
TIMING CONSIDERATIONS WILL DAMAGE YOUR PROGRAMS

HOWTO COPE WITH MANY PROCESSORS IN NO TIME AT ALL

Rapporteur: First Lecture

Second Lecture

WMTURSKI

M Pietkiewicz-Koutny

M Koutny

VIII

TIMING CONSIDERATIONS WILL DAMAGE YOUR PROGRAMS
OR

HOW TO TRADE CLOCKS FOR CHIPS

W. M.Turski
Institute of Informatics

Warsaw University

The traditional view of computation has been that of input/output
transformation. Hence the abstract paradigm, variously represen
ted as Turing machine, Hoare triple, Dijkstra predicate transfor
mer, function application etc. Hence also the classical problem
of program execution termination, the root of distinction between
partial and total correctness, apparent unidirectionality of both
control and data flows. As long as the act of computation is
performed by a single processor, this view is perfectly adequate;
it also proved very productive in terms of theories, programming
language design and programming practice. Above all, it led to
sound methodological developments, which - contrary to widespread
lamentations - have resulted in vast improvements in most as
pects of software over not quite half century of electronic
information processing.

However, the traditional view suffers from two intrinsic
limitations: it cannot incorporate any notion of time and it does
not extend to essentially multiprocessor environments. Actually,
it may be argued that these two limitations are in fact very
closely related. Indeed, no physical notion of time can apply in
a system that has fewer than two agents capable of autonomous
(sponte suum) action. A sole agent experiences no measurable
time; the question whether an existential, philosophical notion
of time applies in such a case is best left outside the scope of
these notes.

A program can be proven correct with respect to its specification
only insofar as both program and specification are considered as
formal objects. There is no way in which the 'real' time (astro
nomical epochs or durations) can be formalized. Logical calculi
are impervious to notions of time: various temporal logics are
merely about various orderings on discrete events. Thus we cannot
prove any timing properties of a program, at least not in the
sense in which we can prove its formally expressible properties .
We can prove that a program execution eventually terminates, or
even that it terminates after at most so many cycles. We cannot
prove that 'eventually' is before next Friday noon. If we have a
reasonably good complexity analysis of a program and of all
supporting layers of software we may estimate the number of
machine cycles needed to execute it. If we know - experimentally,
or on trust - the duration of a machine cycle, we may estimate
the running time of this program. But an estimate depending on an
experiment and/or trust is not a proof.

Any knowledge about real time properties we may possess is not
about programs but about programs implemented on a computer. As
such, it is essentially experimental and depends on the proper-

VIII.l

ties of the machinery - it certainly does not allow any degree of
portability. Indeed, as we cannot include in our programs any
absolute tests for time epochs or intervals, we cannot even
program in a time-safe way similarly as we condition our software
to abort if the machinery does not support sufficiently large
integers, sufficiently many different addresses, or performs
arithmetic operations in an erratic way.

Thus, whenever we make any assumptions about any timing proper
ties of the software, we are on intrinsically more dangerous
grounds than in any other aspect of our risky profession. In
fact, the scope for catastrophic errors of judgement in time
sensitive software is so large and fundamentally irreducible that
any inclusion of time-related features should be simply avoided.

Can we do so? I am convinced that yes, we can avoid any conside
rations of time in programming. (Of course, this is not to say
that we should avoid concerns of efficiency: heap-sort program is
provably more efficient than naive-sort program, and hence 'fa
ster' in a very large class of implementations.)

In these notes, I shall attempt to illustrate three methods of
avoidng time-related considerations in program-design:

I. By undoing unnecessary simplifications.
2. By concentrating on local tasks.
3. By not worrying about the next step.

A lot of timing considerations are thrust on program designers by
the existing practices in the application domains, chiefly (but
not exclusively) in control engineering. Quite typically, an
application problem can be clearly stated in its natural var
iables (such as pressure, temperature, chemical composition etc.)

- given that Q(x,y •...• z)
- by means of available transformations

- achieve R(x.y •...• z)
- maintaining P(x.y •...• z)

f(x.y •...• z).
g(x.y •. . .• z).

h(x.y •...• z)

This is. of course. a perfect starting point for the design of a
program . Very often. however. the problem is presented as already
'simplified' by resolving the relationships between the natural
variables via equations in an independent variable - time. In
general. the the simplification aim is to determine 'controls'

cl(t.xO.yO • . . . zO).
c2(t,xO,yO •. . . zO),

cN(t,xO,yO, ... zO)

VIII.2

· I

and a constant T, such that application of controls along the
trajectory starting at time t=tO in a state (xO,yO, . .. zO) that
satisfies condition Q(xO,yO, ... zO) will result at time t=T In a
state satisfying condition R. Also in general, this goal tu r ns
out too difficult to achieve. A number of further simplifications
are then introduced; very often the controls need to be approxi
mated by piece-wise continuous functions, so that they are valid
for a small time Interval only, or In small neighbourhoods of
(xO,yO, .. . zO) only, or both. Consequently, they have to be recom
puted every so often, before they lose their current validity. A
control program must be fast enough to do the control compu
tations before the controlled process leaves a region . In ad
dition, because the process development as a function of time Is
known only approximately, the size of the current neighbourhoods
is not very well known, thus - to be on the safe side - It is
replaced by an estimate of the time Interval. We end up with the
need to compute the controls within n seconds and nevertheless
watch out for critical variables straying out of safety bounds.
Of course, any Implementation of such a control system Is Intrin
sically Impossible to prove correct . Often It is also unsatisfac
tory In terms of the original problem statement .

The added rationale of the simplification supposedly rests In the
assumption that monitoring the natural variables Is difficult
(expensive) and slow, whereas monitoring time Is easy and fast.
(This is the rationale behind the simplification of the problem
'to cook a soft-boiled egg' to the problem 'to boll an egg for
three minutes'.) In many cases the progress In metrology has
levelled off any difference between monitoring natural variables
and time, but the bias remains. Often, as with the three-minute
egg, the original problem - totally time-Independent! - Is now
presented as If Its central issue was time. Well, If you look
Into the problem, not Into Its control-engineering simplifi
cation, you will probably discover It Is not the case.

Another class of timing concers are entirely self- Inflicted .
Basically, they are a consequence of the belief that local fruga
lity results In global optimality. A typical example of this
class Is the notorious timeout concept.

Usually, the timeout Is presented as a preferred alternative to a
potentially infinite busy-wait loop, the latter being 'obviously'
wasteful and therefore to be avoided. The point which does not
get a fair consideration Is that the busy-walt Is wasteful only
if there are better (useful?) things to do. This being the case,
It Is not very logical to postpone these other things even for a
short while, for the duration determined by the timeout constant
(Incidentally, the actual choice of this constant Is frequently
purely arbitrary) . Thus, It would seem that the only justified
situation for a tlmeouted walt Is when there Is nothing else left
to do, but , under such circumstances, the potentially infinite
busy-walt can hardly be considered as wasteful!

To be a little more specific let us consider two designs:

and

PRj : do

od

WORK TO DO - wo r k
o

EVENT _PRE SENT -) react
o

TRUE -) sk ip

PR2 : t :=O;
while t <tma x and ~EVENT_PRESENT

do t :=t+!
if EVENT_PRESENT then r e act fi;

work 1

where tmax represents the timeout constant and procedure workl
may differ from procedure work because the former Is executed In
PR2 under the condition 'either the reaction to event has already
taken place or the event will never be registered'.

PR2 Is a fairly typical design with a timeout, PRl Is the busy
walt alternative expressed In a mildly nondeterministic fashion.
It Is quite apparent that the design PRI corresponds to the
natural Idea of 'reacting to an event that may, but need not,
occur' rather well, whereas the design PR2 Introduces a curious
'window of opportunity' for the event to occur, which In many
cases Is hard to justify.

If the guard WORK_TO_DO In PRI seems too coarse, a version with a
partition of the corresponding subset of the state-space may be
more appealing:

PRj' :do

od

WORK! TO DO -) wo rk!
o

WORK2 TO DO - ' work2
o

WORKN TO _ DO -) wo rkN
o

EVENT_PRESENT -) r e a ct
o

TRUE -) s k ip

PRI' presents the natural way In which a modicum of nondeterml
nlsm helps to cope with problems of Interaction with events not
controlled by the program, without Introducing an artifact of
timeout. Assuming a fair Implementation of PRI type programs, the
price - an endless waiting loop - Is Irrelevant because looping
uses resources that could not be otherwise employed!

VIII.4

Observe that in PR2 we rely on Dijkstra semantics (DIJ] o f guar
ded commands to resolve the nondeterminism of not-disjoint guards
(a must for an implementation in a single-processor environment
in view of the last guard: TRUE overlaps with any other guard!) .
In the final part of these notes we shall demonstrate how an
essential use of a multiprocessor implementation eases this re
quirement. Observe also that having thrown away concerns with the
mythical global efficiency, we do obtain a more natural solution
which in fact is more efficient: if the event occurs while there
is still some (independent of it) work left, no appreciable re
sources are wasted on the implementation of timeout.

A similar reasoning applies to the design (programming) of inter
acting processes, i.e. to the protocols. Assume we are concerned
with two processes, PI and P2, which do not share any variables
(If they do , the interaction can be easily handled by mutual
e xclusion on access to these variables, certainly without any
reference to time-considerations).

Timeouts are usually introduced by the designs which slavishly
follow old-fashioned principles of telephone communication: When
I call my friend, I dial , hear the ringing tone, and walt for my
friend to pick the handset. I have to determine when to put my
handset down If my friend does not answer: after 5 rings or after
10. Then I continue with my other work, perhaps calling my friend
again when the conditions are once more deemed propitious . Of
course, busy executives have long ago rejected this policy. They
ask their secretaries to establish connection and continue with
their work . When (and if) the connection is established, the
secretary announces this fact, and If the executive Is free to
talk the conversation takes place. No timeout (but two 'proces
sors')! Once again, only if no other work remains to be done
without establishing the connection the calling executive waits
for the call to go through. But, as before, under these
(exceptional) circumstances an endless waiting loop is not waste
ful: there is nothing to waste!

Denoting the variables of PI by varPi (sets varPI and varP2 are
disjoint), and by HS(varPl) the predicate that is satsified iff
PI is ready to send a message to P2, we can adapt the design PR1'
to our present problem

F' F:C: d.:)

od

WORK1 TO DO -, workl
n

WORK2 TO DO - > work2
o

WORK N TO DO -> wo r kN
n

MS(var F'l) -"> sen d_m e s sage

TF:lJE ~:;k i p

VIII. 5

.,

Note that PRe may send multiple copies of the
to make sure that this does not happen, a
version should be used

WOR K1 TO DO -> work1
n

WORK 2 TO DO - > wo r k2
n

WORKN TO DO -, work N
n

message ; if we want
slightly modified

MS (varP l) -~, send _ message; ma ke MS fal se
a

TRUE - > s kip
.::>d

How to reflect our concern with the reception (or otherwise) of
the message by P2? The state space of P2 is inaccessible to PI,
therefore we must assume that there Is a predicate MR(varPI) - on
variables of PI - satisfied Iff the message has been received by
P2 . With this predicate, we may design PI as follows

F'F:C': do
WOF.:fU TO DO W O Y' k 1

a
WORK 2 TO DO - > wo r k2

a

WORKN TO DO -~ wor kN
a

MS(varF'l :> -- > se-nd fllB-s s<:3. ge

a
MR (v ar F'l) ~ set MS t o fals e

n
TRUE - > skip

This design ensures that no further copies of the message are
sent out after PI has been notified about the reception by P2;
however, multiple copies may have been dispatched before, It Is
therefore up to P2 to disregard second and further copies of the
same message . In practice, both MS and MR could appear as con
juncts In some (presumably, different) guards WORKI_TO_DO,
WORKj_TO_DO; sending the message and setting MS to false would
then constitute parts of corresponding actions workl, workj. In
PRe' there Is no explicit 'receive' command, even though a rece
iving action Is necessary, If only to accept the acknowledgement
slgnal(s) from P2. (An appearence of the acknowledgement signal
could be treated as an event In the same sense In which this word
was used before, and treated correspondingly).

VIII. 6

The above outlined approach may seem wasteful insofar as it seems
to encourage possibly unnecessary duplication of message sending
actions (in addition to infinite waiting loops!). It should be
however observed that, as far as process PI is concerned, these
'unproductive' actions take place only if there is no other
demand on resources. (Similar observation applies to P2.) The
only 'overworked' element may be the network. Should this be a
reason to worry, the network could be considered as an active
partner, exercising full control on Its resources, as long as
there is useful work for it, and lapsing into wasteful actions
otherwise.

The alternatives to timeout thus considered (cf . also [TUR])
suggest a much less sequential programming style: one in which
specific actions occur under specific conditions, but nothing is
explicitely said about sequences of thus guarded actions. Now we
are going to extend this style of programming to an essentially
multiprocessor environment.

Consider a set of variables, V, and for each its element, v, a
set of possible values, Valv o A state is any mapping which asso
ciates with each variable v a value $v from Valvo In the (carte
sian product) space spanned by sets Valv as 'coordinates', known
as the state space, a state is a 'point' determined by selecting
an element , $v, on each axis Valvo Conversly, given a state, one
can think of values of all variables (in this state!) as the
coordinates of the corresponding point.

Subsets of the state space are usually characterised by predi
cates, I.e. functions that map states to boolean values (true,
false). A state ($x, $y, ... , $z) satisfies a predicate P iff
P($x, $y, . • , $z) = true. Since the scope for confusion is mi
nimal, the set of states which satsify a predicate will be de
noted by the same symbol as the predicate.

When we consider a computation, a very important subset of the
state space, characterised by a predicate OBSERVABLE, consists of
all states than can be observed by an outside observer. We shall
not analyse too carefully the exact meaning of the metastatement
"a state can be observed by an outside observer"; suffice it to
say that if the state ($x, $y, ... , $z) can be observed the va
lues of its indiVidual coordinates can be read out by the obser
ver In question. For a state outside the OBSERVABLE set, values
of individual coordinates may, but need not, be available. Unless
explicitly mentioned, all named sets In the sequel of this paper
are subsets of OBSERVABLE.

Let s be a state transformation, i.e. a map from states to
states. Denote by Doms and Rans the domain and range of s, re
spectively. For ($xO,$yO, ... ,$zO) In DOllS, s($xO,$yO, . . . ,$zO)
denotes the application of s to state ($xO,$yO, ... ,$zO). Po state
transformation with non-empty domain and range Is called a well
defined state transformation (wdst) iff Its application to an
observable state yields an observable state.

VIII. 7

An obviou s wdst Is the Identity s tate transformation. skip. de f ined by

sk ip (~~ , y , ••• , z) :::: (:I; , y , ... , z)

Let P.q •...• r be wdst. and P,Q, ... ,R be predicates such that
F' i.plies Domp , Gl i.plies Domq, ... , R i.plies Domy. We say that

{x : Typ x , y: Typ y , . .. , z :Typ z } / {$ x ,Sy , ... ,$z}
F' - > [p]

, , , ,
Q - > [q]

, , , ,

, , , ,
F: ...) [y J

, , , ,
~ <: F' or Q or • •• or F.:.I - .> [5 kip]

s pecifies a single-processor computation with global variables
x.y, . . . , z, initialised In state ($x,$y, ... ,$z).

Let progp, progq, . . . , progr be programs correctly Implementing
wdst p,q, .. .• r In the language of [DIJJi in addition to the
global variables x.y, . ..• z, each program may also employ local
variables (whose sets are denoted by Locvarp, Locvarq, ...•
Locvarr. respectively), distinct from global ones. It Is assumed
that the termination condition for progp is implied by P,

F' ilpl ies "'p <: "Py ogp", TRUE)

(similarly for progq and Q, .. . , progr and R) .

The computation specified by (1) is then implemented by

:1; , y , ... , z : =$:'; , $ y, .. . , $ z ;
DO

F' -) Py,:.gp
D

Q - > pr o gq
D

D
F.: - > progr

D
~ <: F' or Gl or • •• or F.:) - :> 5 kip

OD

(2)

The computation (2) Is certainly non-terminating, it may also be
non-deterministic. The possible nondterminism of (2), arising
form some P.Q, ... ,R not being pairwise disjoint, is fully compa
tible with a fairly conventional view of computing. The built-in
non-termination ('endless repetition of s kip') represents a view
of 'remaining in an observable state that does not satisfy any of
P,Q, ... ,R.

VIII . 8

In order to avoid some inessential but tiresome complications in
the remainder of these notes, it is assumed that the global var
iables are passed to progp, progq, . .. , progr in the manner of
Algol - 60 procedural parameters called by value . Thus It Is as
sumed that Locvarp Includes variables locx, locy, .. . , locz, dif
ferent from any local variables created for 'internal purposes',
(u,v, .. . ,w) are the only write-accessible global variables (their
value may change as a result of progp exection), and progp is of
the form

progp = locx , l oc y , . • . , l ocz : = x , y , .. . ,z ;

other statemen ts of progp i n wh ic h
no as s ignemetlt s to g l ob a l v a r i a bl es
x , y , ... ,z a re ma d e (ass i gnemen ts t o
l o c x , locy , ... , l ocz are allowed~) ;

u , v , ... , w: = l ocu , l ocy , . .. , locw

(3)

Thus It
changes
further
(first
making
Issues .
as body
progr.)

Is only the last line multiple asslgnement of progp which
the (global) observable state . Also for simplicity of

exposition it is assumed that both multiple assignements
and last lines of (3» are atomic and Instantaneousl In
t his assumption we explicitly ignore any implementation

The 'other statement' part of progp shall be referred to
of progp. (Similar conventions apply to progq , ... ,

Returning now to the the specification (I), observe that it can
be seen as an association of transformations with (s ets of)
states. This illustrates, in the familiar frame of reference of
s ingle-processor computation, the pragmatic essence of the pro
posed approach to specification. Rather than being goal-oriented,
the proposed specifications are reaction-oriented. The notion of
a ' state' was so far understood as a merely convenient abbre
viation for 'an element of cartesian product space of value sets
of variables' . If this notion Is now Interpreted as 'a state of a
(real) system', we may say that In situations characterised by
P,Q, ... ,R (and regardless of any 'history', cf. [JON) the system
'reacts ' by executing transformations p,q, ... ,rl In all other
situat ions It remains In the same observable state. Of course, If
the system has but one active element (processor) capable of
actually performing the program that Implements the trans f or
mation, cf. (2), the system's state changes only with the com
pletion of this program execution, cf. (3). In fact, as far as
changes of observed states are concerned, with a single processor
there I s absolutely no difference bewteen 'instantaneous' and
'protracted' execution of a transformation.

In a multiprocessor system a specification of the form (I) would
be entirely Inadequate . Indeed, If among the predicates P,Q, ...• R
there Is at least one not disjoint pair, the system may find

VI I I . 9

itself in a state in which two guards of corresponding program
(2) would be true and therefore two processors may start simulta
neously from the same state. Thus a single observable system
state could have two, possibly different, actual Images under
specified computation; two possibly different observable system
states could arise from one. This is not a mere extension of the
nondeterminacy of choice: we are dealing here with a possible
fission of the system. Moreover, in the presence of two or more
processors, this unpleasant complication cannot be removed by the
simple expedient of making the guards mutually exclusive. Indeed,
if the performance of the transformations is not instantaneous,
two processors may start executing the same 'enabled' transfor
mations (becuase the enabling state 'lasts') and, if they do not
progress at the same rate (why should they?), the same image
state will be established twice or more times, but at different
instants, which again amounts to splitting the actual system
into independently evolving 'copies'.

The traditional remedy consists in introducing some sort of
'traffic regulations' for processors (or, equivalently, some
constraints on processes) which exclude, suspend or otherwise
restrict mulitplicity of transformations if it only could lead to
state-fission nondeterminism. In other words, the conventional
remedy is preventive; as a consequence, a number of processors
may have to be temporarily idled; with conventional approach, the
price of elimination of uncontrolled indeterminism is an under
utilisation of multiplicity of procesors.

It is tempting to consider an exactly opposite policy: allow full
utilisation of all available processors (including infinitely
manyl) by permitting all transformations associated with all
satisfied predicates to be performed simultanously and in as many
copies as the available number of processors allows, but restrict
admissibility of resulting state changes. This may be achieved by
specifying the conditions under which the completed transform
ation is accepted; a transformation completed under conditions
that fail to meet the specification will be voided. Figuratively
speaking, the proposed remedy is curative, and thus strongly
related to ideas of fault-tolerant computing, cf. [RAN!.

In the presence of multiple processors (active agents) one is no
longer assured that the system state will remain unchanged while
a selected wdst is being performed. The implementation (3) of a
transformation p guarantees that the body of local computation
defined by progp, is insulated from any (adverse or otherwise)
effects of state changes resulting from concurrent actions of
other processors; thus if the predicate P properly describes the
sufficient conditions for progp execution, it can be safely
executed. But when the local computation is completed, its re
sults may no longer be desirable (appropriate, acceptable, . . .)
in the system state that may have by then arisen. Therefore we
introduce the second predicate, postguard (and rename the first
one preguard) into an elementary block of specification. Thus

(PO, P1:> --> [pJ

VIlI.l 0

specifies that In states that satisfy the preguard PO the system
reacts by transformation p which. however. Is effective only In
states satisfying the postguard PI. If. when the transformation p
Is completed. the system does not satisfy PI. the transformation
Is voided. Naturally. when there Is only one processor. nothing
can change the system state during the execution of p and (4)
collapses to

F' <) and F'I - :> [p] (5)

The comparison of (5) and (4) suggests that the postguard de
scribes such aspects of the conditions under which p Is consi
dered appropriate that are not essential for the local compu
tation Implementing p. but relate to Its 'global' acceptance . One
can say that the guard Is spilt In two parts: the pre guard which
enables p. and the postguard which makes p acceptable. The eva
luation of postguard may be postponed If It Is expected that (due
to the actions of other agents) the acceptability of p will have
been established by the time p will be completed. The evaluation
of postguard should be postponed If there are reasons to suspect
that the actions of other agents may render p unacceptable while
It Is being executed. Naturally. In the case when the transfor
mation p can (should) be performed regardless of any other
action. one can use the always satisfiable postguard. TRUE. Thus

(F' . TF.:UE :> - :> [p] (E, :>

specifies such a transformation (Its 'collapsed' form. P and TRUE
-) [pl. contributes nothing to our discussion).

It Is easy to modify the Implementation (3) to cater for the
postguard:

pr-ogp: l ClcY; ,l Qc y , .. . ,l Ctcz : = x,y, . . . , z ;
bod y ,:. f prc.gp;
IF' F' 1 (:'; , y , . .• , z) w_"> Ll, v , .•. , w: == I,:,.: u , 1 DC v , . .. , 1 oc IN

o
"'Pi (Y; , y , ... , z) _w,> skip

FI

or. even more succinctly.

pr o gp : l ocx , l o cy , ... ,l ocz:= x,y , . . . , z ;
bod y of progp; (7)
if F'l(~; , y , ••• , z)

then Ll, V , • •• ,w: = loeu, l acy , . .. , locw

As before. the multiple asslgnements In the top and bottom lines
are assumed to be Instataneous; the predicate PI Is evaluated In
the current state. I.e. the values of variables x.y •..• z may
differ from those that have been used In the top line multiple
asslgnement.

With similar modifications to progq •...• progr. the specification

VIII. 11

{x :Typ x ,y:Typy, . . . ,z:Typz } /{ $ x ,$ y , ... ,$z}
(F'O, F' 1) .- :> [p 1 , , , ,
<: QO , Q 1) - '> [q] , , , ,

, , , ,
<:~:O ,R l) - > [r] , , , ,

<: ~F'O and ~QO and ••• ~ F.:O, TRUE) -:> [s kip]

(8)

defines a multiprocessor computation eventually Implemented by
local computations progp. progrq •...• progr. Whenever a preguard
is satisfied and there Is an available processor. the correspon
ding local computation may be started and no assumptions are made
on the choice of local computations to start when several pre
guards are satisfied In a single state. Similarly. no assumptions
are made with respect to the speed with which Individual proces
sors execute local computations. but It Is assumed that each
processor Is capable of executing any local computation. If only
one processor is available. the specification (8) Is entirely
equivalent to a specification of a single-processor computation
with ('collapsed') guards defined by conjunction of respective
pre- and postguards .

Experience with using the proposed style of specification indi
cates that a quite often needed kind of postguarded transfor
mation is of the form

(P, P) - > [p]

indicating that the transformation p is acceptable if the system
state. insofar as captured by the guards. does not change during
the (body of a) local computation that implements p. An obvious
implementation policy would be to establish a one-bit trap on
assignements to variables on which P is defined. thus saving the
evaluation of P If no asslgnements occur while the body of progp
is executed.

In these notes we ignore all such considerations on practical
implementation.

It is perhaps interesting to observe that the Inclusion of post
guards In the specification correlates with the preferred (by
some physicists) style of description of experiments In quantum
physics. For instance. in the delayed-choice split-beam expe
riments (cf. [WHE1). photons (or electrons) are made to travel
through an experimental apparatus along one of two routes. routeA
or routeB. or along both routes simultaneously. The discrimi
nation between the two options is effected by the sensing device
placed at the endpoint of both routes. The sensing device may be
freely chosen from two available: DEVI and DEV2. When DEVI is
used. the photons appear coming only by one route. when DEV2 Is
used they appear coming by both routes. The apparent ability to

VIII .1 2

change the hIstory by selectIng the sensIng devIce after a photon
has been fIred and thus started Its travel eIther by one route,
or by both routes sImultaneously Is a lIttle unnervIng to some
physIcIsts (and many phIlosophers). We could specify such an
experIment In a very sImple way:

<: F I F:EABL.E, DEVIF·l :> --> [g o by o n€" Y' OLlte-J , , , ,
<T I F.:EA BL.E, DEVIF' 2:> -> [go b y both Y" out £os]

, , , ,
<:·F I REABLE, TRUE :> -) [sk ip]

where FIREABLE describes states in which a photon can be fired,
and DEYIPi is satisfied Iff device DEYi is in place. Note that
with a single processor and collapsed form of specification we
need to know which sensing device is in place before the photon
is sent on its travel; in a multiprocessor environment we get an
exact replica of the delayed choice experiment!

Let us now consider a few examples of the proposed style of
specifying multiprocessor computations.

EXAMPLEI.

(In this and subsequent examples the transformations are
described by pseudoprograms; only the essential global variables
are listed; predicates often are given 'telling' names without
providing relevant formulae.)

Consider a bank with multiple tellers accepting payments and
paying out cheques. The specialty of the bank is that it pays out
only in dimes; thus when presented with a cheque for, say, one
hundred dollars, the teller must count one thousand coins, a
rather long process. To payout, a teller must be satsified that
a cheque has been presented and that the corresponding account is
sufficiently in credit to honour this cheque. Upon presentation
of a cheque, the teller may check the balance of the account and
finding it sufficiently large, start counting the coins. Lest,
however, actions of other tellers reduce the balance while he
assembles the requested number of dimes, the teller must suspend
these actions (or, avoiding a total blockade. must suspend the
paying-out actions on a given account). If the actIons of an
IndIvIdual teller are not to Interfere wIth actIons of all tel
lers. the balance must be checked at the same Instant as the bag
of coins is handed out. The specification

(r e q uest >0 , balance- >Y"E-quest and pay o u t=O) ->
[c oLlnt ._coins;
payout , request: =reques t ,O J

(p ayout >0,
, , , ,

TF:I.IE :>
[balatlce:=balance-payout;pay out : =OJ

VIII. 13

describes a non-interfering paying- out procedure (request , payout
and balance are varIables relatIng t o the same account; for sIm
pliCity, the account - IdentIfIcation has been left out) .

Note that the protracted actIon (coIn counting) is not delayed
awaiting the balance to be sufficiently large; it is undertaken
as soon as a request is presented. If, by the time the coin
counting is finished, the balance is insufficient or a previous
payment from the same account has not been completed, the count
is 'voided' and a new counting to meet the same request will
start. Actually, many countlngs for a single request may be In
progress simultaneously but only one can succede In establIshing
positive payout (thanks to the second conjunct In the postguard).
True to our phIlosophy, no explicit sequencing (nor timlngl) is
present in the specIfIcatIon . The price for thIs sImplIfIcation
of the desIgn Is the potentIally wasted work of a processor (or
processors) countIng coIns In vaIn. ThIs Is how we 'trade clocks
for chips'.

EXAMPLE 2.

Assume that In the system under specifIcation, some phenomenon
manifests Itself by a change of value of a global variable x.
Only two values of x are admissible, x = 0 and x = 1. FollowIng
Is a skeletal specIfIcatIon of the system, where the only explI
citly listed parts specify a counter of the occurrences of the
phenomenon; as far as the counter Is concerned, the occurrences
of the phenomenon are entirely spontaneous:

{x :O- l,n:integer, • .• } / {O,O, .•. }
(x=o, x~l) -> [n:~n + l]

, , , ,
(x=1 , x~ () -) [n: =n + l]

, , , ,

Note that in this case the collapsed guards are Identically
false, which nIcely corresponds with the fact that the problem Is
totally meaningless In a Single-processor environment. (If a
specificatIon includes (P,Q) -) (sl with contradIctory P and Q,
this speclflcaton cannot be Implementen In a sIngle processor
envIronment.)

In some problems, where a Single-processor Implementation does
not make sense, it may be useful to mark parts of the specifi
cation as meant for a dedicated processor. Such is the case of
specIfIcation of Example 2. Using the pair of brackets {and >
for marking, the specification may be rewrItten as

{x :O-l, n :integer , . . . }/ {O , o , ... }
{ I:X =O, x= l) -) [tl : =n+ 1 J

, , , ,
(x= 1, x=O) -) [n: = n+l] }

, , , ,

VIII. 14

EXAMPLE 3 . (Dining philosophers)

The notation In this exaMple is localised to a chosen philosopher
('as seen by him'). The meaning of predicates 15 as follows

H - the philosopher is hungry
LOT - the left fork Is on the table (free for taking)
ROT - the right fork is on the table
PL - the philosopher possesse s the left fork
PR - the philosopher possesses the rlgth fork

The transformations are specified by means of the following
actions, listed alongside the effects their completion has on
predicates:

take_l Makes PL true and LOT false
take _r Makes PR true and ROT false
release_ 1 makes LOT true and PL fals e
release _r makes ROT true and PR false
think has no effect on values of 'fork ' predicates
eat has no effect on values of 'fork' predicates

It is assumed that each philosopher 15 to be Implemented by a de
dicated processor

, , , ,
(Hand L OT , LOT and FW T) - ', [tak", 1] , , , ,
(H and ROT , F:OT and LOT) - > [tak "' ,J] , , , ,
(PL and F:OT , F:O T) '> [t ak ", _".] , , , ,
(F'F: and L OT, LOT) -> [tak", 1] , , , ,
(P L ~dPR,TRUE l -) [",at; mak"' _ H_fa l s ",; ".",l.as._ l; "..l", as", ".] , , , ,
(I"'Land ~(F:OTorPF:) ,TF.:UE) - '> ["..,l ", as", 1] , , , ,
(PF: and ~ (LOT or P L) , TF.:UE) -) [".. l .as", ".]

, , , ,
(H and ~ (LOT or F:OT l) -> [ski p] },

Note that the preguards in the philosopher-process
mutually exclusive; It 15 assumed that the choice (and
single processor "serving" this process a choice must be
Is totally nondeterministic.

are not
with a

made!)

Contrary to Example 2, It would be possible to Implement t he
dining philosophers by a single processor, as evidenced by the
not necessary falsity of collapsed guards. Indeed, a simple
analysis shows that the specification resulting frOM collapsing
the guards and introducing a uniform notation (unscrambling the

VII I. 15

aliases) can be Implemented without deadlock by a random se
lection of transformations guarded by satisfied predicates. Thus
the Indication of dedicated processors In this example Is not a
necessity but rather a mere emphasis of the original problem
statement. (In a full-scale specification language, It would be
probably adviseable to differentiate between the necessary and
merely convenient dedication of processors.)

EKAHPLE 4.

Consider a process that reads a (presumably Infinite) file,
record by record, and processes each record as soon as it is
available . AC.tlons needed to read and process a record are speci
fied, respectively, by read_next_record and process_record.
States In which a record Is available for processing satisfy the
predicate WORK. Due to actions of other, concurrently executing
processes, the observable state may change at any Instant to one
satisfying the predicate INTERRUPT . The considered process must
then first react _to_lnterrupt and then return to Its "normal"
cycle without disturbing the sequentlallty of Its main task. Such
a process may be specified as follows

.{ <: ~WOF:f< and ~ I NTEF:F:UF'T , ~ I NTERF:UF'T) -:>

. , , ,
<: WOF:K ~d ~ INTEF:F:UF'T, ~ INTEF:RUF'T) -)

, , , ,
<: INTEF:F:UF'T,TF:UE) -)

Creact _ to _ interrupt; ma ke _ INTEF:F:UF'T_ fal s eJ }

Note that although this process may be executed by a single,
dedicated processor (as Indicated), unless the system has other
active agents no Interrupts can occur when the Initialisation of
variables 15 such that WORK and INTERRUPT are false. Note also
that the specification requests that an Interrupted action
(reading or processing) Is voided, thus as soon as the Interrupt
15 handled (an unconditional action) the same action that was
Interrupted (and voided) Is resumed, thus assuring the sequent la
llty. The above specification makes no allowance for hierarchy of
Interrupts, nor for multiple Interrupts occurlng In quick succes
sion. Both refinements can be easily dealt with In the proposed
style, but would require specific assumptions about the hierarchy
of Interrupts.

EKAHPLE 5. (Producer/Consumer exclusion)

This example 15 presented as a pair of processes (with two
dedicated processors). In a standard set-up It 15 assumed that
portions are produced by one process and consumed by the other.
Portions are passed from the producer to consumer via a shared
buffer, capable of holding N+\ portions. WORK Is a predicate that
charcterlses the states In which consumer process can perform
some useful work on a portion; this work 15 represented by the

VII L 1S

action consume_portion . Predicate READY_TO_PUT characterises
states in which producer process Is ready to pass a portion on
the buffer; producer's action produce_portion produces a portion.
Two actions, put_portion and take_portion, specify the actual
transfer of portions to and from buffer, respectively. Note that
putting and taking are two boolean-valued variables. The system
is supposed to be initialised in a state In which both WORK and
READY_TO_PUT are falae.

{k:integer, putting,taking:boolean, ... }/ {O,false,false, .. . }

{ C"WDF:f(: , k >O and ~putting) ._> [taking: = true]

(taking, TF.:UE) ._>

(WOF:K, TF.:UE)

, , , ,

, , , ,

, , , ,
(~ WDF.:f< and k = O, TF:UE:> - > [skip] }

{ (~F:EADY _TD_PUT, TF:UE) - ,
[produce_portion; make_F:EADY_TD_ PUT_ true] , , , ,

, , , ,
(putting, TF:UE) - >

[put _portion; k,putting:= k+l,false;
make_F:EADY _ TD _PUT _ fal s e] , , , ,

(F.:EADY .. _TD _PUT and k=N, TRUE) - > [skip] :.

REFERENCES

(DIJ] E.W.Dijkstra: A Discipline of Programming. Prentice Hall,
1976.

(JON] C.B.Jones: Systematic Software Development Using VDH,
Prent ice Hall, 1986.

[RAN] B.Randell: System Structure for Software Fault-Tolerance.
IEEE Trans . on Soft. Eng. SE1 (1975), 220 - 232.

[TUR] W.H.Turski: TiMe Considered Irrelevant for Real-time
Systems. BIT 28(1988) 473 - 486.

[WHE] J.A.Wheeler: The Computer and the Universe. Int. J. of
Theor. Physics 21 (1982), 557 - 572.

VIII. 17

VIII .18

DISCUSSION

First Lecture

Rapporteur: Marta Pietkiewicz-Koutny

Professor Kopetz suggested that the dining philosophers problem could be
solved by introducing timeouts. Professor Turski answered that that would
imply reading of a global variable making the solution unacceptable.

It was then suggested that time might be introduced to the solution by a
special continuously counting process. The speaker replied that he was able to
talk about the problem and its solution without any reference to time, and
there is no place for time in his framework. Professor Turski also stressed that
he was only talking in terms of changing the state of the system in some
specific states.

Professor Nehmer said that in the formal framework described during the
lecture one cannot express changes over a long period of time, e.g. a week.
Professor Turski emphasized that in the original statement of the problem one
is not concerned with such issues, only with eating, being hungry, starving, etc.
A question was asked what happens if the counter is not able to recognise the
changes of variables due to, e.g., their higher cycle rate. Professor Turski
answered that such changes are simply ignored; something which cannot be
observed 'does not exist'.

To a question whether properties such as liveness and deadlock-freeness can be
discussed within the presented framework, Professor Turski replied that these
are properties of traces, and cannot be discussed within his model.

Second Lecture

Rapporteur: Maciej Koutny

The speaker was asked whether he would only measure variable quantities
different from time. Professor Turski answered that in the kind of problems he
has been discussing, time is not inherent to the problem, it has rather been
introduced to avoid addressing more fundamental questions related to the
problem.

Professors Anderson and Carter asked why redundancy techniques cannot be
used for the verification of astronomical time within a computer system. The
speaker explained that no program is in principle able to verify internally the
absolute time, and contrasted this with an apparent ability to verify the
consistency of bit patterns stored in the computer's memory. To a suggestion
that time could be measured by counting the clock's signals, Professor Turski
replied that in his view this would not solve the problem either, as we can never
be certain that the rate at which the clocks work are indeed correct.

A question was then asked whether one can justify the use of timeouts in a
stochastic environment. The speaker answered that such an approach cannot
be accepted as valid for highly critical systems. He also stressed that a right
approach would be either to wait infinitely long, or to carry out further
processing and employ interrupts.

VII . 19

VIII. 20

