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Abstract 

This paper presents an analysis of the performance of the Con­
nection Machine , with special emphasis on estimating the effect of its 
interprocessor communication architecture. A queueing model of the 
network architecture, including the NEWS and ROUTER networks, is 
used to compute the slow-down induced by message exchange between 
processors. Locality of the message exchanges is modelled by message 
sending probabilities which depend on whether a message is sent by a 
processor to another processor placed on the same NEWS network, or 
on the same ROUTER, or at a "remote" location which is only acces­
sible via the ROUTER network. The specific slotted TDMA structure 
of the ROUTER Network communications is taken into account . The 
performance degradation of the Connection Machine as a function of 
the communicatinn and architecture parameters is derived. 

·Work supported in part by a grant from CNRS-C3 
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1 Introduction 

A highly innovative and massively parallel computer system known as the 
Connection Machine 1 [1, 2] was introduced in the mid-eighties as a new 
tool for very rapid symbolic processing. Recent experience has shown that 
this architecture is not only of interest for symbolic or artificial intelligence 
based applications [14, 15], but that when it is equipped with a sufficiently 
large number of floating-point processors it is a highly effective tool for 
large scale numerical computations. 

A simplified representation of the Connection Machine (which we desig­
nate by CM) is given in Fig. 1. The system presented is composed of 64 K 
(K stands for 1028) or 65 536 processors (P), with 16 K floating-point 
processors (FP) . The system is partitioned into four subsystems of equal 
size, each of which is controlled separately via a Micro-Controller. The user 
interface of the system is a set of four host machines. 

The CM architecture is perhaps the most novel massively parallel ar­
chitecture among parallel systems which have been recently developed or 
proposed [3, 4, 5,6, 7]. It is a 'logic-in-memory' architecture which does not 
physically separate the processors from the main memory. Thus, the usual 
memory to processor co=unication problem which is of crucial impor­
tance to conventional multiprocessor architectures, and which is dealt with 
by using high performance interconnection networks, does not exist here. 
On the other hand intense co=unication needs to take place between the 
processors, so that the CM is equipped with a sophisticated interprocessor 
network architecture. 

In [1-9] various highly parallel architectures, including the Connection 
Machine [1,2,8] are described. Co=unication problems related to such 
architectures are discussed in [10], while [11-15] present various applications 
which have been run on the Connection Machine. In [16] the effect of 
co=unication on the performance of the Connection Machine is discussed 
and a queueing network model approach is suggested. 

A simplified CM processor interconnection structure is shown in Fig. 2. 

The key to understanding the architecture of the CM is the communica-

lThe tenn Connection Machine is a registered trade-mark of Thinking Machines 
Corporation. 
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tion mechanism used to interconnect the processors. Processors are inter­
connected in groups of four (Pl,P2,P3,P4, or PI3,PI4,PI5,PI6, etc.) in a 
nearest-neighbour network called the NEWS (North-East-West-South) 
Network. A more complex network called the ROUTER Network is then 
used to provide a co=unication path between any pair of processors. 

In Fig. 2 we have shown a system in which a floating-point processor 
(FP) is attached to each NEWS network so that it may be shared among 
four processors. 

Each group of 16 processors, for instance PI to P16, are connected 
to the same ROUTER which links them to the rest of the system, and in 
particular to any other ROUTER, via a 12-Cube network which implements 
the ROUTER Network. 

Each ROUTER is connected to twelve other ROUTERs via bi-directional 
links. Co=unication from any ROUTER to these twelve other ROUTERs 
is carried out in TDMA (Time-Division-Multiple-Access) mode. The TDMA 
ROUTER Network operates in co=unication cycles, and during any com­
munication cycle (called a 'petit cycle'), a ROUTER can send a message 
to each of the twelve other ROUTERs to which it is connected, using 12 
slots included within one 'petit cycle'. 

For a 64 K (65536) processor machine there will be 4 K (4096) ROUTERs, 
since 64 K = 16 x 4 K and each ROUTER is connected to 16 processors. 
Notice that 4096 = 212 , so that the 12-cube interconnection network allows 
the connection of all the 4 K ROUTERs [9) . 

During one single communication cycle, if free time slots are available 
in the appropriate position of the TDMA algorithm used by the network, 
a message can travel from any ROUTER to any other ROUTER, passing 
via intermediate ROUTERs as it progresses through the network. Thus all 
4096 ROUTERs are potentially fully interconnected during a single com­
munication cycle. 

In reality the co=unication time may be larger because of traffic in 
the network. IT a given dimension (or direction) slot is occupied at a 
ROUTER during a given cycle, other messages needing the same direc­
tion at a ROUTER will queue up and be transmitted in first-come-first- ' 
served order (i.e. the longest waiting message will be transmitted first). 
A ROUTER may also reject a new message just arriving into the network 
because its buffer is full . The ROUTER network is guaranteed to deliver 
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messages once they have entered the network using a store-and-forward 
procedure. 

On the other hand, the NEWS network handles local co=unication 
between neighbouring processors; it thus reduces the load on the ROUTER 
network and provides fast local co=unications between four neighbour 
processors. 

Each elementary processor P is a variable-length operand ALU (arith­
metic and logical unit), though this may change in future versions of the 
machine, and it has a 64 K bit memory. In fact each processor may support 
up to four resident processes; when this is done throughout the machine, 
the CM appears as if it is partitioned among four users. Each processor's 
memory contains a data area and a stack of 1 K bits. Floating-point oper­
ations emanating from anyone of a set of four processors will be forwarded 
to the FP for execution without travelling through the ROUTER Network 
(see Fig. 2). Clearly, each of ROUTER 1 to ROUTER 12 of Fig. 2 will 
have the same interconnection structure as the ROUTER placed in the 
middle of the figure. 

Each of the processors executes 'nano-instructions' which are broad­
cast to all processors via the micro-controllers (see Fig. 1). These nano­
instructions are generated from macro-instructions which are received by 
the hosts. Individual processors can be instructed to mask out certain in­
structions so that it is possible to assign certain computations to certain 
processors . 

Nevertheless, due to the difficulty of addressing a wide variety of instruc­
tions to individual processors, the CM architecture is most appropriate for 
handling SIMD (single-instruction-multiple-data) type parallelism. Thus a 
stream of instructions is sent from the hosts to a large number of proces­
sors simultaneously. Data can be transmitted initially from the hosts to 
the processors, and intermediate results will then flow between processors 
via the NEWS and ROUTER networks as the computation progresses. 

Clearly, the CM appears to be well adapted to situations in which a 
small number of distinct instructions have to be executed on a very large .. 
data set. Typical examples of this type of computation include operations 
on very large matrices, image processing, computer vision, etc. 

The purpose of this paper is to examine the effect of co=unications 
between processors on the effective processing power of the Connection 
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Machine. The nominal processing power is the number of instructions 
executed per unit time assuming that all processors are simultaneously busy 
processing instructions. On the other hand, the effective processing power 
is the rate of instruction execution when communication slowdowns due 
to the exchange of messages is included. We assume that the instructions 
executed, if any, for sending and receiving messages are part of the 'normal' 
work of a processor, and that therefore these do not contribute to the 
communications slowdown. However, we obviously consider that the time 
spent by the processors waiting for messages to arrive from other processors 
constitutes a source of reductions in the processing power of the machine. 
Therefore in this paper we introduce an analytical methdod to evaluate this 
reduction. We then present numerical examples to illustrate this effect. Of 
course, these numerical examples are based on certain parameter choices, 
such as the nominal instruction execution time of a CM processor, the 
number of instructions executed between two successive message exchanges, 
the characteristics of the network, the use of local communications (via the 
same ROUTER on the network, or within the same NEWS network), etc. 
Thus these parameters may vary from one application environment to the 
other. The methodlogy we propose can be used with other parameter 
values than those which we introduce in our examples, and our numerical 
examples are proposed essentially as an illustration of the results. 

Since the key element of the eM is the ROUTER Network, in Section 
2 we present a simple analytical method for evaluating the delay it intro­
duces. The method will be based on an analysis of its performance using 
existing analytical results in queueing theory. In Section 3 we will present 
a theoretical evaluation of the CM processing capacity using the results of 
Section 2, and a workload model which takes into account the aspects such 
an the locality of communication patterns among processors. 

2 ROUTER Network Performance 

The structure of the ROUTER Network (RN) has been presented in the 
previous section. In this section we discuss its performance using a queueing 
model based on the 'server with vacation times' [17,18] . 

A message to be sent through the RN will be considered to be a data 
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element which can enter the RN via some ROUTER i and leave it from some 
ROUTER j in at most 12 co=unication cycles, or in just one cycle if none 
of the slots which the message requires as it progresses through the network 
are alrea.dy occupied. Notice that because we are dealing with a hypercube, 
there may be several paths between i and j which are of the same length. 
We shall denote by k(iJ) the shortest distance, in number of hops, between 
ROUTER i and ROUTER j and by 'II' the average distance traveled by a 
message between any two ROUTER's in the ROUTER Network. 

Let T be the duration of a co=unication cycle and by 8 the length (in 
time units) of a slot, so that T = 128. A message arriving at a ROUTER 
and wishing to proceed to some other ROUTER to which it is directly 
connected (by a single link) observes the following service structure. If the 
message arrives at an instant when no other message which has arrived 
before it is directed to the same next ROUTER, it will wait for some time, 
which will vary between 0 and T , until the appropriate slot comes up; it 
will then be transmitted during a duration of length 8 to the appropriate 
ROUTER. If on the other hand the message finds other messages already 
waiting for the same slot when it arrives, it will be queued until it arrives 
to the head of the queue and will then be transmitted. 

We neglect in our analysis the case where the ROUTER buffer is full so 
that the message cannot enter its queue. Though this situation is possible 
in theory, we assume that it is sufficiently unlikely to occur so that it may 
be neglected. Therefore it will be assumed that all queues considered are 
of infinite capacity, and blocking at queues is neglected. 

The behaviour of the queue of messages at a ROUTER which are di­
rected towards the same neighboring ROUTER (hence using the same slot) 
is a special case of the queue with autonomous service or of walking type 
(also known as the queue with server vacations), which is known in the 
queueing theory literature [17,18) . We shall use a formula derived in [18) 
to analyse it. 

According to these results, and under the only assumption that the ar­
rival of messages to a ROUTER whose destination is a neighbour ROUTER 
constitute a renewal process (Le. interarrival times are independent and' 
identically distributed random variables), we can write the following for­
mula for the steady-state response time W experienced by the messages 
(where W denotes the random variable): 
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(1) 

where T· is a uniformly distributed random variable in the interval [0, TJ, 
V is the waiting time which will be detailed below, and V and T· are 
independent random variables. 

In this formula, V denotes the waiting time in a simple queueing system 
with the same arrival process as the system considered, but with constant 
service time T; note that the waiting time of a message is defined as the 
time it waits in queue before receiving service, while its response time is its 
waiting time plus the transmission time of the message once it has arrived 
to the head of the queue. ~ a consequence of (I), the average response 
time of a message is obtained as: 

E[WJ = E[VJ + ~T + S (2) 

Since any given ROUTER receives messages from its twelve neighbour­
ing ROUTERs the arriving message traffic can be expected to be quite 
random in nature. We shall therefore assume that it is Poisson, since it 
is the superposition of 12 different and independent arrival processes (it 
is well known that the Poisson arrival process can be obtained by the su­
perposition of a large number of independent arrival processes). V is then 
the waiting time of an M / D /1 queue (Poisson arrivals and constant service 
times) and E[VJ is obtained from the well-known formula [17J: 

AT' 
E[VJ = 2(1 _ AT) (3) 

where A is the number of messages arriving per time unit from the ROUTER 
Network (RN) which are directed to the particular ROUTER being con­
sidered. Finally we have the average response time at the ROUTER: 

T [ AT] E[WJ ="2 1 + (1 _ AT) + S (4) 

In order to obtain a measure of the performance of the RN as a whole, 
we have to know what the average path length II is for messages entering 
the network. Clearly we may have a path of length one, if the message 
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leaves the network directly after the first neighbour of the ROUTER from 
which it entered, or it may be as large as twelve. 

For the time being we shall not consider the messages exchanged locally 
via the ROUTER being considered, between the processors to which it is 
directly connected. These, and the effect of the NEWS network, will be 
considered later. 

Now assuming that all ROUTER nodes are equivalent with respect to 
the traffic they carry, we have the RN average response time R to a message 
which enters it: 

ITT [ AT] R = T 1+ (1 _ AT) + ITS (5) 

Of course, the total traffic coming into ROUTER from the RN will be 12A 
on the average if all links carry the same load. 

Let us now turn to the traffic offered by the processors. Let AN be the 
traffic (always in messages per unit time) which one processor sends to the 
other processors on the same NEWS network. Clearly >'N will not enter 
the RN. Let An be the traffic which a processor sends to the twelve other 
processors which are connected to the same NEWS network (see Fig. 2); 
this traffic may cause congestion at the ROUTER, but it will also not enter 
the RN and therefore it does not contribute to >.. Finally, we consider the 
traffic >'. emanating from a processor and directed to anyone of 16 x (4096-
1) other processors and which can travel from a given ROUTER to a final 
destination at any one of the remaining 4095 other ROUTERs. Thus a 
ROUTER will receive on the average, from the processors to which it is 
directly connected, a traffic of 16>.. messages per unit time for transmission 
over the RN. 

Let us examine the relative importance of the quantities involved. In 
order to optimize the performance of the CM, it is reasonable to assume 
that a user would attempt to organize his application so thatfor a given 
value of >'N + >'n + >'. : 

• >'N (the local traffic on the NEWS network) is as large as possible 

• then >'N + >'n is as large as possible 
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• Ar is as small as possible since it is the traffic which will have the 
greatest delay 

• II is as small as possible 

Furthermore an attempt will be made in the application to share the 
load equally among ROUTERs, in order to reduce average response times, 
by using equitable routing through the RNi thus it is reasonable to assume 
that the traffic A carried on all neighbouring links (i.e. 'slot' traffic) is the 
same. The assumptions may not hold in each particular case but they are 
valid on the average for a carefully organised application. 

We can now relate the link traffic A to the preceding parameters. Since 
all traffic emanates from the processors, each ROUTER will receive on the 
average 16ArII messages per unit time, including messages in transit and 
fresh incoming traffic from the processors. Assuming that all 12 links are 
equally loaded we shall have: 

(6) 

As a consequence and after some simplifications the average response time 
to messages entering the RN becomes 

R IIT [ 7 2ArIIT] 
= 12 + (3 - 4ArIIT) 

where we have used the fact that S = T / 12. We see that in order to avoid 
saturation we must have 

3 
A, < 4IIT 

as the stability (or non-saturation) condition on the average number of 
messages per time unit that a processor sends into the RN. 

The approach we propose here yields, rapidly and in closed form, the 
average response time or average network traversal time R for the RN. If we 
choose the time unit to be the duration of the co=unication (or 'petit') 
cycle T, i.e. T = I, the formula for R becomes 

[ 
7 2A,II] 

R = II 12 + (3 _ 4A
r
II) (7) 
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This formula will be used in the sequel for the evaluat ion of the performance 
of the eM. 

If we denote by A the total message traffic emanating from a single 
processor 

then the proportion Ir = Ar / A of messages sent to other processors via the 
RN will be an important factor in the performance of the eM. Similarly, 
the parameter IT will also play an important role. 

Indeed let 1/ be the average message delay over the NEWS network, and 
/ the average message delay for the local interprocessor messages which do 
not enter the NEWS network or the RN, then the overall average delay D 
or response time for a message from a processor to its destination will be 

(8) 

where IN = AN / A , because all messages which do not travel through the 
NEWS network must proceed to the initial ROUTER and then from there 
to another processor incurring a delay /; this is not the case for messages 
which remain on the NEWS network. 

The parameters IN and In = 1- IN - Ir characterize the computations 
which only require communications among neighbouring processors; this 
provides a quantitative characterization of the concept of ' local sphere of 
computation' introduced in [161 . 

3 Highly Balanced Computations 

Intuitively speaking one can expect that the eM performance will be max­
imized for computations in which each processor carries out the same com­
putational step synchronously with as little co=unication as possible. 
The small amount of co=unication should be carried out among proces­
sors which are very close. An example of such a computation, represented · 
by a computation graph, is shown on Fig. 3. 
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Figure 3: A simple highly balanced computation graph 

In this example, which can represent, for instance, the numerical solu­
tion of the heat equation in one-dimensional space and in time : 

8g 8g 82g 
8t = a 8x + b 8x2 ' 9 == g(x,t) 

each processor handles the computation of gi(t) for some i, where h is the 
discretization step of x , and 

gi(t)"" g(ih,t) 

Thus in the example of Fig. 3 processor i computes gi(t) for discretized time; 
it receives messages from processors i - 1 and i + 1, and sends messages to 
processors i - 1 and i+ 1 after each computational step. Other more complex 
examples of the same general form are frequent in numerical algorithms. 

More generally, we shall consider a computational scheme in which that 
each processor computes for a time C, after which it sends messages for 
some time m, and then waits for messages for some time M. We shall 
assume that at each step it sends L messages so that 

A=L/ (C+m+M) 

Even for the very simple example of Fig. 3 we see that all messages cannot 
be sent on the NEWS network; indeed each neighbouring group of four 
processors will send eight messages (we do not consider the information 
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which the processor needs from itself and which is represented by the ver­
tical arrow) of which only six can remain on the NEWS networkj we thus 
have IN = 0.75. Similarly we can see that Ir = 2/32 = 0.0625. 

Assuming perfect synchronization between processors, we shall have M 
given by the formula for D in (8) : 

M = "I + IN(V - "I) + frII [0.583 + (3 _2!i'irTI)] (9) 

This equation in · fact has the variable M on both sides because A is a 
function of Mj it is quadratic in M so that we can solve it easily. Once 
this is done, we can obtain the processing power '1 defined as 'Number of 
Instructions Executed per Unit Time' for the eM on this application as 
follows. If I instructions are executed in time C by each processor, and if 
P processors are used by the application (e.g. P = 16 K or 64 K), then the 
processing power '1 of the eM for this application is given by the formula: 

I.P 
(10) '1=C+m+M 

where C will of course increase with I, though it will depend on the type 
of instructions which are being executed in the application. We can use 
M obtained by substituting (9) in (10) as a function of the parameters 
of the architecture, namely P, "I and v, or of those which depend on the 
architecture of the eM and on the properties of the application such as 
I, C, m, L, I., IN, TI. 

3.1 The lightly loaded ROUTER network 

For the case when the RN is lightly loaded, i.e. AIr ~ 0, we have from (9) : 

M = "I + IN(V - "I) + 0.583TI/r 

For the sake of simplicity we shall assume that the message delay on the 
NEWS network is the same as that for messages which go through the._ 
ROUTER without passing through the RN: "I = v, so that 

M = "I + 0.583TI/r 
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We then have from (10): 

I.P 
TJ = -a-;I~+'---m-+-"I-+---=0-:. 5:-:::8::-3II;:;-;-!. (11) 

where we have taken C = al where a is the nominal time needed to execute 
an instruction. Recall that this formula includes the delay at the RN but 
assumes that no queues form at the ROUTERs. 

In [8] it is indicated that the time necessary to execute a 32 bit add 
instruction on the CM-2 is 21 lUI; therefore we shall choose a = 21 if the 
unit time T is taken to be 1 microsecond. 

Let us first assume that !. = 0, so that no messages are being sent in the 
RN and it has no effect on performance. we then have that the processing 
power is given by 

, P 
TJ = - --;--- ,....,-:: 

a+(m+"I) / 1 
(12) 

Therefore for P=16 K and a = 21, the processing power TJ' varies between 
780.2 MOPS when (m + "1) / I ~ 0.1 and 712.34 MOPS when (m + "1) / I is 
equal to 2. We see that though this peak performance is sensitive to local 
co=unications, the effect is relatively moderate. 

In Fig. 4 we plot TJ' against (m + "I) / I for a = 21. 

Let us now consider the effect of the RN. To do so we take the ratio 
11 / 11' to examine the reduction in performance due to the RN: 

11 [ 0.583II!.] - 1 
- = 1 + --;-,---''-'-
11' al + m + "I 

(13) 

The above relation allows us to correct the curves given in Fig. 4 in order 
to take into account the slow-down introduced by the RN. 

On Fig. 5 we plot 11/11' as a percentage, for 1= 1, 1= 10 and 1=100 
instructions, a = 21, as well as for a = 1 and a = 0.1, against II!. which 
varies from 0 to 12 (its largest possible value when II=12 and !.=1). 

These two last values of a are of no practical interest today, but serve 
to indicate the degradation of the RN on a hypothetical future very fast · 
CM. 

We see that for a = 21, which corresponds to the 21 microsecond in­
struction execution time, the RN has no practical effect on performance 



II.31 

MF1..0PS Processing Power. 16 K Processors 
780 

Alpha = 21 Microseconds 

760 

740 

720 

700 

o 1 2 3 4 

Figure 4: 'I' processing power in MOPS of the Connection Machine without 

ROUTER network access 

100 

50 

"/1"/' percentage performonce 

I- '00 
---- ____ a = 0.' 

==-~ (m+ylll-' 

_______ ~=(m+Y1II-O.25 
_ (m ..... )/:r. • 1 

d ~:/.I :I:: 10 . ) 

1-'0 a -l 
(m+ylll" 

3 6 9 12 1T f, 

Figure 5: Percentage reduction in processing power of the eM due to the RN 
slow-dawn without queueing at the ROUTER 



II . 32 

degradation since ,.,' /,., is reduced at most by 3 percent if I is larger than 
ten instructions. The degradation only becomes significant for a small value 
of I if we had a much faster machine with 1 microsecond (a = 1) instruction 
execution times. 

3.2 A simple concrete example 

Consider the computation graph shown on Fig. 3. Each individual task, 
executed on processor i at some time t, takes the form: 

begin repeat indefinitely 
wait for messages from i-I and i + 1; 

receive messages 
gi(t) +-- G[gi_l(t), messages]; 
send messages to i-I and i + 1; 

end . 

Here G is the function computed by each of the processors at each step. 
With respect to the discussion of the previous section, the following times 
can be associated with this code. The wait for instruction takes time M. 
The code beginning with receive a.ild including the assignment gi(t) +-­

G[.], will execute I instructions taking (on the average) aI time units . 
The send instruction will take time m, including the time necessary for 
processing all message sending but excluding the principal transmission 
time; indeed, we assume that all messages sent are guaranteed to arrive so 
that a processor does not need to wait to be informed that a message it has 
sent has effectively arrived. From Fig. 3 we havelN = 0.75, Ir = 0.0625 
and L = 2 Taking unit time to be T = 1 microsecond, "f = 1, and a = 21 (so 
that we have a 21 microsecond instruction execution time), I = 100, m = 1, 
we see that Air is very small so that 

M ~ 1 + 0.0364II 

For this application with some care it should be easy to implement the 
application so as to obtain II = 1.5; indeed for each message entering the 
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RN, it seems possible to address it either to a ROUTER at a single hop 
distance or a two hop distance. We then have M ~ 1.05. From (11) we 
have " ~ 761.1 MOPS for a 16 K processor CM . 

4 Conclusions 

In this paper we have considered the performance of the Connection Ma­
chine architecture. Special emphasis has been placed on the performance 
degradation which may be expected due to communication delays between 
processors. Hence special attention has been placed on the architecture of 
the Connection Machine communication network iitcluding the NEWS and 
ROUTER networks. In particular, the TDMA protocol of the ROUTER 
Network has been modelled using a queueing model with vacation times. 
Both local communication, among processors connected to the same NEWS 
network, and remote communication via the ROUTER network has been 
considered. This has lead us to present a quantitative characterization of 
the concept of "local sphere of computation" introduced for the CM in [16). 

The communication delay between processors has been computed from 
a queueing model and introduced into the model of the global architecture. 
This has yielded a formula for the performance degradation of the CM pro­
cessing power as a function of communication locality and as a function 
of parameters of the architecture. A simple example of a SIMD computa­
tion has been provided in order to illustrate the methodlogy we have have 
developed. 

Our example shows that with some care, and assuming parameters cur­
rently annouced for the CM, this degradation can be quite small as long as 
the number of arithmetic operations I executed between successive com­
munication steps exceeds 10. For lower values of I the degradation can 
become quite significant important. 

5 References 

[1) Hillis, W .D., 'The Connection Machine', MIT Press, Cambridge, Mass., 
(1985) . 



II . 34 

[2] Hillis, W.D., 'The Connection Machine: A Computer Architecture 
Based on Cellular Automata', Physica, 10, 213-228, (1984). 

[3] Frenkel, K.A., 'Evaluating Two Massively Parallel Machines' , 
Communications of the ACM, Vol. 29, no. 8, (August 1986). 

[4] Batcher, K.E., 'Architecture of a Massively Paralllel Processor', 
Proceedings of the 7th Annual Int . Symp. on Computer Architecture, 
La Baule, France,(May 1980). 

[5] BBN Laboratories, 'Butterfly Parallel Processor Overview', BBN, 
Cambridge, Massachusetts, (December 1985) . 

[6] Intel Corporation, iPSC System Overview, (October 1985) . 

[7] Flanders, P.M ., Hunt S.F ., Reddaway, S.F. and Parkinson D., 'Effi­
cient High Speed Computing with the Distributed Array Processor', 
Proceedings of the Symp. on High Speed Computer and Algorithm 
Organization, University of Illinois, Academic Press, (1977). 

[8] 'Connection Machine Model CM-2 Technical Su=ary', Thinking 
Machines Technical Report HA87--I, Thinking Machines Corporation, 
Cambridge, Mass., (April 1987) . 

[9] Broomell, G. and Heath, J.R., 'Classification Categories and Histor­
ical Developement of Circuit Switching Topologies', Computing Sur­
veys, Vol. 15, (June 1983) . 

[10] Levitan, S.P., 'Measuring Co=unication Structures in Parallel Ar­
chitectures and Algorithms', in The Characteristics of Parallel Algo­
rithms, pp. 101-137, Jamieson, L.H. , Gannon, D.B. and Douglas, 
R.J. (eds), MIT Press, Cambridge, Mass.,(1987) . 

[11] Little, J.J ., 'Parallel algorithms for Computer Vision on the Con­
nection Machine', AI Memo 928, Massachusetts Institute of Tech­
nology, Artificial Intelligence Laboratory, Cambridge, Massachusetts, 
(November 1986). 



II . 35 

[12] Flynn, A.M. and Harris, J.G., 'Recognition Algorithms for the Con­
nection Machine', Proceedings of the Ilth Int . Joint Con/. on Artificial 
Intelligence, Los Angeles, CA, 57-60, (August 1985). 

[13] Harris, J.G. and Flynn, A.M., 'Object Recognition Using the Con­
nection Machine's Router', Proceedings IEEE 1986 Conf. Computer 
Vision and Pattern Recognition, 134-139, (May 1986). 

[14] Stanfill, C. and Kahle, B., 'Parallel Free Text Search on the Connec­
tion Machine System', Communications of the ACM, Vol. 29, No. 12, 
(December 1986) . 

[15] Stanfill, C. and Waltz, D., 'Toward Memory-based Reasoning', 
Communications of the ACM, Vol. 29, No. 12, (December 1986). 

[16] Upton, R.A. and Tripathi, S.K., 'On the Performance Evaluation of 
Fine-Grained SIMD Computer Architectures: an Analysis of the Con­
nection Machine', High Performance Computer Systems, Gelenbe,E. 
(ed.), Elsevier Science Publishers, North-Holland, Amsterdam, (1988) . 

[17] Gelenbe, E. and Mitrani , 1. , Analysis and Synthesis of Computer Sys­
tems, Academic Press, London and New York,(1980). 

[18] Gelenbe, E. and Iasnogorodsky, R. 'A Queue with Server of Walking 
Type' , Annals de l'Institut Henri Poincare, Serie B (ProbabiliU et 
Statistiques), Vol. XVI, No.1, 63-73, (1980). 



II.36 



II . 37 

DISCUSSION 

Rapporteur: Mustapha Packzad 

After the talk Professor Gelenbe was asked by Professor Randell about the 
gains made by this particular analysis of the Connection Machine which differ 
from other similar analyses carried out by others. Professor Gelenbe replied 
that there have been no previous analyses of the Connection Machine : 
experiments have been carried out on the machine, but they have not been 
analysed. There have been many benchmarks but this is the first analysis He 
added that "it is very hard to match figures with figures"because of the large 
numbers of parameters involved in the measurements such as machine 
parameters. Some of these parameters are hard to discover. What the analysis 
does confirm is that performance reduction is substantial with respect to the 
number of components. 

Another participant asked how the results of the analysis compare with 
experimental results and whether the results are optimistic. Professor Gelenbe 
replied that the order of magnitudes shown by the results of the analysis is 
comparable with those obtained by experiments. The answer to the second 
part of this question was that the results are optimistic because of the 
assumptions of perfect SIMD and that communication is not synchronised. The 
results would be much worse if the communications were synchronised . This is 
consequently a best-case analysis rather than a worst-case analysis. 

A participant commented on the fact that some manufacturers present 
performance curves which are near-linear with increasing numbers of 
processors, but do not mention that there would be a fall in the performance if 
the curve was to be extended beyond the number of processors shown. 
Professor Gelenbe replied that with 4K processors and interconnection 
networking the performance is really quite good . 
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