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Unlverslte Rene Descartes (Paris V) 

Abstract We introduce a new class of queueing networks in which 
customers are either "negative" or "positive". A negative customer 
arriving to a queue reduces the total customer count in that queue by 
one if the queue length is positive; it has no effect at all if the queue 
is empty. Negative customers do not receive service. Customers 
leaving a queue for another one can either become negative or remain 
pos itive. Positive customers behave as ordinary queueing network 
customers and receive service. We show that this model with 
exponential service times, Poisson external arrivals, with the usual 
independence assumptions for service times , and Markovian customer 
movements between queues , has product form. It is quasi-reversible 
in the usual sense, but not in a broader sense which includes all 
destructions of customers in the set of departures. The existence and 
uniqueness of the solutions to the (non-linear) customer flow 
equations, and hence of the product form solution, is discussed. 

Keywords and phrases Queueing networks, product form , work 
cancellation , negative customers. 

1. Introduction 

Consider an open network of queues with n servers which have 
mutually independent , and iid exponential service times of rates r(1) , 
... , r(n). Two types of customers circulate in the network: "positive" 
and "negative" customers. External arrivals to the network can either 
be positive customers which arrive to the i-th queue according to a 

1) This research was supported by 1he Dis1ributed Algorithms Section of C3·CNRS (French 
National Program on Parallel ism and Concurrency). 

2) Author's address: Ecole des Hautes Etudes en Inlormatique, Universi te Rene Descartes (Paris 
V), rue des Saints-Peres, 75006 Paris . 
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Poisson process of rate A(i), or negative customers which constitute 
a Poisson arrival process of rate A.(i) to the i-th queue. A customer 
which leaves queue i (after finishing service) heads for queue j with 
probability p+(i,j) as a positive (or normal) customer, or as a negative 
customer with probability p-(i,j) , or it will depart from the network 
with probability d(i). Let p(i,j}cp+ (i,j}+p-(i,j); it is the transition 
probability of a Markov chain representing the movement of customers 
between servers. We shall assume that p+(i,i)=O and p-(i,i)=O; though 
the former assumption is not essential we insist on the fact that the 
latter indeed is. Clearly we shall have 

kj p(i,j) + d(i) = 1 for 1~i~n 

Positive and negative customers have different roles in the network. 
A negative customer reduces by 1 the length of the queue to which it 
arrives (i.e. it "cancels" an existing customer) or has no effect on the 
queue length if the queue is empty, while a positive or "normal" 
customer adds 1 to the queue length . Thus negative customers do not 
require service. The queue length is constituted only by positive 
customers and their service is carried out in the usual manner. 

The model is equivalent to the following queueing network with FCFS 
service centers. Service times are exponential of rate (A.(i) + r(i» at 
queue i. A customer which finishes service at queue i leaves the 
network by itself with probability (r(i)d(i) + A.(i»/(A.(i) + r(i», or it 
leaves the network together with a customer from queue j with 
probability r(i)p-(j,i) / (A.(i) + r(i» , or it jo ins queue j with probability 
r(i) p+ (j, i) / (A. (i) + r(i» . External (normal) customer arrivals occur 
according to a Poisson process of rate A(i) at queue i. 

The model we introduce is a new generalisation of standard [1 ,2] 
queueing network models widely used in computer and communication 
system performance modeling and in operations research, which have 
only "positive" customers. We show that it has a specific kind of 
product form : for the open network the stationary probability 
distribution of its state can be written as the product of the marginal 
probabilities of the state of each queue. Positive customers can be 
considered to be resource requests , while negative customers can 
correspond to decisions to cancel requests for resources . Our study 
has been motivated by the analogy to neural networks where each 
queue represents a neuron . Positive customers moving from one queue 
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to another represent excitation signals, while negative customers 
going from a queue to another represent inhibition signals. 

2. The results 

Theorem 1 Let 

(1 ) qi:. A+(i}/[r(i} + A-(i}]. 

where the A + (i), A -(i) for i = 1, ... , n satisfy the following system of 
non-linear simultaneous equations : 

Let k(t} be the vector of queue lengths at time t, and k = (k1, ... , kn) 
be a particular value of the vector; let p(k} denote the stationary 
probability distribution p(k} = lim t-> •• Prob [ k(t} = k 1 . 

If a unique non-negative solution {A +(i), A -(i)} exists to equations (2) 
such that each qi < 1, then : 

(3) 
n 

p(k} = n [1-qil qiki 

i=1 

We omit the proof, which follows standard techniques [1,2]. Since 
{k(t}: t~O} is a continuous time Markov chain it satisfies the usual 
Chapman-Kolmogorov equations ; thus in steady-state it can be seen 
that p(k} satisfies the following global balance equations: 

(4) p(k} Li [ A(i} + (A(i) + r(i}}1 [ki>O] ] 

= Li [p(k+i}r(i}d(i} + p(k- j}A(i}1 [ki>O] + p(k+i} A(i} 

+ Lj { p(k+- jj }r(i}p+(i,j)1 [kj>O]+ p(k++ij}r(i}p-(i,j) 

+ p(k+i}r(i}p-(i,j}1 [kj=O] }] 

where the vectors used in (4) are defined as follows : 

k+ i = (k1, · .. , ki+1, ... , kn) 

k -i = (k1, ... , ki-1, ... , kn) 

k+ -ij = (k1, '" ,ki+1, .. . , kf 1, ... , kn) 
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and 1 [ X ] is the usual characteristic function which takes the value 1 
if X is true and ° otherwise. Theorem 1 is proved by showing that (3) 
satisfies this system of equations. 

Remark 1 Consider a closed network for which P = {p(i,j)l1 sJ,j".n is 
the transition probability matrix of an ergodic Markov chain. Then if 
there exists some p-(u,v»O, it follows that p(k) = ° for all vectors k 
except for the null vector: p(Q.) = 1. This statement is obvious, since 
in the long run the network will be empty. Indeed, let K(t) - Li ki(t); 
if there exists a p-(u,v»O, then P[K(t+'t) < K(t)] >0 for each 't >0, so 
that lim to> 00 P[K(t) = 0] = 1. As a consequence , we see that the only 
closed networks which are of interest are those for which either all 
p-(u,v)=O, so that they reduce to standard closed Jackson networks, or 
those for which P is not ergodic so that positive customers may 
remain in one part of the network. 

2.1 Feedforward networks 

Let us now turn to the existence and uniqueness of the solutions A+(i), 
A -(i), 1~i~n to equations (1 ),(2) which represent the average arrival 
rate of positive and negative customers to each queue for the open 
model, and the average number of visits of a customer to each queue 
for the closed system. An important class of models is covered by the 
following result concerning feedforward networks, A network is said 
to be feedforward if for any sequence i1, .. . ,is , ... , ir, ... , im of queues, 
is=ir for some r>s implies that 

m-1 
IT p(iv,iv+1) = ° 
v=1 

Theorem 2. If the network is feedforward , then the solutions A + (i), 
A -(i) to equations (1), (2) exist and are unique. 

Proof For any feedforward network, we may construct an isomorphic 
network by renumbering the queues so that queue 1 has no 
predecessors (i.e. p(i,1) = ° for any i), queue n has no successors (i.e. 
p(n ,i) = ° for any i) and for any i we have p(i,j) = ° if j<i. Thus in the 
isomorphic network, a customer can possibly (but not necessarily) go 
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directly from queue i to queue j only if j is larger than i. For such a 
network. the ).. + (i) and)" -(i) can be calculated recursively as follows: 

- first compute )..+(1) = A(1) • ),,-(1) = ),,(2). 

- 1b.M for each successive value of i such that).. +(i). ).. -(i) have not yet 
been calculated proceed as follows; since the qj for each j<i are 
known. we compute 

)..+(i) = Lj<i qjr(j)p+U.i) + A(i). )..-(i) = Lj<i qjr(j)p-U.i) + )"(i) 

This completes the proof since we have provided a procedure for 
calculating in a unique manner the solution to (1) and (2) for a 
feedforward network. 

2.2 Balanced networks 

We now consider a special class of networks . with feedback. whose 
customer flow equations have an unique solution. We shall say that .a. 
network with negative and positive customers is balanced if the ratio 

is identical for any i=1 •...• n . This in effect means that all the qi are 
identical. 

Theorem 3 The customer flow equations (1 ).(2) have an unique 
solution if the network is balanced. 

Proof From (1 ).(2) we write 

(6) qi = [L j qjr(j)p+(j.i) + A(i) ]1 [ L j qjr(j)p-(j.i) + )"(i) + r(i)] 

If the system is balanced . qi = qj for all i.j. From (10) we then have 
that the common q = qi satisfies the quadratic equation: 

(7 ) q2 R-(i) + q[)" (i) + r(i) - R+(i)] - A(i) = 0 

where R-(i) = L j r(j)p-(j.i). R+(i) = L j r(j)p+(j.i) . The positive root of 

this quadratic equation. wh ich will be independent of i. is the solution 
of interest: 
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q = {(R+(i) - A(i) - r(i)) + [(R+(i) - A(i) - r(i))2+ 4 R- (i)A(i) ]1 /2}/2R 
( i) 

2.3 Quasi-reversibility 

The usual definition of quasi-reversibility (QR) [4) is the following . 
Let QA,QD be subsets of the set of state transition rates q(k,k') (i.e . of 
the elements of the infinitesimal generator Q of the network): Q = { 
q(k,k'): k,k' state vectors of the network}, such that q(k,k') e QA iff 
the transition from k to k' occurs when a positive customer arrives to 
the network. Similarly q(k,k') e Q D if the transition from k to k' occurs 
with a customer's real departure, i.e. a positive customer leaving the 
network from one of the servers towards the outside. Following [4) , 
but with slightly different notation adapted to our problem, we shall 
say that a network is QR iff for some positive real numbers A,1l the 
following two conditions are satisfied : 

- Lk' q(k,k')1 [q(k,k') e QA) = A, for all k, 

- Lk p(k)q(k,k')1 [q(k,k') e QD) = IIp(k') for all k' . 

Theorem 
customers 
qi<1. 

4 The queueing network with negative and positive 
is QR , if there exists an unique solution to (1 ),(2) with 

Proof The property of the arrival instant transitions of positive 
customers is obvious, and A is merely A(i) . For the real departure 
transitions D, write for any k' : 

Lk p(k)q(k,k')1 [q(k,k') e QD)/p(k') = Li qir(i)d(i) 

which establ ishes the resu lt. 

The definition g iven above of QR is not intuitively satisfactory for our 
model, since "departures" now result also from the arrivals of 
negative customers to a queue. Unfortunately our network is not QR in 
the more general sense given below. 

Denote by D' the set of all state transitions with destruction of 
pos it ive customers plus departures : D' = { (k++ij ,k) , (k+j,k) for all i,j } 
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and let OD' be the corresponding subset of the state transition rates. 
We shall say that a network with negative and positive customers is 
OR in the sense of (a),(b) iff there exist positive real numbers A.,~ 

such that: 

(a) Lk' q(k,k')1 [q(k,k') E OA) = A., for all k, 

(b) Lk II k-k'il p(k)q(k,k')1 [q(k,k') E OD') = ~p(k') for all k', where II k-k'il 
is the difference between the total number of customers in k' and k. 

Notice that in (b) we take into account the fact that transitions from 
some state k++ij to some other state k are caused by the departure of 
two customers, i.e. II k+ + ij - kll = 2. We will call this quasi
reversibility "OR in the sense of (a),(b)". 

We may also choose to define quasi-reversibility by identifying all 
departure instants, without counting the number of departures; (a) 
will not change, but (b) will be replaced simply by: 

(c) Lk p(k)q(k,k')1 [(k,k') 'E D') = ~p(k') for all k', 

which we call "OR in the sense of (a),(c)". 

Remark 2 The class of queueing networks with positive and negative 
customers are not OR in the sense of (a),(b), or in the sense of (a),(c). 

Proof It will suffice to show that (b) and (c) are not satisfied for the 
two queue network with p+(1,2)=p+(2,1)=d(1)=d(2)=0. Dividing both 
sides of (b) by p(k'), we have that for any k' = (k'1,k'2), the left-hand
side of the resulting equation can be written as: 

Lk p(k)q(k,k')1 [(k,k') E D')/p(k') 
= 2q1 q2[r(1 )+r(2)) if k'pO ,k'pO , 
= 2q1 q2[r(1 )+r(2)) + q1 r(1) , if k'pO, k'2=0 
= 2q1 q2[r(1 )+r(2)) + q2r(2) , if k'1 =0, k'pO , 
= 2q1 q2[r(1 )+r(2)) + q1 r(1) + q2r(2) , if k'1 =0, k'2=0 . 

where q1 = A(l) / [r(1 )+q2r(2)). q2= A(2) / [r(2)+q1 r(1 )). Obviously each of 
these terms will be different as long as both q1 r(1) and q2 r(2) are 
non-zero, which can easily be shown. Hence (b) cannot be satisfied. 
The same can be written and shown for (c). OED 
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Remark 3 The class of feedforward queueing networks with positive 
and negative customers is not OR in the sense of (a),(b) or (a),(c). 

Proof Consider now the two queue feedforward network with 
p-(1,2)=1, p+(2 ,1)=p-(2,1)=0, d(1)=0, d(2)=1. In order to verify (b) 
write 

1\ p(k)q(k,k')1 [(k,k') E D']/p(k') 
= 2q1 q2r(1) , 
= 2q1 q2[r(1 )+r(2)] 
= 2q1 q2[r(1 )+r(2)] 
= 2q1 q2[r(1 )+r(2)] 

if k'pO,k'2>O , 
+ q1 r(1) , if k'pO, k'2=0 , 
+ q2r(2) , if k'1 =0, k'2>O , 
+ q1 r(1) + q2r(2) , if k'1 =0, k'2=0 

2.4 Existence and uniqueness of the network solution 

We now address the issue of uniqueness of the product form solution 
of the network, whenever it can be shown to exist. Then existence 
will be shown for the class of "hyperstable" networks. 

Remark 4 If the 0 < qi<1 solution to (1),(2) exist for i=1, ... ,n, then 
they are the unique solution. 

Indeed, since ( k(t): t~O } is an irreducible and aperiodic Markov 
chain, if a positive stationary solution p(k) exists, then it is unique. 
By Theorem1, if the 0 < qi<1 solution to (1 ),(2) exist for i=1, .. . ,n, then 
p(k) is given by (3) and is clearly positive for all k. Suppose now that 
for some i there are two different qi ,q'i satisfying (1 ),(2) . But this 
implies that for all ki , lim t.> oo P[ ki(t)= 0] has two different values [1-
q i] and [1-q'i] , which contradicts the uniqueness of p(k); hence the 
resu It. 

We shall say that a network is hyperstable if the following property 
holds 

(8) 0 < r(i) + A.(i) > A(i) + L{(j)p+U,i) , for all i=1 , ... ,no 

Theorem 5 If the network is hyperstable then the customer flow 
equations (1) , (2) always have an unique solution with qi < 1. 

Proof The proof is based on a method for proof of existence of non
linear equlibrium equations . It uses the n-dimensional vector 
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homotopy [5] function H(q,x) for a real number 0s.x<1 . Let us define 
the following n-vectors: 

q = (q1, ... ,qn), F(q) = (F1 (q), ... , Fn(q)) 
where 

Fi(q) = [Lj qjr(j)p+U,i) + A(i) ]1 [ Lj qjr(j)p-(j,i) + A(i) + r(i)] 

The equation we are interested in is q = F(q) which is identical to (1), 

(2). Let 0 = [O,1]n, and 0 = D° U 00 where 00 stands for the boundary of 

0, and D° is the set of interior points. We shall prove that q = F(q) has 

a solution in D° when the network is hyperstable. Using Theorem 3.2.1 
of [5] (which is a Leray-Schauder form of the fixed-point theorem). 
the solution to a non-linear equation q = F(q), where F(q) : Rn -> Rn, 
exists in some compact subset 0 of Rn if: 

(i) F(q) E C2 in 0, 
(ii) The homotopy function H(q,x) = (q-y)x + (F(q)-q)(1-x) for a real 
number 0.$.x<1, where y is an interior pOint of 0, is such that the 
solution of H(q,x)=O can never touches the boundary 00 as x varies 
from 0 to 1. 

Notice that each Fi(q) is the ratio of two first degree polynomials , 
with non-negative coefficients, in the elements of q; since [ A( i) + 
r(i)] > 0, its denominator does not have any zeros in D. Therefore (i) is 
satisfied . The burden of the proof is thus on establishing (ii) . 

Choose y = (Y1 , ... , Yn) where 

Yi = [Lj r(j)p+(j,i) + A(i)]1 [ A(i) + r(i)] 

By assumption 0 < Yi < 1 for all i = 1, .. ,n , since the network is 
hyperstable. Clearly H(q,O) = q-y and H(q ,1) = q-F(q). Consider 

H-1 = {q : qED, H(q,x)=O and 0.s.x<1} 

We can show that H-1 and 00 have an empty intersection , i.e. as x is 
varied from 0 towards 1 the solution of H(q ,x) if it exists does not 
touch the boundary of D. To do this assume the contrary; this implies 
that for some x = x· there exists some q = q' for which H(q', x' ) = 0 
and such that qj" = 0 or 1. If qi' = 0 we can write 
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- (1-x·)Yi - x·Fi(q·) = 0, or x·J(1 - x·) = -YiJFi(q ·) < ° => x· < 0, 

which contradicts the assumption about x. If on the other hand q( = 1, 
then we can write 

- (1-x · )(1-Yi) - x· (1-F i(q ·» = 0, or x·J(1-x · ) = -(1-Yi)J(1-F i(q · » < ° 
=> x·< ° 

because (1-Yi) > ° and ° < Fi(q · ) < Yi so that (1-F i(q·» > 0, 
contradicting again the assumption about x. Thus H(q,x) .. ° cannot 
have a solution on the boundary 8D for any 0.s..x<1. Thus we have 
established (ii), and proved the existence, and hence the uniqueness of 
the stationary solution of a hyperstable network. 

3. Conclusions 

We conjecture that within the framework of the model studied in this 
paper, the customer flow equations (2) have an unique solution , under 
appropriate stability conditions, even for the most general case with 
feed-back. However this is not obvious to establish in a direct manner 
and requires perhaps a more abstract approach. Extensions of this 
model to the usual state dependent service disciplines, multiple 
classes, and general service time distributions with specific service 
disciplines [3) should be studied; they are not obvious because of the 
non-linear nature of the customer flow equations. Variants of this 
model for a single server queue with general service times are 
discussed in [6) . 
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DISCUSSION 

Rapporteur: Mustapha Packzad 

After the talk Professor Gelenbe was asked by a participant about prey models 
and combat situations. He replied by saying that these involve the concept of 
population models which assume that the members of the population die of 
natural death but do not introduce elements into the network which kill (i .e .. 
negative customers) . He added that he has considered these concepts and that 
there are interesting links with Petri nets. 

The next question was posed by Dr . Mitrani and concerned threshold 
modelling. Professor Gelenbe replied that the solution is formally equivalent to 
a zero customer threshold and mapping back to other threshold models is 
possible . 

Dr. Harrison enquired whether it would be useful to have a neuron fire a batch 
of signals rather than a single signal. Professor Gelenbe replied that this would 
be useful and that one signal generates closely related batches. This is what 
happens in reality and this generation of multiple signals would be interesting 
to have. A neuron does not maintain its potential when it fires : The potential 
first goes slightly negative, then highly positive and eventually settles down. 
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