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Central to all parallel architectures is a switching network which facilitates the 

communication between a machine's components necessary to support their 

cooperation. Multi-stage interconnection networks (MINs) are classified and two 

queueing models for packet-switched MINs with unlimited buffer space are introduced. 

The fust uses standard techniques and is exact with respect to its assumptions, hence 

providing a standard against which to assess approximate models. From this exact 

model, we can also obtain distributions of transmission times; previous work has either 

used simulation, which can be unreliable and is expensive to run , or produced only 

Laplace transforms. The second model has much milder assumptions, is more 

generally applicable and can be implemented more efficiently, but is approximate. 

However, it has been found to give accurate predictions for a wide range of traffic 

patterns and distributions of link transmission times. Established techniques can be 

integrated into our queueing-based methodology to model MlNs with finite buffers and 

hence blocking. 
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1. Introduction 

The complexity of large-scale parallel computer architectures is such that their effective 

design requires guidance from some form of predictive modelling prior to construction. 

Analytical models based on queueing network analysis provide a powerful tool for this 

purpose; see for example [HF86]. Central to all parallel architectures is a switching 

network which facilitates the communication between a machine's components 

necessary to suppon their cooperation. It is therefore crucial to develop efficient 

models of the performance of such networks and to integrate them into existing, 

accepted modelling methodologies. 

Generally in multiprocessing systems, the processors can communicate and 

cooperate at different levels in solving a given problem, i.e. by sending messages or by 

sharing memory. If there is relatively little processor interaction via shared memory the 

parallel system is said to be loosely coupled. Thus in loosely coupled mUltiprocessors, 

the processors have large local memories from which most of its instructions and data 

are obtained. Communication between processors is achieved by sending messages 

across an interconnection network (IN), also often called a switch or switching 

network. In this case, full connectivity is not essential as the processors spend little 

time communicating with each other. Thus an IN with a fixed or static topology is 

suitable and conventional queueing models are suitable for performance analysis. 

Parallel systems are said to be tightly coupled if there is a lot of processor 

interaction via shared memory. Thus in tightly coupled multiprocessors, the processors 

communicate through shared main memory and the IN provides full connectivity 

between processors and memory. Usually a small local memory or cache is attached to 

each processor to improve overall performance. The speed of the machine is restricted 

by the memory bandwidth, and hence by the IN topology, and an IN with a dynamic 

topology is required. ALICE [HR86], designed to execute functional languages in 

parallel [FH88], and the NYU Ultracomputer [G083] are examples of tightly coupled 

multiprocessor systems. This homogeneous type of architecture is illustrated in Figure 

1.1 in which processing elements (PEs) and memory modules (MMs) communicate 

through a dynamic IN topology. The dynamic IN can make connections from any PE 

to any MM. 
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Figure 1.1 IN in a tightly coupled architecture 

In this paper, we first consider the different types of interconnection networks and 

focus on the widely used delta network which is composed of several stages of simple 

switches. We then describe, in Section 3, a simple queueing model of a delta network 

under appropriate simplifying assumptions. This provides a standard against which to 

assess approximate methods in simple cases, and such an approximation is presented. 

In Section 4 we use the former model to determine characteristics of transmission 

times, using recent results on the density of passage times through networks of queues. 

We conclude in section 5 and outline some of the limitations of the techniques 

presented, for example the handling of circuit-switching (considered in the second 

lecture and [HP90)) and blocking. 

2. A classification of interconnection networks 

The simplest type of switch for communication in parallel computer architectures is the 

common bus which connects to every component: processing element, memory module 

or other. However, the bus derives its simplicity at the expense of increased 

complexity in each component that it connects. For example, bus request and receive 

pins are needed by each element, together with several others for control and 

synchronisation, and non-trivial logic is necessary to implement the bus's protocol. 

This increases the overall cost of a large-scale multiprocessor and, moreover, each 

additional processor that is added to the bus is faced with more contention and so 

delivers a diminishing increment in performance. 

At the other end of the spectrum, the switch might be a full crossbar which 

provides parallel communication between any number of distinct pairs of processors 

connected through it. This facilitates, for example, parallel access to shared memory 

provided that there are no memory conflicts, i.e. two or more processors attempting to 

access the same memory address. An axb crossbar can switch any of its a input pins to 

any of its b output pins on the appropriate clock-cycle, so that the only contention 
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possible is for the destination processors, i.e. is internal in the switch for the output 

pins. We therefore have the configuration shown below in Figure 2.1 when a = b = 4. 

source 
processors 

Figure 2.1 

any-to-any, 4-way 
internal connection 

destination 
processors 

The 4.way crossbar switch 

Each additional processor that is added to the crossbar requires a new parallel link to 

each of the output pins. Thus for a N-way crossbar the complexity and cost grow as 

O(N2) and the very large crossbars required for large-scale multiprocessors would 

become hopelessly complex and expensive. Moreover, large crossbars are physically 

infeasible to construct using contemporary electronic devices. 

However, we can interconnect a matrix of crossbars to form a multi-stage 

interconnection network (MIN) which has a number of levels (or stages) such that the 

output pins of crossbars in one stage are connected to the input pins of crossbars in the 

next stage. This provides the same connectivity as a full crossbar (any input pin can be 

dynamically connected to any output pin if there is a free path) but introduces 

contention for internal links (path conflicts) on top of the memory conflicts. The cost 

of an N-way MIN grows almost linearly, O(NlogN), compared with O(N2) for the 

equivalent crossbar. There are several types of MINs, many with similar structure and 

propenies, but here we will consider a subset of banyan networks, named after a type 

of Indian fig tree with a similar structure. A banyan network is a MIN with a unique 

path from each input pin to each output pin and is said to be layered if its switches can 

be arranged as a number of distinct stages. A layered banyan comprising I stages of 

crossbars in which outputs of one stage connect directly to the inputs of the next stage, 

is called a I-level banyan. There are two main types of I-level banyans: regular 

banyans and irregular banyans. Irregular banyans connect any N inputs to M outputs 

through I stages of crossbars where each stage comprises a set of identical crossbars. 
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Regular banyans are constructed from a single type of basic crossbar throughout all 

stages. 

2.1 Delta Networks 

A well-known example of a regular banyan network is the delta network defined in 

[Pa8!]. The definition of a delta network includes the additional property that routing 

in the network is digit-controlled, i.e. the choice of which output pin to select at a 

particular crossbar in the network can be determined by a single digit in the destination 

address of the packet. A rectangular delta network consOUcted from b-way crossbars 

with the same number of input pins as output pins is called a delta-b network. There 

are a number of different ways of connecting the outputs of one stage of crossbars to 

the inputs of the next so as to obtain the desired connectivity. The corresponding 

permutation functions define the network's topology. All these topologies are 

equivalent in that one can be obtained from another by permuting the switches in each 

stage of the network and so all have the same performance characteristics, such as 

equilibrium throughput, [WFSO]. The following classification is taken from the PhD 

thesis of N aresh Patel [Pa89]. 

We may interpret each switching element in a MIN as a node (or vertex) and 

each link as an edge (or arc) in a directed graph. If a link connects two crossbars A and 

B, then the corresponding edge in the graph has two labels: the first one corresponding 

to the output pin number of A and the second to the input pin number of B. Although 

the edges are directed in the graph representation, the actual links may be bi-directional. 

For each graph G representing a particular MIN, there is a reverse graph GR which is 

formed by reversing all the edges and swapping the input and output nodes. In 

general, the path from a given input node to some output node in a delta network can be 

described by a path descriptor. In a I-stage network, this is a string of I digits where 

the jlh digit indicates the output pin number of the switch in stage j on the path (lgSJ). 

If this path descriptor is independent of the input node then we can associate it with the 

output node address and no longer require to store path descriptors at each input node. 

In delta networks, this independence of source node is maintained for all nodes and 

usually the address or the reversed address of the output node is the path descriptor. 

Hence messages can be routed through the network by consuming the destination 

address string from one end. 

It is useful to have this delta property in the reverse direction as well as the 

forwards direction because messages sent in one direction need acknowledgements in 

the other direction. Thus a delta network with the self-routing property in both 

directions is called a bidelta network. In graph terms, a delta network G is a bide Ita 

network if GR represents a delta network. Each node A in a bidelta network is now 
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associated with two types of path descriptors: forward (fpd(A)) describing the routing 

to it from an input node and backward (bpd(A)) describing the reverse route from an 

output node to node A. The way in which node A is labelled using fpd(A) and bpd(A) 

determines the topology of the network. Each descriptor can be reversed and the two 

descriptors can be taken either way round. Hence there are eight possible topologies T 

given fixed "baseline" functions FPD, BPD and the operations reverse ( R) and pairing 

( , ): 

• T = (FPD(A), BPD(A) which gives the baseline, or partial shuffle network 

and the reversed topology, TR = (FPD(A), BPD(A); 

• T = (BPDR(A), FPD(A) which gives the omega, or perfect shuffle network 

and the reversed topology, TR = (FPD(A), BPDR(A); 

• T = (BPD(A), FPDR(A) which gives the binary n-cube network and the 

reversed topology, TR = (FPDR(A), BPD(A), often called aflip network; 

• T = (FPDR(A), BPDR(A) and TR = (BPDR(A), FPD(A) which are 

uncommon. 

These topologies are illustrated in figure 2.2 for a 3-stage, delta-2 network. For 

topology T with T(A) = (tl, t2) for node A, the selector functions fpd and bpd are 

defined by fpd(A) = tl and bpd(A) = t2. Suppose now that an edge labelled (a,b) 

connects node A in stage} to node B in stage }+I with labels al,a2,oo.,aJ.I and 

/31o{Jz,oo.,/3J-I in a J-stage network. The label of a switch or pin in any stage is just its 

J-digit sequence number, with radix b, starting with ° at the top. (Recall there are bl-I 

switches and bl pins in each stage.) In any of these topologies: 

fpd(B) = fpd(A)<>[a] and bpd(A) = bpd(B)<>[b] 

where <> denotes the "append" or "concatenate" operation. 

For the baseline network, fpd = FPD and bpd = BPD so that 

fpd(A) = al,a2,oo.,aj_1 and bpd(A) = aj,aj+l,oo.,aJ_I 

and likewise fpd(B) = /31,{Jz,oo.,/3j and bpd(B) = /3j+I,/3j+2,oo.,/3J-l. 

From the first equality fpd(B) = fpd(A)<>[a] we have: {3; = at (lg;5;}-I) and /3j = a 

and from bpd(A) = bpd(B)<>[b] we have: /3t = at.1 (j+I;5;i;5;J-I) and aJ-I = b. Thus 

any node with label a\,a2,oo.,aJ_2,b in stage} (j=1,2,oo.,J-I) connects to nodes in 

stage}+ I with labels al ,a2,. aj_\,a,aj,oo,aJ_I where ae (0, 1,00 .,0utdegree(A) J. 
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Connections for other topologies follow using a similar argument based on 

forward and backward path descriptors. It is shown in [WF80] that all eight topologies 

are isomorphic. 

00 00 00 

01 

10 

11 11 11 1--'" f-----1 

(FPD(A), BPD(A) 

(Partial shuffle) 

00 00 00 

01 

10 

11 1-_-1 11 1-_-111 

(BPDR(A), FPD(A) 

(Omega) 

00 00 00 

01 
t----l 

10 10 

11 11 11 1--'" f-----1 

(BPD(A), FPD(A) 

(Reversed partial shuffle) 

00 00 00 

01 

10 

11 1-_-1 11 1-_-111 

(FPDR(A), BPD(A) 

(Fl i p) 

Figure 2.2 Delta Network Topologies (first part) 
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00 00 00 
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(FPD(A), BPDR(A») 

(Binary 2-cube) 

00 00 00 

01 01 

10 I--.A-~ 10 

11 I-_~ 11 I-_~ 11 

(FPDR(A), BPDR(A») 

00 00 00 

011-_-1 

10 

11 1-_-1 11 1-_-111 

(BPD(A), FPOR(A») 

00 00 00 

01 

10 

11 11 11 
I--~ I--~ 

(BPOR(A), FPOR(A») 

Figure 2.2 Delta Network Topologies (second part) 

Notice that the mirror image topology is formed by swapping the fpd and the bpd, and 

that the topologies labelled with fpdR (i.e. a reversed forward path descriptor) require 

the destination address to be consumed from the least significant bit whereas in the 

other four topologies the address is consumed from the other (most significant) end. 

2.2 Operational Characteristics of Switching Networks 

MINs have three main operational characteristics: control, timing and switching 

protocol. Typically, MINs have decentralised control with implicit digit-controlled 

routing as in delta networks. However, timing characteristics depend on the type of 

parallel machine that uses the MIN. For SIMD machines, the MIN is normally used in 

synchronous mode whereas in MIMD machines the MIN is used in asynchronous 

mode. As mentioned in the Introduction, there are two main types of switching 
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protocols - circuit-switching and packet-switching - as well as hybrid protocols. In 

circuit switching, a complete path has to be established across the network before data 

can be transferred from the input buffer to the destination buffer. In the process of 

setting up this path there may be a required link already in use which causes the path to 

be blocked. The partial path already established may then be held until the link 

becomes free or may be released whereupon the source processor may have to retry 

after some time. In a packet-switched MIN, there are buffers at each crossbar switch 

and packets of data are transferred from one buffer to the next in a single hop fashion. 

This protocol incurs higher transfer delays than circuit switching but introduces greater 

potential for parallelism and higher throughput. Hybrid protocols can also be used in 

buffered MINs in which packets can by-pass many buffers by forming circuits across 

any number of stages when possible. 

2.3 Models of MINs 

The different types of models for MlNs essentially correspond to the various different 

operational characteristics. We therefore classify models as either synchronous or 

asynchronous with either a circuit-switched or packet-switched protocol and, in the 

latter case, infinite or finite capacity buffers. (In the former case we can also 

distinguish protocols that hold partial paths from those that do not). Over the past ten 

years numerous synchronous MIN models have been proposed primarily as a result of 

interest in SIMD computers. Much of this work involves the permutation capability of 

MINs, i.e. the number of total, 1-1 functions mapping input ports to output ports that 

can be realised by the MIN without path conflicts. Other work in this area has 

concentrated on determining the effective bandwidth of the MIN when requests anive at 

an input with a given probability at the beginning of the time slice. In panicular, [PaSl) 

and [DJSl, JeS3) consider synchronous circuit-switched and packet-switched networks 

respecti vel y. 

However, we will be concerned with asynchronous models. Circuit-switching 

will be considered in the next lecture, [HP90), and here we consider packet-switched 

networks with buffers that are assumed never to overflow - i.e. to have infinite capacity 

in modelling terminology. Under appropriately strong simplifying assumptions we will 

be able to obtain exact results, but more generally approximations are necessary and we 

present one such. We will not be concerned with the crucial problem of blocking - the 

suspension of one server's activity in a queueing network by another which has a full 

queue. However, existing approximate methods, such as [AkS7), can be incorporated 

into our methodology. 
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3. A queueing network model for packet-switched MINs 

As we have seen, there are a number of different, but isomorphic, ways of connecting 

the outputs of one stage of crossbars to the inputs of the next so as to obtain the desired 

connectivity. We choose the partial shuffle topology, [Pa81], which is defined below. 

However, any topology would be equally appropriate for our analysis since it merely 

serves to provide an ennumeration for the queues in our queueing network model. The 

partial shuffle topology for an s-stage delta-2 network is defined inductively as follows: 

(i) A one-stage network, L'.j, is the single 2-way crossbar 

(ii) An s-stage network, L'.s' (s>O) consists of one stage (numbered s) of 2s-1 

switches connected to the right of 2 sub-networks of type L'.s-I. The ith 

switch in stage s takes its top input and bottom input from the ith pin of the 

upper sub-network and the ith pin of the lower sub-network, respectively. 

We consider packet-switched delta networks with sufficient buffer size that blocking 

effects can be neglected. We assume that message transmission times through any 

crossbar or other processor are exponentially distributed and that all queueing 

disciplines are first-come-first-served. We can therefore model the delta network as a 

Markovian queueing network [Ja63, GN67] which provides a benchmark against 

which to assess precisely more generally applicable approximate models such as 

[Ha86, HK87]. 

3.1 A queueing network model 

If we were to consider an open queueing network model with independent Poisson 

arrivals at its inputs, by Burke's theorem the arrivals at every switch would be Poisson 

because of the fan-out structure of the delta network. We could then model the system 

as a collection of independent single server (M!MJ1) queues which have simple 

solutions. However, such an open model is too simplistic to give a good representation 

of the real world and instead we consider a delta-2 MIN embedded in some computer 

architecture. This leads to a closed queueing network model in which each output 

queue in the constituent crossbars is represented by a server. In this closed model, 

independence is lost, arrival processes are not Poisson and so the "open" approach 

fails. For the sake of simplicity, the rest of the system, i.e. servers other than those in 

the delta network, is modelled by a single exponential server. However, the analysis 

applies equally well when the delta network is embedded in an arbitrary network of 

servers of the BCMP type [BCMP75]. In fact, we could short-circuit the whole of the 

rest of the system to derive a "flow equivalent server". This could then be used to 

replace the MIN in any encompassing queueing network in a decomposition-based 

analysis , [HP90]. 
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We therefore consider a closed Markovian queueing network of M servers with 

population N, [Ja63, GN67l. Each server has rust-come first-served (FCFS) queueing 

discipline and exponentially distributed service times with load-independent mean - i.e. 

we have constant rate servers. If only mean transmission times are required, milder 

assumptions suffice. Then, each server's rate may vary with its queue length, other 

disciplines can be modelled and multiple customer classes are allowed, see for example 

[BCMP75). 

3.1.1 Notation and basic results 

We will use the following notation: 

• Jli is the constant service rate specified for server i (l~!>M). 

• ei is the visitation rate of server i (l::;i!>M). The vector e is any non-zero 

solution of the equations 

M 

ei = L ejPji 
j=l 

(l::;i!>M) 

where Pji is the routing probability between servers j and i, i.e. the constant 

probability that, on completing service at server j, a customer next visits 

server i. Either the routing probabilities or the visitation rates directly are 

normally specified for a queueing network model. 

e' 
• Xi = -..l 

• 

• 

• 

Jli 

S(N) = { !l... I 
M 
"'"n·=N· n'>O L I ,1-, 
i=l 

I ::;i::;M} is the state space of the queueing 

network. 

I 
P(n) = G(N) 

M n' II Xi I is the equilibrium probability distribution of the 
i=l 

state llE S(N) by the result in [GN67l, where G(N) is the normalising 

constant defined by: 

G(N) = L IT xti 
nES(N) i=l 

By a result in [Bu73l, the normalising constant can be computed by the following 

simple recurrence: G(N) = g(M,N) where 

g(m,n) = g(m-I,n) + xmg(m,n-I) (m,n~l) 
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g(m,O) = I (m~O), G(O,n) = 0 (n>O) 

Finally, we give expressions for the mean queue length and throughput of a 

server in terms of the normalising function g which we will find invaluable in the next 

section. Let Gj(n) be the normalising constant for the network with server j removed 

and population n, i.e. 

where Sj(N) = { (n i) I L ni = N; ni~O , l ~ i;tj~M }. 
I"J 

Then we have the following: 

Proposition 3.1 

The equilibrium probability that the queue length at server j is k is G~~N)k) xl 
(l ~j~M, O~~N). 

Proof 

The required probablity is equal to 

o 

Proposition 3.2 
G(N-l) 

If server j has a fixed service rate, its equilibrium throughput is G(N) ej (l~j~M). 

Proof 

The required throughput is equal to Ilj multiplied by the probability that the queue 

W " M nj e ' " M nj length at server j is non-zero, i.e. cffkl £.... II Xi = ~ £.... II Xi 
lle S(N) i=1 lleS(N-I) i=1 
nj" 1 

o 

3.1.2 Model parameterisation 

The packet-switched MIN is modelled as a Markovian network of stochastically 

identical queues with first-come-first-served queueing discipline, constant service rates 
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and adequate buffer sizes to avoid blocking - i.e. at least as large as the population of 

the whole closed system. The queues are associated with the output pins of each 

switch, and logically this is where the buffers are placed. Thus, a delta network with m 

pxp switches in all has a total of m.p servers in its queueing model representation. We 

assume that the rest of the system is represented by a single additional exponential 

server with arbitrary fixed rate A.. In practice, there would typically be one buffer in 

each crossbar into which incoming messages from any input pin would be inserted as 

they arrived, assuming no overflow, and tagged with their required output pin number. 

Each output pin, when it became free after transmitting to the next crossbar, could then 

search the buffer for the first message addressed to it. This sharing of a single buffer 

delays the onset of blocking for as long as possible for a given total buffer space and is 

cheap to construct. 

In our case the MIN is constructed from 2x2 crossbars and we assume that all 

inputs are utilised uniformly, i.e. have stochastically identical arrival processes. We 

number the pins in any stage of the network consecutively, starting at zero for the top 

pin. Now, the visitation rates of the output pins in the final stage are proportional to 

their selection probabilities which are specified. The rate for a pin in another stage is 

simply one half of the sum of the rates of the output pins reachable in the next stage 

from the said pin. These rates are determined from the previous iteration using the 

interconnection topology. The "half' factor arises since the inputs to each switch in 

stages after the first come from corresponding outputs in identical subnetworks; this is 

an immediate consequence of the partial shuffle topology and the uniformity of the 

inputs to the whole network. 

In a S-stage MIN, let the visitation rate for pin number i in stage s be denoted 

by esi (lS:sS:S, OS:i<2S). Thus (eSi I OS:i<2S) is given and 

esi = eS+12j+~S+! 2j+! for i= (k-I).2s+j where OS:js:2LI, 1s:ks:2S-S, lS:s<S 

2L! 
The visitation rate of the other server, eM say, is of course I. eSi. We assume 

i=O 

without loss of generality that all output pins have rate I, i.e. the mean message 

transmission time between switches in adjacent stages is unity. 

First, we consider a uniform network in which all outputs are selected with the 

same probability and so all visitation rates esj are equal- to 1 say. All paths (of length 

S) through the MIN are then stochastically identical and so we have M=I+S.2S, ei=1 
N 

for lS:iS:M-I and eM=2 S. We therefore have G(N) = ~ [~r(M+~~tl) 
although we will not use this result, preferring the recurrence of section 3.1.1. 
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When there is a hot-spot, we set eSO = p, the hot-spot selection probability and 

I-p 
eSi = 2LI for l:O;i :O;2L l. The remainder of the visitation rates are then computed 

successively as described above and the esj are mapped onto the ei (1:O;i:O;M-I) 
according to some algorithm such as e(s.I).2s+j+1 = esj (os;jgs..,l, l:O;s:O;S) 

In this way, the embedded MIN is mapped into a conventional closed queueing 

network model. From thi s, standard resource-based measures such as throughput, 

utili sations and mean queue lengths, as well as mean transmission times, can be 

obtained using standard algorithms. So far, the structure of the physical network has 

been used only to determine the visitation rates of the servers. When we consider 

transmission time densities in the next section, we will find that we will need the feed­

forward property of the delta network which ensures that a message cannot be 

overtaken by another message on any given path through it. However, the recursive 

structure of the partial shuffle topology is not exploited which contrasts with the 

analysis given for the circuit switching protocol in the next lecture, [HP9O). 

3.2 An approximate renewal model 

An approach taken by Mitra and Cieslak [MC87] to solve for mean transmission times 

in an Omega network considers the arrival processes between stages. It is assumed that 

each link, i.e. switch output pin, behaves as an independent queue with arrivals from a 

stationary renewal process. Both interarrival time and service time distributions are 

arbitrary, i.e. a link is modelled by a GI/G/l queue in Kendall 's notation. The mean 

and coefficient of variation (i.e. the standard deviation divided by the mean) are given 

for the interarrival times of the external arrivals to the first stage and for switch service 

times. The mean and coefficient of variation of the interarrival times of the arrival 

processes at each stage are then computed iteratively. Standard results on GI/G/l 

queues then yield the mean waiting time in each stage and hence the mean sojourn time 

in the whole network. The analysis uses properties derived elsewhere about the 

splitting and superposition of renewal processes, giving the mean and coefficient of 

variation of the component (respectively superposed) processes in terms of the one split 

(respectively its constituents). 

In general, the topology of the network will determine which components of 

split depanure processes must be combined to form an arrival process at the next stage. 

Thus, a convenient choice is the perfect shuffle since the routings between successive 

stages are all the same. Here, as in [MC87], we assume that the network is uniformly 

utilised, that is the traffic on every link between two given stages has the same renewal 

period distribution and that the external arrival processes to the inputs in stage one are 

identical. Let these arrival processes have a renewal period with mean ,,-.1 (i.e. the 
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arrival process have intensity A) and coefficient of variation cO, and let all link queues 

have the same service time distribution with mean I (without loss of generality) and 

coefficient of variation c. Thus, in equilibrium, the arrival process to every link has 

intensity A and the same applies to the departure processes. In this uniform case, the 

particular network topology is of no consequence, of course. The analysis now 

proceeds to compute the coefficients of variation of the interarrival times and 

interdeparture times at each stage i: cai and cdi respectively (l9g). 

First we have Cal = cO by definition. Next, we use an approximate result of 

[KL76] that yields, for 199, 

Cdi2 = Cai2 + 2A.2c2 - A2(cai2+c2) g(A,Cai,C) 

where g(A,x,y) = {
-2(l-A) (I-X)2} 

exp 
31.. x+y 

exnL(l-A) X-I} 
rl x+4y 

(x!>!) 

(x>!) 

We obtain Cai from the splitting of the departure processes from stage (i-I) into two 

followed by their superposition. Results from [Ku79] and [Wh83] then give, for the 

splitting and superposition respectively, 
2 

.2 I _ cd.i-I - I 
cal - - 2(1 + 4(1-1..)2) 

These two equations, together with the initial condition Cal = cO, now give Cai for each 

stage and a result of [Ma68] gives an expression for the mean queueing time in stage i, 

Q; (which excludes the service time): 

Cai2 + 2A2c2 - Cdi2 
Q i = ....:.-"!---'...=.:--=------="'-'--

21..(1-1..) 

Mean transmission time through the network is then 

J +~,T Q; '::"1=1 

This result has proved to be a good approximation for heavy traffic, but poor for light 

traffic when link transmission times are constant. 

4. Analysis of transmission times 

Whilst quantities such as throughput and mean queue lengths can certainly characterise 

well overall network behaviour, the probability distribution of transmission time 

through a MIN is also important to predict various reliability measures. These include 

variability in response times and the probability that network latency will exceed a given 

value - a quantile of the distribution. Unfortunately, time delay distributions are 
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notoriously difficult to derive analytically whilst simulation is inefficient and yields 

estimates which can be unreliable. especially in the often crucial tail region. In this 

section we derive an explicit formula for the probability density function of 

transmission time through the packet-switched delta network considered in Section 3. 

From this we obtain all of its moments and. in particular. its variance. We first 

consider mean transmission time for which we have already obtained enough results. 

4.1 Mean transmission times 

A message's transmission time along a given path in a network is the sum of its sojourn 

times at the servers comprising that path. Therefore. mean transmission time is the sum 

of the mean sojourn times at each server. This is true whether or not the sojourn times 

are independent. Here. of course. we have a closed network in which the sojourn 

times are dependent. 

Now. in the steady state. Little's result [Li6IJ implies that the mean sojourn 

time of a message at any server is the ratio of the server's mean queue length and 

throughput. Mean transmission time then follows from Propositions 3.1 and 3.2. 

However. we can exploit the fact that all service rates on a path through a regular 

banyan are the same. leading to a more efficient algorithm. We therefore have the 

following: 

Proposition 4.1 

Mean transmission time on path 1 •...• m in the closed Markovian queueing network 

under discussion. with service rates lli=1l for 19~. is 
N-\ L p Gm(N-p-l) Gm (p) 

m + .t:~:::... _______ _ 

G(N-l)1l 

where for ~O. Gm (k) is the normalising constant for the subnetwork comprising 

servers 1 •...• m with population k. defined by 

Gm (k) 

m 
Ini=k 

i=l 

ni"O 

and Gm(k) is the normalising constant of the whole network with servers l •...• m 

removed and population k. defined by 
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Gm(k) = L IT [~r 
M i=m+l 
L ni=k 

i=m+l 

ni~O 

Proof 

Mean transmission time is equal to the sum of the mean sojourn times at each server on 

the given path. But by Little's result, each mean sojourn time is the ratio of mean 

queue length to the server's throughput which reduces to 

~m.l ~m ~N-l Gj(N-I-k).k.xjk 
L."j=lllj + L."j=l L."k=O G(N- I)llj 

where the servers in the path are numbered (arbitrarily) I, .. . , m and each Ilj=l. It is 

therefore sufficient to prove that 

Ij!\ I~=o Gj(n-k).k.xjk = I~=o Gm(n- k)Giii(k).k for all n~O 
The left hand side of this equation is the sum of the means of the queue length random 

variables at servers l , ... ,m. This is equal to the mean of the sum of these same random 

variables which is the expression on the right hand side. 0 

It is therefore simple to compute mean transmission times via the appropriate 

normalising constants. In section 4.3, we study the variation of mean transmission 

time along a number of paths through a delta network as the intensity of a hot-spot 

increases. However, to obtain the variance and higher moments, and certainly 

densities, requires a deeper analysis. 

4.2 Transmission time densities 

The problem of finding passage time densities in queueing networks has proved a 

difficult problem which can be solved in closed form only for a small class of 

Markovian networks; see for example [HP9IJ. These must possess the non-overtaking 

property, i.e. be such that no customer behind the customer being timed can influence 

this customer's progress through the network in any way. The delta networks 

considered here have a feed forward connection topology and crossbar switches with 

fixed transmission rates . They therefore satisfy the non-overtaking property and so we 

can apply the following result of [Da82J : 
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Proposition 4.2 

The Laplace transform of the passage time density for the overtake-free path of servers 

numbered (arbitrarily) 1 •. ..• m in a closed Markovian network of M servers with FCFS 

queueing disciplines and population N is 

L 
M m 

I IT (ei1ni IT {-'!L}nj+1 
G(N-l) . 11.). s+llj 

llES(N-I) 1=1 J=1 

o 

Now. for paths in a homogeneous delta network such as ours. all the rates Ili are the 

same and the Laplace transform is a mixed sum of terms of the form (l)n which can 
s+1l 

be inverted by inspection to give a corresponding mixture of Eriangians for the 

transmission time density. We therefore have. with straightforward manipulation: 

Proposition 4.3 

If the centres in overtake-free path (1.2 •.. .• m) in the Markovian network of proposition 

4.2 all have service rate 11. the path's transmission time density function is 

N-I 
Ilme-Ilt ~ tp+m-I 
G(N-I) L..J Gm(N-p-I) Gm(P) Il

P 
(p+m-l)! 

p=o 

From this result we can immediately obtain formulae for moments higher than the mean 

of transmission time. In particular. we use the fIrst two moments to fInd its variance in 

our case study in the next section. 

Corollary 4.4 

For a path of equal rate servers. message transmission time has kth moment equal to 
N-I 

kc; I ~ Gm(N- p-l ) Gm(p) (p+m) ... (p+m-k+l) 
11 (N-I) L..J 

p=o 
o 

We consider numerically a 16-way network. i.e. one having 4 stages of 8 crossbars. 

Thus our queueing network model has 65 servers in total and we set the population to 

100. Notice that this by no means represents saturation since on average each queue 
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would contain about 1.5 messages. Numerical results were computed for hot-spot 

ratios in the range I, corresponding to a uniform delta network, to 8 and for four 

different types of path. (The hot-spot ratio is defined as the ratio of the selection 

probabilities of the hot-pin and of any cold pin). The path types lead to the hot-spot, to 

the pin adjacent to the hot-spot, to the pin adjacent to that pin (two away from the hot­

spot) and to the coldest pin (furthest from the hot-spot). The mean and standard 

deviation of transmission time are plotted in Figure 4.1 for hot-spot ratios I, 1.1, 1.2, 

1.5, 1.8, 2, 3, 4, 8. Transmission time densities were also plotted but are not given 

here. 

me a n 

16. 
hot - spot 

14 . - - - next to hot-spot 

two fr om hot-spot 

bottom pin 

6. 

-L----~----~~----~----~----~----~~----~hot-spot ratio 
2. 3 . 4. 5. 6 . 7 . 8 . 

std dey 

12 . 

10 . 
hot-spot 

8. --~--- next to hot-spot 

~~-.. 
............. ~~ 

two from hot-spot 
bottom pin 

4 . ......... ............. ....... ,- - ----------...::------
JL ____ ~----~-~=-=--=-:-=-=-=-=--~-~-=-=-:-:-:--;-:-:-:-=-~-;-=--=-=-=-~~~hot-spot ratio 

2 . 3 . 4. 5. 6 . 7 . 8. 

Figure 4.1 Mean and standard deviation of transmission time 

This shows that the standard deviation on hot paths has a maximum near the ratio 2, a 

result which is not obvious a priori . The suggestion is that as the traffic in the network 

increases, the hot pin begins to dominate and the network's overall behaviour becomes 
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more predictable. However, a deeper explanation follows from the observation that the 

hot pin's server in our model is the single bottleneck whenever the ratio is greater than 

l. Thus for large populations, the model approaches an open system with Poisson 

arrivals at unit rate from the always busy hot pin to the "other server" (outside the delta 

network) . Messages that select the hot pin in the final stage now depart the network. 

The interesting implication of this is that even paths to the hot-spot do not saturate until 

the very last stage, the hot-spot itself. This is because the arrival rates to all internal 

buffers are less than their service rates and will actually decrease as the hot-spot ratio 

increases - since more network output pins will become idle. Asymptotically, the 

arrival rates will approach those of the open model above and may be computed easily 

from its traffic equations. Notice that these arrivals are non-Poisson in view of the 

feedback which still exists for non-hot paths. It is the decrease in the utilisations of the 

internal links which eventually causes message transmission times to decrease on all 

non-hot paths. 

The hot-spot behaviour observed here is very different from that seen in circuit­

switched networks or packet switched networks with small buffers. In these, 

saturation propagates back from the final stage since complete paths are held throughout 

data transmission in the former case and blocking occurs in the latter. However, we 

noted above that only the hot buffer in the final stage saturates in our idealised model. 

This suggests that only one very large buffer would be necessary in a real system to 

improve performance in the presence of a hot-spot. More generally, the same would be 

true if there were more than one hot-spot: a large buffer need only be given to each of 

the equal honest network output pins. 

5. Conclusion 

The performance provided by multi-stage interconnection networks is paramount since 

they constitute the central component of many parallel computer architectures. The 

design of these networks, as well as their cost, varies widely and performance models 

are essential to predict the cost-effectiveness of various alternatives. This paper has 

classified MINs and their models and introduced two models for packet-switched MINs 

with unlimited buffer space. The first, a standard queueing network model, is exact 

with respect to its assumptions which are rather restrictive. It provides on the one hand 

a standard by which to assess aproximations and has the added benefit that it can 

predict distributions of transmission times. The laner is an advance over previous work 

which has either used simulation, which can be unreliable and is expensive to run, or 

produced only Laplace transforms. Of more immediate use, the asymptotic analysis of 
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section 4.3 suggested an inexpensive way of reducing the degradation introduced by 

hot-spots, by assigning large buffers to the hottest output pin(s) only. 

Secondly, we considered a generally applicable approximate model with much 

milder assumptions and which can be implemented more efficiently. This has been 

found to give accurate predictions for a wide range of traffic patterns and distributions 

of link transmission times. However, it too is restricted to the case of unlimited buffer 

space and other methods are necessary to model MIN s with finite buffers and hence 

blocking. Since our approach is based on standard queueing network theory, existing 

techniques for approximating blocking situations can be incorporated; see [Ak87], the 

references therein, and the Special Issue of Performance Evaluation Journal on 

blocking, 1990. The alternative protocol of circuit-switching is similar to packet­

switching with zero buffer space in that whole paths through a MIN can effectively be 

held by a single message. However, messages can be interleaved through any switch 

and the dependence between switches is less strong. An alternative approach is 

therefore necessary and we consider the case of circuit-switching with partial paths held 

in the next lecture, [HP90]. 

References 

[Ak87] I.F. Akyildiz "General Closed Queueing Networks with Blocking", 

Proc. of the 12th Annual International Symposium on Computer 

Performance Modelling, December 1987, Brussels, Belgium. 

[BCMP75] F. Baskett, K. M. Chandy, R.R. Muntz, F.G. Palacios, "Open, Closed 

and Mixed Networks of Queues with Different Classes of Customers", 

Journal of the ACM 22, 2 (1975) 

[Bu73] 

[Da82] 

[DJ81] 

[FH88] 

J.P. Buzen, 'Computational algorithms for closed queueing networks 

with exponential servers', C. ACM 16,9, 1973 

H. Daduna, 'Passage times for overtake-free paths in Gordon Newell 

networks', Adv. Appl. Prob. 14, 1982 

D.M. Dias, J.R. Jump, "Analysis and Simulation of Buffered Delta 

Networks", IEEE Trans on Computers, Vol. C-30, No.4, April 1981, 

pp. 273-282. 

AJ. Field, P.G. Harrison, Functional Programming, Addison-Wesley 

1988. 



[GN67] 

[G083] 

[Ha86] 

[HF86] 

[HK87] 

[HP90] 

[HP91] 

[HR86] 

[Ja63] 

[Je83] 

[KL76] 

[Ku79] 

III. 22 

Analytical models for multi-stage interconnection networks 

W.J. Gordon, G.F. Newell, 'Closed queueing systems with 

exponential servers', Oper. Res. 15,254 - 265,1967. 

A. Gottlieb, et ai, "The NYU Ultracomputer - Designing an MIMD 

shared memory parallel computer", IEEE Transactions on Computers, 

C-32, 2 (1983), pp. 173-189. 

P.G. Harrison, 'An enhanced approximation by pair-wise analysis of 

servers for time delay distributions in queueing networks', IEEE Trans. 

Compo 35-1, 1986 

P.G. Harrison, A.J. Field "Performance Modelling of Parallel 

Computer Architectures", Proc. of Performance '86 and ACM 

Sigmetrics '86 Conference, May 1986, pp. 18-27. 

S.D. Hohl, P.I. Kuehn, 'Approximate analysis of flow and cycle 

times in queuing networks', in Proc. 3rd Int. Conf. on Data 

Communication Systems and their Performance, Rio de Janeiro, 

(N.Holland), 1987 

P.G. Harrison , N.M. Patel, 'The Representation of multi-stage 

interconnection networks in queueing models of parallel systems', 

accepted for publication in J. ACM. 

P.G. Harrison, N.M. Patel, 'Introduction to computer network 

performance modelling', Addison-Wesley, to appear. 

P. G. Harrison, M. J. Reeve, "The Parallel Graph Reduction Machine, 

ALICE", Proc. Workshop on Graph Reduction, Santa Fe, September 

1986, to be published in LNCS series, Springer-Verlag. 

J. Jackson, 'Jobshop-like queueing systems', Man. Sci. , 1963 

T. Jenq, "Performance of a Packet Switch Based on Single Buffered 

Banyan Networks", IEEE Journal on Selected Areas in 

Communications, December 1983, pp. 273-282. 

W. Kraemer, M. Langenbach-Belz, "Approximate formulae for the 

delay in the queueing system GI/G/l", Proc. 8th International 

Teletra/fic Congress, Melbourne, Australia, 1976. 

PJ. Kuehn, "Approximate Analysis of General Queueing Networks by 

Decomposition", IEEE Transactions on Communications, COM-27, 

No.1, 1979. 



[Li61] 

[Ma68] 

[MC87] 

[Pa81] 

[Pa89] 

[WF80] 

[Wh83] 

III . 23 

Analytical models for multi-stage interconnection networks 

J.D.C. Little, (1961), "A Proof of the Queueing Fonnula L = A. W", 

Operations Research 9 (3), pp. 383-387. 

K.T. Marshall, "Some inequalities in queueing", Oper. Res. 16, 1968. 

D. Mitra, R. Cieslak, "Randomized Parallel Communications on an 

Extension of the Omega Network", Journal of the ACM Vol 34 No.4, 

October 1987, pp. 802-824. 

J.H. Patel, "Perfonnance of Processor-Memory Interconnections for 

Multiprocessors", IEEE Transactions on Computers, October 1981, pp. 

771-780. 

N.M. Patel, "Perfonnance modelling of switching networks", PhD 

Thesis, Imperial College, University of London, 1989. 

c. Wu, T. Feng, "On a Class of Multistage Interconnection Networks", 

IEEE Transactions on Computers, Vol. C-29, No.8, August 1980, pp. 

694-702. 

W. Whitt, "The queueing network analyzer", Bell System Technical 

Journal, 62, 9, Pan 1, 1983. 



III.24 



III . 25 

DISCUSSION 

Rapporteur:~eveCaughey 

After the lecture Professor R. N. Ibbett asked about the value of simulation of 
this type of model. Dr. Harrison suggested that given the very large number of 
switching elements involved, simulation would be very difficult to achieve. He 
had not carried out a simulation of this particular model as the method is an 
exact one. However he did agree with Professor Ibbett that simulation of 
models using approximate methods was necessary to validate those models. 

Professor B. Randell asked Dr. Harrison if he envisaged designers playing an 
active role in the modelling of their designs. What, he asked, did Dr. Harrison 
see as the designer / modeller interface? Dr. Harrison said that the designer 
could use generic models if they existed but thought that changes in 
technology might force the designer to take decisions about the validity of the 
model's assumptions - a risky process for someone without a sound 
understanding of modelling . 
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