control that delays the start of a computation until all P processors have completed
the previous computation. We shall use this mechanism sparingly.

These assumptions suit the Sequent Balance 21000, the machine available for our experi
ments.

However, our parallel simulation methods are applicable on a wide variety of other
parallel architectures. The methods call on a small number of basic parallel processing

Vr.3

3

queue length 2

1

o O),----t---.---,.,----;r3-------,rr2- ...

time

Figure 1: Example sample path.

operations: linear recurrence computation, parallel prefix computation, and parallel merg
ing. These operations have been widely studied and programmed for a great variety of
architectures: including systolic arrays, hypercubes, butterflies , ultracomputers, meshes,
etc. [15J . ,.

3 . The G/G/1 FIFO Queue

Consider the G /G/l queue with interarrival times (G;);>1 and service times (c;);> I. Let A;
denote the time the i,h job arrives and D; the time the iih job departs. Assuming-the queue
operates FIFO, for all i ~ 1,

A; = A;_I + G;

D, (D;_I V A;) + 0;

where Ao = Do = 0 and", V y denotes the maximum of", and y. Equation (3.1) restates
that the CIt are the job interarrival times. Equation (3.2) states that the i,h job starts
service either at time Di_1 or at time Ai , depending on whether the job sees a busy queue
on arrival or an idle one, respectively. The i,h job's sojourn time is Di - Ai. The queue
length trajectory or sample path is obtained by merging the sequences (Ai)i>t and (D;);>1o
as shown in Figure 1. - -

We pose the problem of simulating the G/G/l queue as that of computing, for a given
integer N ~ 1, the quantities (A;h<i<N and (Dih<i<N. We shall touch on the ancillary
problems of generating the random ~ariables (Gih<7<;" and (C;!t<i<N, computing sojourn
time statistics, and computing queue length statistic;. - -

VI. 4

Recu rrences (3, 1) an d (3,2) give a simple, efficient seria l (one processor) simulation
method , Some resul ts of experime nts compari ng t he effi ciency of t his solution t o t hat of
t he conventional event list met hod [lGJ are reported below,

In our parallel solution, an efficiency / memory tradeoff leads us to organize the compu·
tat ion in to batches, Let B <: 1 be an integer parameter, which we assume for simplicity
divides /1', the total num ber of jobs t o simulate, First, we assign all P processors to simulat e
t he fir st B jobs , compu ting (Aih<i< B and (Di) l <i<B' Second , we assign all P processors
t o simulate t he next B jobs, com puting (Ai)B+ l ;i;2B and (D, lB+ l <i<2B, and so forth, It
turns out t he compu t ation 's efficiency suffers if-Ii is too small co~pared t o t he number
of p rocessors p, To support th e com putat ion we need two vec tors of memory locations of
length B which are successively overwritten with the Ao's an d Do's of the current batch ,

Let us consider t he compu tation for the fi rst batch, Succeeding batches a re handled
similarly, The quantit ies (Aih <i<B are the partial sum s of t h. in tera rrival times (a ih<i<B ,
Comput ing these parti al sums- i; a special case of the parallel prefix problem [7J, I~ the
following simple parallel solution [17J , th e processors are indexed k' = 1, 2, .'" P, an d
t he batch of a's is pa rt it ioned into portions of size m = r B / Pl or smaller ; t he notat ion
a /I b = min { a, b} is used.

1. In parallel, for each I; = 1, 2, "., P, let processor I; compute t he block of partial sums,

Ai = Qi + Q i-l + ,., + O (k _ l)m+I '

for i = (k -1)m + 1,U- - l)m + 2" .. ,(I;m) /I B . If (k - l)m ~ B then processor I; is
idle.

2, Compute t he partial sums (see remark below), ,

A~ = A~m + A(k_l)m + ... + A:",

for k = 1,2, ... , while km < B.

3. In parallel, for each k = 1, 2, .'" P, let processor k compute the block of final results,

Ai = Ai + A~_l'
for i = (k - l)m + 1, (I; - l)m + 2, ... , (I;m) /I B . Here Ao = 0 by defini t ion, Again .
if (k - l)m ~ B then processor k is idle ,

Ph_ 1 and 3 require order B / P time. Phase 2 can be carried out in order log2 P time
using, for example, Stone's recursive doubling method [18, 17], Alternatively, phase 2 can
be carried out in order P time using one processor. On 'machines (such as the one used in
our experiments) where the cost of barrier synchronizing between the three phases is order
P and P is small, there is nothing to gain by the log2 P solution.

It remains to compute the departure times (D;ltS;SB ' The key is to observe that (3.2)
is a linear recurrence in the semiring [19] on the real numbers where V is the addition
operator with identity -00, and + is the multiplication operator with identity O. For
example, verifying that multiplication dis t ributes over addition, we have

a + (b V c) = (a + b) V (a + c) .

VI. 5

With the understanding th al matrix multiplication is carried out III the (v, +) semiring
rewri te (3.2) as

(3.3)

a matrix li near recurrence [9, 8J. The computation of (Dih~i~B may be handled simila rl)·
to that of (Aih<i<B , except tha t the partial sums are repl aced 'by the partial produ cts of
the 2 X 2 matric~s- that arise in (3.3). We shall call on the identities,

[
Xl

-00 X~] . [!~ ~]
[_X~ X02]. [~:]

= [
Xl + Yl (X l + Y2) V X2]

-00 ' 0

= [(X l + yil ~ (xd Y2)] .

Note that both products require two standard additions and one maximization .

(3.4)

(3.5)

Let Mi denote the 2 x 2 matrix on the right hand side of (3.3), and again let m = r B / Pl.
The departure times (D;)I~iSB may be ext racted from (vih~i~B where

which in turn may be computed as follows.

1. In parallel, for each k = 1,2 , ... , P, let processor k compute via (3.4) the block of
partial products,

M: = Mi' Mi_l M (k _l)m+l ,

for i = (k - I)m+ I, (k - I)m + 2, .,.'. , (km)1I B. If (k - I)m ~ B then processor k is
idle.

2. Compute via (3.4) and (3.5) ,

Vk = M~m . Mik- l)m . M:'" . va, (3 .6)

for k = I , 2, .. . , while km < B.

3 . In parallel, for each k = 1. 2 P . let processor k compute the block of final results ,

for i = (k - I)m + I , (k - I)m + 2, . .. , (km) II B. Here v~ = va by definition. If
(k - lim ~ B then processor k is idle.

The time complexity is of the lame order as in the computation of (Aih«<B. The
matrices (Mih«<B consume an &dditional 2B memory locations; the second r~; of each
such matrix is r:-~ , OJ, which need not be stored. An additional O(P) memory locations
supports the rest of the variable..

To summarize, the whole computation requires order

• P + B memory locations.

VI.6

Note that , for B > Plog2 P, th e algorithm processes B jobs in order BIP time, whid is
optimal to within a constant fact.or.

Up to now we have assumed that the rand om "ariables (O;)l<i<N and (b;)l<;<'" were
given. In many applications, these are assumed to be independent-a'itd so can be -generated
on the fly, on demand . Computation of sojourn-time stat istics is easily added to phase 3
of the (D ;)l<;<N computation. Just let each processor tally statisti cs for th e D, tli at it
computes. At the end of th e computation, combine the P tallies.

Given the (A;)l$;$B and (D;)l$;$B sequences , the sample path can be generated up
t o time AB. To compute th e sample path, merge th e two sequences up to that time. A
simple efficient parallel merge algorithm is described in the Appendix. The res ulti ng merged
sequence, (5;), implicitly determines a sequence of + I's and -I's marking the ti mes when
t he qu eue length jumps up one (A;'s) and down one (D; 's). The partial sums of t hi s ± I
sequence give the queue lengths at the ti mes of the jumps, and the differences between
successive 5; give the times between jumps. Wi t h this information , queue lengt h statist ics
can be computed efficiently in parallel. Computing the partial sums of the ± J sequence is
yet another instance of the parallel prefix problem, and may be handled in the same way
as the computation of (A;)l$;$B. Departu res D; > AB must be held in store until th e
computation for the next batch.

Experiments

In our experiments , we chose the interarrival times (O;)l<;<N and service times U,) I<,<N
be families of independent , identically distributed unifor~ ;andom variables. We relied -on
the defaul t random number generator sUl?ported by the machine, a Sun 3/ 260 for th e serial
experiments and a Sequent Balance 21000 for the parallel experiments. In the parall el exper
iments , each processor used a private copy of the generator initialized with a differen t s{'('d.
(See [20J for a more sophisticated way to provide the processors with quasi·indepen dent
random number streams.) In addition to computing (A;)J<;<N and (D;)l<;<,\', tli e Her age

N - - - -
sojourn time , l i N L;=l(D; - A;), was tallied .

To contrast solving recurrences (3 .1) and (3.2) to simulate the GIGI I qu eue with the
conventional event list method, we coded both methods in the SIMULA language. S I~ll'LA

provides convenient , low level support for the event list method . In all trials, the re(u rren(e
n1ct1.0G turned out t o b€ o.t ko.6 ~ twi c.e fd ~ ltl 11.0.11 the ~\'ent li bt llI el li ou.

A code implementing the parallel GIGI I simulation method was written in the (' lan
guage for the Sequent Balance 21000. As mentioned above, barrier synchronization tlkes
O(P) time on this machine, so we could perform phase 2 of the (A;)J<;<N and (D, h <,<N
computations serially in O(P) time without significantly further les~eJting effi(i.n()'~ -In
principle, the running time for simulating each batch of jobs should be on t h. order of
B / P + P , and so the total time taken should be on the order of (N I P)(1 + pI / B) . Tba t
is, the speedup should be linear with the slope increasing with B.

We carried out a series of experiments, varying the batch size B from 50 to 50000 and
the number of processors P from 2 to 16. In each experiment a total of N = 10" johl .. ·.re
simulated. Timing results are given in table 1. It is immediately clear that tht' alll:0.it hm i.
inefficient for small B, becomes efficient (doubling the number of processors alm",t halv('5

VI. 7

ba t c1, size number processors
2 4 8 16

50 487 .315 176 256
100 445 255 176 160
500 409 213 118 75

1000 405 207 109 64
5000 401 202 103 56

10000 401 202 104 55
50000 40 7 208 109 59

Table 1: Parallel G/ G/ 1 Simulation Result s: The table gives the running times (in sees)
for the parallel simulation of .11' = 106 jobs, for a variety of batch sizes B and numbers of
processors P.

the running time) fo r moderate B, and then becomes slight ly less efficient for larger B.

The initial inefficiency is explained by the cost of processor coordination on the Sequent,
a relatively coarse grained parallel processor. In our implementation the computation for
each batch uses six barrier synchronizations, one for each of the three phases of the compu·
tations for Ai and Di . Moreover, the total number of barrier synchronizations is larger for
smaller values of B because the total nu mber of batches to do, 11'/ B , is larger. An execution
profile revealed that even in efficient cases, such as B = 105 and P = 16, about 40% of a
processors time was taken by the systems fork / join mechanism, which we used for barrier
synchronization. About 10% was taken by random number generation, about 15% by the
actual (double precision) computation, and the rest by a variety of overheads, including
input and output. Efficiency dipped for 'very large B because of the added overhead in
dynamic memory allocation. This dip di sappears in experiments where 11', the number of
jobs simulated, is larger.

4 . More Parallel Simulations

In this section we discuss parallel simulation methods for a variety of other queueing systems.

4.1. Acyclic Fork Join Net lmrks

Acyclic fork-join (AFJ) queueing networks arise naturally in the performance analysis of
parallel processing and flexible manufacturing systems [l1J . Indeed, the parallel processing
codes deVeloped for this paper are simply and a.ccurately modelled as AFJ networks. Queues
in series and series-parallel queueing networks are special cases of AFJ networks .

An acyclic fork-join network consists of an acyclic network of FIFO queues , which serves
a single stream of jobs whose interarrival times are given by the sequence (O'n)n>I' An
example of an AFJ ·network is depicted in figure 2. There are V nodes, indexed i-= 1,2,
... , V, connected via a set of directed edges E. As the network is assumed to be acyclic, we
may label the nodes so that each edge (i,j) is such that j > i. If (i,j) is an edge, we say j
is a successor of i and i is a predecessor of j. Nodes are assigned to integer levels as follows.

=

VI.8

A node with no predecessors belongs to le\'el O. Any other node belongs to the le\'el one
greater than the maximum level of it s p redecessors.

A single copy of each job visits each nod e; at node i the nth job 's service requirement
is a random variable 6~. There is a single arrival stream, determined by the seq uence of
interarrival times (an)n> 1' On arri val , a copy of the nth job is rout ed t o each node at level O.
The edges leading out of each node model a fork and those leading in model a join. At ever),
level except the last , after a node completes a job, a token for tha t job is rou ted to each of
the node's successors . A cop)' of the job itself arrh'es to a given node instantaneousl), after
the node has collected a token for that job from each of its predecessors. At the last level ,
no further work is propagated, though there is an implicit join. That is , a job 's departure
time from the whole system is the time that the last copy completes ser\' ice at the last level.

More formall y, let variables A~ and D~ denot e the times that node i recei\'es and
completes the processing of it s nth job , respectivel)'. All nodes i at level 0 receive th eir nth

job, for n ;?: 1, at time
(4. 1)

where Ab = O. For each node j at any level > 0, the nth arrival coincides with the maximum
of the completion t imes of the n'h job from each predecessor of node j: for n ?: 1,

A~ = V D~. (4.2)
. U ,j)<E

Since the nodes operate FIFO, the variables D~ 's satisfy the same recu rrence as before:

D~ = (D~_1 V A~) + 6~, (4.3)

where Db = O. Letting F denote the set of nodes at the last level, the departure of th e n ' h ,.
job, for n ?: 1, from the network as a whble occurs at time

(4.4)

To simulate the network, we solve the recurrence relations as functions of the interarri\'al
times (an)n>1 and service times (6~)n>11<;<V. This is straightforward to do serially: For
n = 1, 2, 3,.~. compute the variables d;s~rihing the course of the nth job starting at level 0
and increasing level by level, using the results of the computation for the (n - I)" job .

The parallel computation may be organized in a variety of ways, the simplest of which
is to step through the network level by level, processing the nodes one by one at the current
level, using the G/G/! parallel simulation method. Specifically, let us compute arrival and
departure times in batches of nominal size B . The time and memory required will each
be on the order of V times that needed used to simulate the GIG I! queue as described in
section 3. Thus, for large B, the time requirement becomes optimal, order V BIP, at the
cost 'of a memory requirement of VB. As will be clear, by exploiting the special structure
of the network, sometimes the memory requirement can be much reduced. For example, if
the network is a series of queues, just order B memory is needed.

In brief, the computation for the first batch may be performed as follows. Let K be th e
maximum level, and let F., 0 :5 k :5 K denote the set of nodes at level k. Assign all P
processors to:

VI. 9

- 0-

Figure 2: An acyclic fork-join queueing network.

1. Compute the arrivals (An h <n<B as in the computation of the G/ G/ I queue. This
determines the arrivals (A~)~~~~B for nodes ;cFo.

2. For k = 1, 2, ... , J(, and for each node i at level k compute (A~hnB vi a (4.2).
(If several nodes at level k have the same subset of nodes as their predecessors , the
corresponding sequence of arrival instants needs to be computed only once .) Then
compute (D~h~n~B via (4.3) as in the computation for the G/ G/ I queue.

3. Compute the departure times (Dnh~n~B via (4.4).

4.2. Acyclic FIFO Queueing Networks

In this section we consider acyclic queueing networks, of the usual (not fork-join) type,
where jobs arrive at arbitrary nodes, foll .. w arbitrary paths in the network , and then de
part. Viewed separately, each node ope~ates as a GIG/I queue. We focus on networks
of degree tw~ach node has at most two edges leading in and at most two leading out.
The discussion easily generalizes to higher degree networks, though the time and memory
needed for simulation increases with the degree.

There may be several classes of jobs, where each class has its own probabilistic routing
rule controlling the choices of paths through the network. The routing rule is assumed to
be state independent or oblivious, meaning that a job's route is a random function only
of its class and index in the arrival sequence for that class. Unlike the fork-join networks
of .ection 4.1, overtaking is possible. Jobs that arri ve alld depar t from the same node but
follow different paths may depart in a different order than the order in which they arrive.

Some important examples of acyclic queueing networks of this type are -the networks
used for routing in high speed switches and in parallel computers, such as the various
Banyon networks [21, 22]. Figure 3 depicts an example of a three node acyclic network ,
which albeit simple, exhibits splitting and merging of job streams, and the possibility of
overtaking. The nodes are labeled X, Y, and Z_ We assume that there are two arrival
class, determined by two sequences of random interarrival times. One class consists of jobs
that enter at Y and follow the path Y Z. The other class consists of jobs that enter at X
and follow either the path XY Z or the path X Z; a job in this class takes the former path
independently with probability p and the later with probability 1 - p. We shall return to
this example (specifying it further) below.

VI. 10

Now, consider a single node in a n acyclic network, wit l, two incoming edges, labeled i
and j and t wo outgoing edges, labeled 11 and v, as shown ill fi gure 4. Assu me t hat each job
carries the information whether it is to be routed ou t al ong 11 or along v . Let

• (A~k~! and (A~)n~! denote t he sequences of arrival s of jobs along edges i and j ,

• (An)n> ! and (D n)n> ! t he sequence of arrivals of jobs as seen by the node in qu est ion
and the corresponding sequence of departures, and

• (D~) n ~ ! and (D~)n ~ ! the subsequences of (Dn)n~ ! of jobs rout ed along 11 and v.

Simulation of the job fl ow t hrou gh thi s node can be done in three steps: merge, solve,
split. The arrival sequence (A n)n>! is t he merge of(A ~)n> ! and (A!,)n> !' Given (A,,),,> ! ,
solving the G/ G/ l recurrence (3.2) provid es (Dn) n~ ! ' With (Dnl,, ~ ! ill- hand, we can split
off t he subsequences (D~ln> ! and (D~ln> !' It is st raight forward t o ca rry out t hese three
step procedure seri ally, and -to de\'i se an e-ffici ent serial network simu la t ion algorithm based
on such a procedure.

Our ideas for a comparable parallel method are:

• Use a parallel merge procedure t o form (A.) n~ !.

• Use the parallel method for sol\'ing a single G/ G/ l queue to compute (Dn)n> !.

• Use a parallel enumerate/ pack procedure (described below) t o split out the subse·
quences (D~)n~ ! and (D ~ ln;~ !.

Efficient parallel merging algori t hms are known [10J. A simple , efficient parallel merging
procedure appropriate for our pu rposes i~ described in the Appen dix . Of course, we have
already discussed the parallel com putation of the job depart ure ti mes for a G/G / l queue.
An enumerate/pack procedure t akes as input a vector composed of two sequences , and
produces as outpu t two vectors holding t he two subsequences separately. Spli tt ing out
the two subsequences may be accomplished by the following parallel "enumerate/pack"
procedure . Suppose the jobs in the (Dnln>! sequence are held in the machine 's memory in
a buffer . Consider the jobs t o be routed aiong edge 11 as marked 1 and those to be routed
along edge v as unmarked. Use segmented parallel prefi x computation (a simple variant
of the original method , where unmarked inputs are skipped over) to determine t he partial
sums of this sequence and, for eac h I ~ I , put the i th job illl o tl,e i'" slot of a memory
buffer allocated for the subsequence (D~ ln > ! ' Reversing the ordering and applying the
same method provides the jobs in (D~ ln ~ ! i~ another buffer.

To adapt these ideas to produce a realizable simulation method , we must deal wi t h
memory limitations. In this paper ",'e propose a very simple parallel method similar to the
method described in section 4.1 for AFJ networks. At a high level the idea is, as before,
to work in iterations, first generating a batch of new arrivals for each class of jobs, and
then pushing (most of) those arrivals through the network, level by level, node by node
using parallel merge, solve, split routin.,. at each node. Efficiency is gal ned by the parallel
processing of large numbers of jobs per Iteration. Though the method is adequate for small
networks, it is rather wasteful of m ... mory so more sophisticated methods (currently under
investigation) are needed for luge network •. We shall illustrate the method by giving the
details for the three node example of Figure 3.

I

VLl1

Returning to this example, let us suppose t], a t t],e long term arrival rates of the tll"O joh
classes are known: >'x for the class entering the network at nod e X and >'1 ' for t], e other.
A job is represented as a record, with fi elds to hold the arrival time to the network (needed
to tally sojourn times), the arrival time to the current node, and the departure time from
the current node. The computation is organized in ba tches of nominal size B . 'Ye shall use
several vectors of job records as buffers associated with the edges of the network:

• buffer Jx of size B[>.x / (>'x + >'l'l1 associated with the edge lead ing into X ,

• buffer Jy of size B [>'1' /(>.X + >'1')1 associated wi t h the edge lea ding into Y, and

• buffers JXY , Jx z, Jy Z , and Jz , each of size B, associated with the edges Xl ' , X Z,
Y Z, and the edge leading out of Z.

At each iteration, these vectors will be overwritten. At most B jobs will be processed per
iteration. The sizes of buffers Jx and h' were chosen t aking int o account the arrival rates
for the two job classes, so that , for large B, the number processed will be close to B. It is
not crucial that each of the other buffers be large enough to hold all B jobs, but it makes
the algorithm simpler.

The first iteration proceeds as follows.

1. (Generate Arrivals) Fill buffers Jx and Jy with jobs by solving the G/ G/ I recurrence
(3. 1) using the appropria te interarrival times . Let f be the minimum of the arri"ai
time of the last job in J x and the arrival time of the last job in Jy. All jobs wit h
arrival time :s f shall be processed in thi s iteration; the others are held back for the
next iteration and are not considered further in this iteration.

2. (Process Node X) Solve the G/ G/ I·recurrence (3.2) to compute the departure times
for the jobs in Jx. Toss a coin with bias p for each job in Jx to determine whether it
takes the edge to Y or the edge to Z, and use the enumerate/ pack procedure to spiit
out the two resulting job streams into buffers JX1' and Jxz, sorted by their departure
times from node X.

3. (Process Node Y) Merge the jobs in JX1' (keying on the departure times from.\')
with the jobs in Jy (keying on the arrival times to Y), storing the resulting ""lucnee
in buffer Jyz. Solve the G/ G/ I recurrence (3.2) for these jobs to compute their
departure times from node 1' .

4. (Process Node Z) Merge the jobs in JyZ with those in Jxz (keying on the ne,,')),
computed departure times), and store the result in Jz. Compute the departu .. t imes
for these jobs, and tally network sojourn times.

At any subsequent iteration, the only additional problem is including the job, wft over
from the previous Iteration in one of the buffers J x or Jy. A simple solution ia to m&n&«e
those buffers circularly so that , without any special bookkeeping, each can b. filJfod to
capacity at each iteration. We chose the sizes of buffers J x and Jy taking into account the
arrival rates for the two job classes, so that about B jobs on average should b. proc~
per iteration.

We are developing serial and parallel simulation codes for this example net" ork . Pre
liminary results tell the same basic story as that for the G/G/l simulation coda.

VL12

y

()-

- r-)~----~- [)--------,'-, -----~

x z
Figure 3: An acyclic queueing network.

Figure 4: One node in an acyclic queueing network.

4.3. FIFO Queues in Series with Bounded Buffers

In this section, we treat series of queues with bounded buffers, motivated mainly by the
study of production lines [23J. An example of four queues in series is depicted in Figure
5. The k'h server serves the k'h buffer in FIFO order, eventually forwarding the jobs to
the (k + 1)" buffer. This server may block (stop working) if, in particular, the k'h buffer
is empty or the (k + 1)" buffer is full . Several specific blocking rules can be modelled; for
concreteness, we consider only transfer blocking and minimal blocking [23J .

Assume that there are K queueing stations, indexed k = 1, 2, ... , K. Station k consists
of a FIFO server and a buffer with finite capacity Ck ;:: 1. An infinite buffer precedes station
1 and acts as the source for jobs. An infinite buffer follows station K and acts as the sink
for jobs. We label these two infinite buffers 0 and K + 1 respectively. In a moment, we will
define transfer blocking and a corresponding system of recurrences, describing the system's
sample path . We will then do the same for minimal blocking. It turns out, once again, that
the recurrences are linear in the (V, +) semiring, but are higher order than the recurrences
for the G/ G/l queue. The order increases with the number of queues and the maximum
buffer size.

1 2 3 4

Figure 5: Four queues in series

Vr.13

Transfer Blocking

Under the transfer blocking rule , the server at each stat ion ~. cont inuously attempts to serve
jobs from buffer k, blocking if buffer k is empt.y or buffer k + 1 is full. Specifi cally, after each
service completion, if buffer k+1 is not full, t.hen the newly completed job is inst.antaneously
transferred to buffer k + 1. Otherwise, the server is blocked un til (he in st.ant a slot open s
in buffer k + 1, at which point the job is instantaneously transferred.

Let us define variables A~, 6~, and T~, referring to the nth job handled at station k, as
the time the job arrives to the buffer, the service time requirement at this station, and the
time service is completed at this station, respectively, for n = 1, 2, ... , and k = 1, 2, ... ,
](. The following recurrences [23) determine these variables (and thereby the entire sample
path):

A~+1 = T::;: V A~!i_c. (4.5)

T~+1 = (A~+ 1 V A~+l) + 6~+1 (4.6)

where by definition T~ = 0 and A~'+1 = T~';. Equation (4 .5) states that the (n + I)" job
arrives at station k when either the job is completed at the preceding station (if station k
is unblocked at that time), or when the (n + 1 - Cdh job arrives to the next station . The
justifi cation of (4.6) is that the (n+ 1)" job goes into service at station k either the moment
the job arrives (if the server is free at that moment), or (he moment the ,,'h job moves to
the next buffer.

Substituting (4.6) into (4 .5), we are led (0

Ak (Ak-l «-1) (Ak «-1) Ak+l
n+ l = 0+1 + U n+l V n + v n+l V n+l-C. (4. 7)

Upon solving (4.7) for the A~'s, substituting in to (4.6) gives the T~'s. To solve (4.7) we
require an ordering of index pairs that puts (n + 1, k) higher in the order than the indices
(n, k), (n+ 1, k -1), and (n+ 1- Ck, k + 1) appearing on the right hand side of(4.7). A little
thought leads to the pairing function J(n, k) that achieves the desired effect economically
by ordering index pairs along diagonals as illustrated in Table 2. Moreover , J(n, k) is easily
computable. Under this ordering, (4.7) becomes a linear recurrence in the (V, +) semiring,
of order 101 :5 J(Cmar where Cmar = C1 V ... V CK is the maximum buffer capacity. That
is, the ith term in the recurrence depends only on terms i-I, i - 2, ... , i -],1 .

Minimal Blocking

Minimal blocking uncouples serving jobs from transferring jobs between buffers and thereby
achieves higher throughput [23} . Whereas under transfer blocking, the buffer at station k
holds only jobs awaiting service at this station, under minimal blocking the buffer may also
hold jobs that have already completed service at this station . Completed jobs are held until
slots open up in the next buffer. Specifically, if after a service completion at station k buffer
k + 1 is full, then the job remains in buffer k. However, server k is set to work on the next
uncompleted job in its buffer, if there is one. The instant a slot opens up in buffer k + 1, the
oldest completed job present at station k is transferred to fill the slot, without interrupting
the server at station k.

Under minimal blocking, the recurrence relation for completion times becomes

T:+1 = (A~+l V T:) + 6!+1, (4 .8)

VI. 14

n k
1 2 3 4 5

1 1 2 . 4 7 11

2 3 5 8 12 16
3 6 9 13 17 21
4 10 14 18 22 26
5 15 19 23 27 31
6 20 24 28 32 36

Table 2: Pairing function J (n ,k), for I, = 5, 1 ::; /, ::; II' , and n 2: 1.

and the recurrence relation for A~ is unchanged. The justifi ca tion for (4.8) is that senice
for job n + 1 starts either the moment the job arrives (if the ser\'er is idle at that moment),
or the moment the previous job completes service at this station.

The two recurrences are now interdependent so one set of terms cannot be eliminated
by substituting one equation in the other as we did for transfer blocking. However , using
the pairing fun ction J(n, k) to totally order the terms of each recurrence and applying a
standard transformation, we can obtain a single linear recurrence of order about 211'Cma x>

which determines both the A's and the D 's.

Simulation

It is straightforward to solve the recurre.nces serially, following the order J(n, k) depicted
in Table 2. This gives a simple, efficient serial simulation method.

To obtain a comparable parallel method , we need only a fast parallel method for sol\'ing
Mth order linear recurrences. As in section 3, where we described an algorithm for first order
recurrences, this problem can be reduced to sol\'ing a first order linear matrix recurrence
[8) . Adapting the algorithm of [8), the first N terms of such a recurrence can be computed
using P processors in time proportional to

where w is the exponent of the matrix multiplication algorithm used: w = 3 for the standard
algorithm, w = 2.81 for Strassen's algorithm. Once again, to limit the memory locations
needed to a nominal number G(B) , the computation can be organized in N / B iterations,
where B terms of the recurrence are computed in each.

5, FINAL REMARKS

Posing simulation problems using recurrence relations opens up possibilities for new ap,
proaches to proving that some systems cannot be simulated with a high degree of paral,
lelism. For example, Kung [24) has shown that in general a. recurrence of algebraic degree
> 1 can be sped up by at most a constant factor, regardless of how many processors are

VI. 15

available, Working backwards. if one can show that simulating a given di screte event system
solves a hard recurrence in the sense of [24], then theTe can be no efficient parallel simulation
of tha t system,

APPENDIX

In this section we sketch a simple, practical paTallel method [or merging a sOTted list of
length II' with anotheT of length M, in time PTopoTtional to (II' + M) I P+log2(N + M), In
OUT applications, we can often control II' and Ai so that the maximum of the (wo is as laTge
as we like , and the log2(N + M) teTm is swamped, We aTe gTateful to Andrew Odlyzko fOT
pToposing the method,

Suppose the input lists are presented as vectoTs A and B of II' and M locations Te
spectively, SOT ted in incTeasing order. Assume fOT simplicity that all elements of the two
lists aTe distinct . A vectoT F of II' + M locations is to hold the meTge of A and B , al so
sorted in increasing order. Let m = [(II' + M)IP1, The key obsen'ation is that gi\'en th e
P peTcentiles of F,

F[m], F [2mJ, F[3 m], .. " F[Pm" (II' + M)J ,

it remains only to caTTY out P independent , standaTd serial meTges of sublists of A and B
filling in the::; m elements between percentiles, In bTief,

1. In paTallel, [oTeach k = 1,2 , .. " P, let pTocessoT k determine f = F[(km)" (.11'+ M)J,
and determine the indices of the largest elements of A and B that aTe::; f,

2, In parallel , for each k = 1, 2, .. " P, let proceSSOT k fill in

F[(k - I)m + IJ, F[(~ - I)m + 2), ... , F[km" (II' + M)J

using the information computed in step 1.

Step 2 is carried out in time proportional to m, via. the standaTd serial merge pToceduTe,
A little thought shows that the task of each pTocessor k at step 1 is essentially the same as
that of searching two sorted lists of equal length j for the ph largest element in the merge of
the two lists, which can be done via a binaTY search method in time proportional to log2 j,
The time for step 1 is proportional to log2(N + M).

VI. 16

References

[IJ K.M. Chandy and J. Misra. Distributed simulation: a case study in design and verifi
cation of distributed programs. IEEE T"ansactions Oil Softu,arc Engineering , SC .. 5(5),
1979.

[2J B.D. Lubachevsky. Efficient distributed event-driven simulation of multiple-loop net
works. Communications of the ACM, 32(1): 111 , January 1989 .

[3J J. Misra. Distributed-discrete event simulation. A CM Computing Surveys , 18(1):39-66,
Mar~1986. .

[4J D.M. l\ichol. Parallel discrete-event simulation of fefs queueing networks. In Parallel
Program ming: Experience with Applicat.ions, Languages, and Systems, pages 124 - 137.
ACM SIGPLAN, July 1988.

[5J D.B . Wagner and E.D. Lazowska. Parallel simulation of queueing networks: Li mitations
and potent ials. In 1 989 A CM Si9metrics and Performance Evaluat ion Revieu' and Per
formance '89, International Conference on Measurement and Modelling of Computer
Systems (sponsored by ACM Sigmetrics and IFIP W.G. 7.3), special issue 17,1, pages
146- 155. ACM Press , May 1989.

[6J 1. Kleinrock. Queueing Systems, Folume 1. Wiley, 1975.

[7J R.E. Ladner and M.J. Fischer. Parallel prefix computation. Jo urnal of I/' , A C.\!,
27:831-838,1980.

[8J A.G. Greenberg, R .E. Ladner, M. Paterson, and Z. GaUl. Efficient parallel algorit hms
for linear recurrence computation. Information Processing Letters, 15(1) :31-35. August
1982.

[9J L. Hyafil and H.T. Kung. The complexity of parallel evaluation of recurrences. Journo l
of the ACM, 24:513-521, 1977.

[10J C.P. Kruskal. Searching, merging, and sorting in parallel computation . IEEE Trons
actions on Computers, TC-32:942-946, 1983.

[llJ F. Baccelli, W. Massey, and D. Towsley. Acyclic fork-join queueing network s. Journal
of the ACM, 36(3):615-642, July 1989.

[12J F_ Baccelli. Ergodic theory of stochastic petri nets . Technical Report 1037. I'-'RIA
Sophia. Antipolis, INRIA-Sophia 06565 Valbonne, France, May 1989.

[13J K.M. Chandy and B. Sherman. The conditional event approach to distribut~ .imula
tion. In Distributed Simulation 1989. The Society for Computer Simulation. 1989.

[14J N. Abrahamson. Development of the alohanet. IEEE Transactions on Information
Theory, IT-31(2):119-123, March 1985.

[15J T. Leighton. An introduction to the theory of networks, parallel computation and "Isi
design, 1989. draft.

[16J I. Mitrani . Simulation Techniques for Discrete Event Systems. Cambridg~ Vnivf'nity
Press, 1982.

VI.17

[17] C. P. Kruskal, 1. Rudolph , and M. Snir. The power of parallel prefix. IEEE Tmn sac·
tions on Computers, C-34(JO), October 1985 .

[1 8] A.G. Greenberg and B.D. Lubachevsky. A simple efficient parallel prefix algorithm. In
1987 International Conftrwec on Paralld Processing, pages 66- 69, 1987.

[19] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer Algorithms.
Addison Wesley, 1974.

[20] O.E. Percus and M.H. Kalos. Random number generation for mimd parallel processors.
Journal of Parallel and Distributed Computing, 6(3):477-498, June 1989.

[21] T .Y. Feng. A survey of interconnection networks. Compl/t fT , 14:12- 27 , 1981.

[22] H.J. Siegel, W. Nation, C.P. Kruskal, and L.~L Napolitano. Uses of the multi stage
cube network topology. to appear in the Proceedings of the IEEE, 1989.

[23] D. Mitra and I. Mitrani. Control and coordination policies for systems wi t h buffers.
In 1989 ACM Sigmetrics and Performance Evaluation Review and Performa nce '89,
International Conference on Measurement and Modelling of Comput er Systems (spon
sored by ACM Sigmetrics and IFfP W.G. 7.3), special issue 17,1, pages 156-164. ACM
Press, May 1989.

[24] H.T. Kung. New algorithms and lower bounds for the parallel e\'aluation of certain
rational expressions. In 61h Annual A CM Symposium on Theory of Computing, pages
323-333. ACM, 1974.

".

VI. 18

VI. 19

DISCUSSION

Rapporteur: Rogerio de Lemos

Professor Henderson asked what were the implications that storage had, for
example in a computation involving 1016 jobs. Dr Mitrani replied that as far as
shared memory architectures were concerned memory had no effects as all the
processors accessed the same memory, and that simulation was carried out in
batches. Dr Mitrani went on to say that in such shared memory systems only the
batch size could influence the required memory size.

Mr Kerr asked if such simulation method could be used in a system like a toll
gate with the purpose to obtain, for example the number of cars of a certain
type that pass the gate. Dr Mitrani replied by saying that once the different
classes of vehicles were defined, then there would not exist any restriction in
using the method.

Professor Randell pointed out that special machines have been built for
simulation, and asked if the simulation method presented could be an
alternative to those machines. Dr Mitrani answered that the method could not
be applied to all kind of problems, for example logic simulation; its application
is restricted to those considered in the lecture, such as the problems where the
jobs arrival times and departure times are related. Professor Randell also asked
if there were other types of architectures, apart from the shared memory
systems where this method could be applied. Dr Mitrani answered that a large
simulations have been realized on a connection machine, but, at the moment,
he had no measures to show.

VI.20

