
Rapporteur:

THE CLASSIFICATION OF FAILURES

LOGICALLY SYNCHRONOUS REPLICAS

FAULT TOLERANT CLOCK SYNCHRONISATION

H R STRONG

P Ezhilchelvan

VII

FAULT TOLERANCE IN REAL TIME SYSTEMS

Ray Strong
IBM Research
Almaden Research Center
650 Harry Road
San Jose, CA 95120

ABSTRACT: This paper presents three lectu res covering aspects of fault
tolerance in real time distributed systems. The first lecture is on the classi
fication of failures. It presents a classification of failures of components of
distributed systems that is related to the complexity of algorithms required
to tolerate them . There is a hierarchy of failure classes of relevance to real
time systems including the classes of crash , omission, timing , clock, and
Byzantine failures. One failure class is said to cover another if algorithms
tolerant of the first class of failures are tolerant of the second. This no
tion is made precise and it is shown that , when "-<" represents "is covered
by," crash -< omission -< timing -< Byzantine, but clock and timing are
incomparable . We will discuss attempts at the automatic conversion from
algorithms tolerant of one class to those of another. Several open problems
in the theory of failure classification are also covered .

The second lecture is on logically synchronous replicas . A method is de
scribed for using failure tolerant atomic broadcast protocols to maintain
replicated data in a distributed system so that updates are performed at
the same clock time at each site. This synchronous replicated data can be
used to provide a single global state (including a global time) that facilitates
such distributed applications as locking, leader election, load balancing, and
common log . Real time requirements on components of a system that pro
vides atomic broadcast are discussed. The increased complexity required of
atomic broadcast algorithms that tolerate wider classes of failures is also
covered .

The third lecture presents simple failure tolerant clock synchronization al-

VII . 1

gorithms and their real time systems requirements In order to guarantee

a given precision of clock synchronization , it is necessary to have a corre

sponding bound on the uncertainty of message transmission and processing

time. In cont rast , sign ifica ntly better precision is obta i na ble, wit h high

probability, when no absolute guarantee is required .

VII. 2

CLASSIFICATION OF FAILURES.

In this lecture we classify the faults or failures that occur in the components
of a distr ibuted system in order to compare the fault tolerance of distributed
algorithms. We will attempt to use the term "fault " to refer to th e cause
of some behavior on the part of a com ponent that does not meet th e
specification of the component . The bad behavior itself will be called a
"failure. "

Since we wish to describe and compare the fault tolerance of algorithms ,
we will restrict attention to the input/outpu t behavior of components of a
system. Note that an y classification based on such input / output behavior is
relative to a particular decomposition of the system into components . Tfle
relevant components of our system model are called processors and links.

To each component is associated a set of possible input events and a set of
possible o utput actions . Included in the possible output act ions for proces
sors are the set of possible message transmissions . Included in the possibl e
input events for processors are the set of possible message receipts . (M es
sages are not decomposed into constituent bits .) In addition to message
receipt, th e passage of a specific time duration also constitutes an input
event for a processor , even if the processor is unable to detect the event.

Here we assume a Newtonian frame of reference including a time dimension
called real t?:me. We have found such an assumption of great benefit in
communicating concepts related to time and timing failures . So, altho ugh
the material described in these lectures could be handled within a relat iv istic
reference frame , we choose the Newto nian frame because the relat iv istic
frame hides the essence of the work in too man y details conce rned with
relativity.

Input and output events for links are analogous to those for processors .

Each component is assumed to have an input-output specification describ
ing its correct response (output) in relatio n to a history of previo us inputs
and outputs (v . [DSq) . If the specification is given in terms of st at e
transiti ons for the compon ent , then , since we are onl y concerned with
input / output behavior , an incorrect state transition that leads to correct
output will be considered correct input / o utput behavior and will not be
considered an occurrence of a failure .

VII . 3

We will use the following example specification of a component throughout
our definitions of classes of failures . We assume that it is possible for a
component to receive two input messages: A. and B . Also , there are two
possible output messages: C and D . For simplicit y, we assume that message
A will be received once and only once in the lifetime of the component . If
the receipt of message B follows the receipt of A. within 10 ms , then the
component is to send output message D at some time between 5 and 15
ms after the receipt of A.. If the receipt of message B does not follow the
receipt of message A. within 10 ms , then the component is to send output
message C between 10 and 15 ms after the receipt of A.. Thus the sequences
of events

A., 1,2,3, 4, B ,5, D , 6, 7, ...

and
A., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 , 11 , C , 12 , 13 , 14 , ...

represent correct input/ output behavior on the part of the component ,
where a numeral represents the event corresponding to the passage of that
number of ms of real time after the receipt of A. However , the sequence

A., 1,2, 3,4,5,6,7, 8, 9, 10, 11 , 12 , 13 , 14, 15, ...

re-presents a failure called an omission failure .

An omission failure is a failure in which a component omits some specified
output action . If a component omits all output actions after some point in
time, the failure is called a crash failure . One cannot distinguish a crash
failure from an omission failure or an omission failure from another more
complicated type of failure called a late timing failure by looking at an y
finite history. For example ,

A. , 1, 2, 3, 4,5,6 , 7, 8,9 , 10, 11 , 12, 13, 14, 15, 16, C, 17, ...

represents a late timing failure . A timing failure is a failure in which a
component performs some specified action, either too early (early timing
fai lure) or too late (late timing f ailure). For example ,

A. , 1, B ,2, 3,4,5, 6, D , 7, .. .

represents correct behavior; but

A., 1, B , 2, D , 3,4, .. .

VII . 4

represents an early timing failure. We use the term "Byzantine" to empha
size that failures may not belong to any of the restricted classes of failures
that have been defined; but, formally, the class of Byzantine fa il11,res is the
universal class of all possible incorrect input / output behavior [LSPj.

Note that although it is not possible to distinguish omission from late timing
failures by considering a finite history, it is possible to tell whether such a
finite history is consistent with an omission only failure model. In other
words , we can ask whether the finite history that includes a failure could be
explained by an omission failure.

A system is said to tolerate a failure on the part of one of its components if
the system meets its input / output specification in spite of the failure , The
fault pattern of a history (execution) of a system is the set of components of
the system that exhibit incorrect behavior in the history. The fault pattern
of a history is said to belong to failure class J(if the history is consistent
with a failure model in which the only failures are from class J(. A system (or
algorithm) is said to tolerate a particular fault pattern from failure class J(

if the system input / output specifications are met in every history exhibiting
that fault pattern from failure class J(.

Failure class J is said to cover failure class J(if, for any fault pattern p ,
any algorith m that tolerates p when it belongs to J also tolerates r when
it belongs to J((d. [Osq). We use .J :>- J(to represent the relation J
covers J(. It is easy to see that

Byzantine :>- timing :>- omissl:on >- crash.

In this lecture we will introduce one more class of failures that is relevant

to a discussion of real time systems. The definition of this class requires a
further decomposition of processor components into clock and other sub
components . A clock failure is a failure of a processor that can be explained
by an arbitrary failure of its clock subcomponent, with all other subcompo
nents working correctly [Osq, For example the sequence

A, 1, C,2,n ,3, ...

represents a clock failure that is not a timing failure , because the action C
is not a correct action, simply performed too early.

VII .5

Let "-<" represent "is covered by." Then it can be shown that

crash -< omission -< late timing -< timing -< clock or timing

and that each of these coverages is strict , in the sense that none of the
covered classes covers its coverer . With respect to this -< partial ordering,
it can also be shown that clock and timing are independent and that early
and late timing are independent .

A great deal of work has gone into attempts to provide compilers that will
take algorithms tolerant of failure classes lower in this partial order and
automatically produce algorithms tolerant of higher classes (the oppos ite
direction being trivial) . The recent work of Neiger and Toueg [NT) has
been particularly successful in this regard . However , there seem to be time
and other resource penalties that must be paid by the products of such
transformations . Moreover , many open questions remain . For example ,
can any algorithm tolerant of any omission fault pattern involving at most
k components be transformed into an algorithm tolerant of any timing fault
pattern involving at most k components, without a time penalty?

LOGICALLY SYNCHRONOUS REPLICAS .

The purpose of this lecture is to outline a process by wh ich a system con
sisting of a network of processors and links, each processor possessing its
own subcomponent clock, can simulate a system in which a number of pro
cessors share the same clock and also share a fault tolerant memory. The
simulated system is a useful abstraction wh enever interprocessor coordina
tion is required of a distributed system. Simulation will be accomplished by
maintaining a replica of the simulated shared memory in the local memory
of each processor and by synchronizing updates so that each update is made
at the same local clock time at each processor .

We make the following assumptions about the simulating system.

1. The names of processors are dist inct and totally ordered .

2. Each processor p possesses a clock Cp that is a monotone increasing
function of real time .

3. No correct processor issues the same timestamp twice.

VII.6

,

4. There is a constant e such that . for any correct processors p and q,
and for any real time t,

5. Let p, q, and T be correct processors and let p and q be connected by
a correct link . There is a constant d such that. if correct p sends a
message to correct q via a correct lin k at real time u and q receives
and finishes processing the message at real time v, then for any correct
processor T ,

0 < Cr(v) - G,(u) S d.

In figure 1. we give a program scheme for accomplishing the simulation .
This scheme describes a communication protocol called diff1Lsion. It is
a program scheme rather than a program because most of its significant
phrases are uninterpreted . Moreover. the interpretation we give to these
phrases depends on the class of faults we wish to tolerate. Our specification
for the system is that updates corresponding to requests generated at any
correct processor. at any time. be performed in the same order and at
the same local clock time at each correct processor. provided the network
of correct processors remains connected by correct links . Moreover. we
require that any update performed by any correct processor be performed
by all correct processors and that the sequence of (update. local time of
performance) pairs be the .same for all correct processors provided they
remain connected by correct links.

We will illustrate the interpretations of the scheme and argue for their
correctness on an example system consisting of five processors and six links
configured into a square and a triangle that have one link in common . For
the failure class of omission failures and for the failure class of clock or timing
failures. we will produce interpretations for the program scheme that tolerate
any pattern consisting of two faulty components (processor or link) . It is
well known that a single Byzantine failure in this example network can cause
the system to fail to meet its specifications because the network connectivity
is not sufficiently high. However. there are cryptographic techniques that
are beyond the scope of this lecture that allow the system to tolerate any
pattern of failures with high probability (see [CAS OJ and [OS]) .

VII. 7

1 Do forever
2 If learn update M with timestamp T
3 then do
4 forward Al to neighbors
5 schedule M for T + D
6 ad
7 Fi
8 O d

Figure 1: DIFF USION BASED ATO~IJC UPDATE

The uninterpreted phrases of the program scheme in Figu re 1 are " Iea ~ n

update M with timestamp T," "forward J.{ to neighbors, " and "schedule
Al for T + D ." We must also provide a constant D .

We first give interpretations for omission faults . There are two ways in which
the event "learn update J.{ with timestamp T " can occur at a processor: (1)
an update request J.{ originates at the processor at local time T , in which
case the message (}.If , T) is prepared and a copy of the message is placed
in a history H ; or (2) a message (M, T) is received from another processor
alld is not found in H , in which case a copy of the message is placed in
H . The phrase , "forward J.{ to neighbors ," is interpreted as the command
to send a copy of (M, T) on all links . Finally, the phrase , "schedule M
for T + D ," means to place J.{ in a lexicographically sorted list of update
requests to be performed at local time T + D , and then at time T + D to
perform all updates corresponding to timestamp T in orde r and to remove
all corresponding messages from H .

We leave as an exercise for the reader to show that , if an update J. J is
learned by a correct processor then the corresponding message (M, T) has
taken at most 4 hops . Suppose update request J.{ is initiated by processor
p at local time T correspond ing to real time u . If correct processor r learns
M at real time v, then we must have GT(v) :::; GT(u) + 4d < T + 4d -I- c.
Thus it suffices to take D > 4d + c.

For clock or timing faults , things are slightly more complicated . We add to
the message (M, T) a hop count k that can be used to test the t imel iness
of arr iving messages . For this fault class , we interpret the first phrase as

VII . 8

before for the originating processor except that it produces the message
(M, T , 0) instead of (M, T), setting the local variable k = 0 in the process .
If message (M,T, k) is received by a processor with (M ,T) not in H , then ,
if the local time of receipt is between T - ke and T + k(d + e), the processor
is considered to have learned 111 with timestamp T; otherwise , the message
is ignored as untimely. If the processor learns 111 with timesta mp T then
it puts (M, T) in H as before.

The phrase , "forward 111 to neighbors," is now interpreted as, "if k < 4
then send (M, T, k + 1) on all links ." The phrase, "schedule M for T + D,"
is interpreted exactly as before .

Now we do not know how to prove the correctness of our algorithm unl ess
we use a D 2: 4(d + e) . Such a bound for D is always sufficient , but it IS
an open question whether it is necessary. (We can show that it is necessary
to tolerate a pattern of three clock faults , but not two.)

FAILURE TOLERANT
CLOCK SYNCHRONIZATION.

In the previous lecture , we assumed that clocks were synch ro nized to within
a -given ma ximum deviation e. In this lecture , we show how to accompl is h
such a synchronization so that faults can be tolerated , provided they do not
disconnect the network of correct processors .

We will assume the model of the previous lecture , except for the clock
synchronization . For this lecture, the assumed subcomponent clocks will
be called hardware clocks and denoted H to distinguish them from the
logical clocks denoted C, which we will synchronize. We also assume that
there is a constant p bounding the drift rate of correct clocks as foll ows:

(1 + pt 1(u - v) < H(u) - H (v) < (1 + p)(u - v).

Thus correct clocks proceed within a linear envelope of real t ime. Note
that it is usually safe to take p = 10-5.

The purpose of the program scheme presented in this lecture is to mainta in
linear envelope clock synchronization for logical clocks C so that

1. there are constants a and {J with

(1 + atl(u - v) < C(u) - C(v) < (1 + a)(u - v) + {J

VII . 9

2. and there is a constant € with

Here C-l(T) is defined as the greatest lower bound of the set of real times t
such that C(t) > T. The constant Q is called the accuracy and the constant
€ is called the precision of the clock synchronization. The constant (3 is
called the gap since it represents the maximum amount by which a logical
clock may be adjusted forward instantaneously.

The simplest way to maintain a logical clock is as an offset from the hard
ware clock. Alternatively, in order to reduce the gap to zero and provide a
"continuous" logical clock , we can maintain C as a piecewise linear func
tion of H and amortize the gap over some fixed duration (on H) . See, for
example, [GS] or [Cri]. For simplicity, we will assume that each processor
has a register A and maintains C as H + A. Thus we will interpret the

/ assignment C <- X as A <- X-H. The unamortized gap provides an
overestimate of the maximum deviation e between correct clocks as of any
real time (the quantity used in the previous lecture). However, for most of
each period between resynchronizations , correct clocks are actually within
(1 + p)€ of each other. The only times when the deviation exceeds this
telm are times when one clock has been advanced to its ET and another
has not.

Our clock synchronization algorithms require each processor to maintain a
constant PERIOD and a register ET in which it stores the next expected
logical time to synchronize. We assume that the set of times at which
processors begin executing the algorithm is contained in a real time interval
as short as the maximum time required to diffuse information in the network .
This time would be measured as at most 4d on the hardware clock of any
processor in our example from the previous lecture. The program scheme
for clock synchronization is given in figure 2. Note that it strongly resembles
the program scheme of the previous lecture . This is no accident , since both
schemes are instances of the diffusion communication protocol.

There are two uninterpreted phrases in the scheme: "learn Time after ET"
and "forward Time after ET to neighbors ." In the case of omission faults,
there are two ways to "learn Time after ET." This happens either when
C = ET or on receipt of message (T) with T = ET. The phrase, "forward

VII. 10

1 C <- 0
2 ET <- PERIOD
3 Do forever
4 If learn Time after ET
5 then do
6 forward Time after ET to neighbors
7 C <- max(C, ET)
8 ET <- ET + PERIOD
9 od
10 Fi
11 Od

Figu re 2: DIFF USION BASED CLOCK SYN CHRONIZATION

Time after ET to neighbors," is interpreted as send the message (ET) on
all links . For omission faults the algorithm achieves an optimal accuracy of
p and gap and precision of approximately 4d + 2pP ERIOD .

For clock or timing faults, we again introduce a hop count variable k. The
phrase, "learn Time after ET," is interpreted as either the event C = ET
with side effect k <- 0 or the receipt of message (T , k) when T = ET
and C < T - k €. The phrase, "forward Time after ET to neighbors, " is
interpreted as "if k < 4 then send message (ET, k + 1) on all links" for
our example network. The accuracy for clock or timing faults is no longer
optimal:

4€
0' = P + PERIOD.

The gap is
4€

{3 = PERIOD
The precision is the same as that for omission :

€ ~ 4d + 2pP ERIOD .

Note that the actual precision and the maximum deviation (for times when
all correct clocks have the same value for ET) can be computed from the
following exact formula :

(1 + p)€ = 4d + (2 + p)pP ERIOD .

VII . 11

· I

Srikanth and Toueg [ST] show how to obtain optimal accuracy for a fault
model that covers clock and timing faults at the cost of worse precision .
It is an open question whether optimal precision and accuracy can both be
obtained from the same algorithm.

In the rest of this lecture, we will investigate further the questions of optimal
precision. For simplicity, we will assume that there are only two processors
in our network and that the two clocks do not drift with respect to each
other (p = 0). We will also assume that the constant 6 represents the
difference between the maximum and the minimum real times required for
message transmission and processing between the two processors. This
constant is called the uncertainty. In this case , it is easy to modify our
algorithms so that the worst precision possible is 6/2. There is a simpJe
argument given by Dolev, Halpern , and Strong [DHS] that shows that any
clock synchronization algorithm must have a worst case precision of at least
6/ 2 in this case.

In this simple case , the problem is one of setting one clock by another . Since
there is no drift, we can depend on the initial setting. We can accomplish
this setting and achieve optimal precision (b / 2) using a single "start" mes
sage. The "start" message is sent from the first processor to the second .
The first processor sets its logical clock to 0 when it sends the message .
The second processor sets its logical clock to 6/ 2 when it receives the mes
sage. Unfortunately, the uncertainty is often much, much larger than the
expected message delay ; sci our guaranteed precision is much worse than
that achievable in practice, with high probability.

To take advantage of the probably faster message time, consider the fol
lowing round trip experiment. The first processor places timestamp U on
a message, using its hardware clock, and sends the message to the second
processor . The second processor places timestamp T on the message , using
its logical clock, and returns the message to the first processor . The first
processor adds a second timestamp V to the returned message using its
hardware clock . If the first processor now sets its logical clock to T + (6 / 2)
then the optimal worst case precision is achieved as before . However , if
the first processor sets its logical clock to T + ((1/ - U) / 2) , then a pre
cision of ((V - U) / 2 is achieved (v. [eril). Moreover, we can have the
best of both worlds by setting the logical clock of the first processor to

VII. 12

T + min(((11- U) / 2) , (6 / 2)) , in which case the precision achieved is

. V - U 6
€=mzn(2 ' 2)·

Cristian [CriJ suggests repeating this experiment several times to make the
probability high that the best precision achieved is much less than 6/ 2. Note
that this approach does not even require a finite uncertainty, provided the
expected message delay is finite .

Acknowledgements.

Most of the material of these three lectures is adapted from the paper
by Cristian , Aghili, Strong, and Dolev [CASDJ . The diffusion based cloek
synchronization algorithms were obtained by a straightforward application
of the techniques of the above paper to the clock synchronization algo
rithm of Halpern , Simons, Strong, and Dolev [DHSSJ . The approach of
providing probabilistic guarantees of clock synchronization precision based
on repeated round trip measurements was proposed by Cristian in [CriJ .
The material has been modified in response to very helpful questions posed
when these lectures were presented at the University of Newcastle upon
Tyne. Special thanks are also due to Flaviu Cristian for helpful comments
on an earlier version of this manuscript .

References.

[CASD] F. Cristian , H. Aghili, R. Strong, and D. Dolev , "Atomic Broad
cast : from simple message diffusion to Byzantine agreement ,"
Digest of Papers , FTCS-15 , 200-206 , Ann Arbor, 1985, see also
IBM Research Report RJ5244, July 30 , 1986.

[Cri] F. Cristian , "Probabilistic Clock Synchronization", Distrilmtcd
Computing 3, pp . 146-158, 1989.

[DHS] D. Dolev, J. Halpern , and R. Strong, "On the Possibility and
Impossibility of Clock Synchronization ," JCSS 32 , pp . 230-250,
1986.

[DHSS] D. Dolev, J . Halpern , B. Simons, and R. Strong, "Dynamic Fault-
Tolerant Clock Synchronization ," IBM Research Report RJ6722,

VII . 13

[DS]

[DSe]

[ES]

March 3, 1989. See also "Dynamic Fault-Tolerant Clock Syn
chronization ," PODC-3 , pp . 89-102, Vancouver , 1984.

D. Dolev , and R. Strong, "Authenticated Algorithms for Byzan
tine Agreement ," SIAM Journal of Computing, vol. 12 , no . 4,
pp . 656-666, 1983.

D. Dolev, R. Strong, and F. Cristian , "Distinguishing Timing
Fai lures From Clock Failures," Manuscript in Progress, 1989.

P. Ezhilchelvan and S. Shrivastava , "A Classification of Faults in
Systems," Technical Report , University of Newcastle Upon Tyne,
1989.

[GS] A. Griefer , and R. Strong, DCF: Distributed Communication wi!h
Fa ult-tolera nee , PO DC-7, pp . 18-27 , Toronto, 1988.

[LSP] L. Lamport, R. Shostak, and M. Pease , "The Byzantine Generals
Problem," ACM Transactions on Programming Languages and
Systems, vol. 4, no . 3, pp . 382-401 , July 1982 .

[NT] G. Neiger and S. Toueg, "Automatically Increasing the Fault
Tolerance of Distributed Systems," Proceedings , PODC-7 ,
pp .248-262, Toronto , 1988.

[S-T] T . Srikanth and S. Toueg, "Optimal Clock Synchronization ,"
JA CM 34, 626-645, 1987.

VII. 14

DISCUSSION

Rapporteur : Paul Ezhilchelvan

First Lecture

On the causes of system failure, Professor Randell pointed out that a system can
fail without any of its components failing (implying that a system failure can
also be caused by a desijiln fault) . The speaker answered to Professor Anderson
by saying that the term Byzantine" is used to refer to any failure not just two
facing failures. Professor Kopetz asked about the components that can
potentially suffer clock failures; the speaker pointed out that when he defines
a clock fault for a component, he assumes clock to be a sub-component in that
component. Professor Anderson wondered why "value" faults are not
considered in the classification presented. Value faults, in the speaker's opinion
are not so relevant to real-time issues as the types of faults he talked about.
When Professor Randell passed a remark that semiconductor memory faults
can cause a processor to produce erroneous values, the speaker replied that
such occurrences are less likely in IBM machines which are in his mind when he
presented the fault classification .

Second Lecture

Professor Ercoli asked the speaker to highlight on his definition of clock
precision which, according to the speaker, turned out to be the real-time
interval within which any two good clocks will read the same value. Professor
Turski wondered whether there is any mechanism by which processors in the
system know of failures in the system . The speaker denied assuming any such
mechan ism and reiterated that any number of failures can occur and t hat non
faulty processors must remain connected . At this juncture, Professor Randell
expressed his opinion, and the speaker agreed, that the problem of network
partitioning is being considered as a seperate problem . In reply to Professor

i<opetz's question, the speaker mentioned that the clock precision he was able
to achieve was in the order of tens of milliseconds and that this precision could
be improved . Professor Nehmer remarked that the shared memory system the
speaker is attempting to construct has been abandoned thirty years ago by IBM
itself and the reply was such a notion is not completely true . Professor
Shrivastava expressed his opinion that the replicas are indeed synchronous as
opposed to logically synchronous.

Th i rd Lectu re

Professors Wells and Kopetz asked whether the clock increments will always be
positive and the speaker replied that the required increment can turn out to be
either way and there are algorithms designed to make increments to be only
positive . The speaker replied to Dr. Chris Holt by saying that the clock drift
factor has to be estimated through a series of experiments. Professor Randell
got it clarified that the speaker refers to a processor failure that can be
explained in terms of the processor's faulty clock as a clock failure .

VII . 15

VII . 16

