
Rapporteur: A Saeed 

REAL-TIME CSP 

GMREED 

VI 



., 



Mathematical foundations for real-time 
distributed computing 

G.M. Reed 

Oxford University Computing Laboratory 
7-11 Keble Road, Oxford OXI 3QD, U.K. 

Together with A. W. Roscoe, the author has earlier presented two models (the Timed Sta· 
bility Model and the Timed Failures-Stability Model) offering timed versions of Hoare's 
esp. In this lecture, the author outlines a hierarchy of untimed and timed models for esp 
which includes the two above, and which allows one to reason about concurrent processes 
in a uniform fashion with the minimum of complexity. This hierarchy supports timewise 
refinement of specifications and the development of powerful proof rules for verification. 

The objective of the lecture is to relate the above mathematical theory to the current state 
of the art, to indicate the nature of further development, and to discuss the inclusion of 
appropriate material on this topic into the computing science curricula. 

Extended abstract 

Programming languages which involve some form of parallelism are becoming prominent 
as computer science seeks to take advantage of the opportun.ities of distributed computing. 
At present, there remain serious difficulties with our efforts to reason effectively about 
the behaviour of such systems. Concurrent execution introduces non-determin.ism and 
such undesirable behaviour as deadlock and starvation, and it creates the crucial need 
for-formal proof systems to understand such pathological behaviour. These proof systems 
require in turn the development of formal semantic models to establish their consistency 
and completeness, and to assist in achieving correct designs and implementations. Among 
the major obstacles to the full exploitation of parallel languages are the absence of stan­
dard semantic models , and consequently the lack of a consistent calculus for the rigorous 
specification and verification of concurrent programs. 

In the case of sequential programming languages, it is well understood that programs can 
be taken to denote input-output functions or state-transformations and that the logical 
systems for specification and verification can be transparently based on the standard de­
notational semantics for the language in question. However, there is no agreement on an 
accepted method for assign.ing mean.ings to concurrent programs. Many different semantic 
models have been proposed. Each of the models attempted to describe effectively a par­
ticular aspect of the complex behaviour of concurrent programs. Hence, in a given model, 
it may be relatively easy to reason about one type of semantic property, but difficult or 
impossible to reason about others. Furthermore, it is difficult to establish the relative con­
sistency between the various existing models of a given language, since each model may be 

VI .l 



based on different mathematical or operational structures. Thus, it would be extremely 
beneficial at this point to isolate a single structure on which to base a uniform theory for 
generating a hierarchy of models for a common language capable of expressing the full 
complexity of distributed computing. 

One major goal of such a theory would be the generation of successful models for real­
time distributed computing. Although widely used throughout the world in such critical 
applications as aviation and nuclear power, real-time programming is a poorly under­
stood discipline. The solutions to current problems involving sequential real-time systems 
will be most difficult and will take many years of work. Furthermore, the complexity of 
these problems will ouly intensify as we implement distributed real-time systems with non­
deterministic behaviour. It is imperative that we begin now to develop the formal models 
on which the eventual solutions must be based. 

Here, we outline a uniform mathema,tical theory of real-time distributed computing as de­
scribed above within the context of the parallel language CSP (Communicating Sequential 
Processes) [H,1985]. This language, which was initially described by Hoare in [H,1978] has 
become a major tool for the analysis of structuring methods and proof systems involving 
parallelism. For example, the Ada programming language can be said to be "CSP-like" in 
the sense that concurrently active processes interact by some form of synchronized commu­
nication: the so-called "handshake" in CSP and the "rendezvous" in Ada. Furthermore, 
Occam [Occ,1984j, the parallel language designed for the parallel commercial computer, 
the INMOS Transputer, was specifically based on CSP concepts. The theoretical parallel 
languages CCS and SCCS ([M,1980] and [M,1983]) are even more closely related to CSP. 
There are, by now, hundreds of research papers in the literature concerning this family of 
languages. Hence a uniform theory for the definition, specification, and verification of CSP 
processes would be a valuable contribution towards a consensus on the formal foundations 
of concurrency. 

The unifying mathematical structure used in our hierarchy is that of complete metric 
spaces. Real time gives a particularly natural measure for comparing processes: we can 
think of two processes as being t-alike if they are indistingnishable up to time t. This 
notion is easily formalised as a metric over the space of processes which provides a natural 
fixed point theory, seemingly with few of the disadvantages of the traditional ways of 
defining fixed points in untimed models. In particular, we are able to deal effectively for 
the first time with the problems of unbounded nondeterminism, infinite hiding, and the 
subtle relationship between divergence and deadlock. 

The relationships between the models in our hierarchy are based on the key concept of 
stability. In untimed CSP, it is only necessary to know that a given process can or cannot 
diverge after engaging in a trace S; in the timed models, it is necessary to know (if the 
process cannot diverge after s) when it will again be ready to respond to the environment. 
This analysis leads us to consider the un timed Divergence Models ([Ros,1982] , [B ,1983j, 
[OH,1983], and [BR,1985]) as providing discrete information for a given trace s ("0" cannot 
diverge, "00" can diverge) , and our corresponding timed models as providing continuous 
information (Q E [0,00] such that the process is guaranteed to be stable within Q time 
after engaging in s). Our topological models rely on this notion of stability, which is the 
dual of divergence. 

VI. 2 



We begin our hierarchy of CSP models with the topological Trace Model (MT ) from 
[Ros,19S2]. We then reformulate the untimed Divergence and Failures Models into topo­
logical terms. First, we convert the Divergence Model from [OH,19S3] into the Stability 
Model (Ms). This model distinguishes between deadlock and divergence in a manner that 
can be readily extended to the consideration of timed processes. Processes are identified 
with a set of ordered pairs (s, a) , where a = 0, if t.l:e process cannot diverge after engag­
ing in the trace 5 and (s,oo) otherwise. Next, we construct a topological Failures Model 
(MF), where a process is identified with a set of ordered pairs (5 , X) such that X repre­
sents the set of alphabet events which the process can refuse after engaging in s. We then 
merge the two models into the Failures-Stability Model (MFs), where a process is identi­
fied with a set of ordered three tuples (5, a, X). Having developed a uniform hierarchy of 
untimed models , we then construct step-by-step their timed equivalents, the Timed Trace 
Model (T M T)' the Timed Stability Model (T M s), and the Timed Failures-Stability Model 
(TMFs ). These models are based oil timed traces , continuous stability values , and timed 
refusals. We also consider a "half-way" model, the (Untimed Failures) -(Timed Stability) 
Model (T M FS ), which provides a relatively simple and useful model for reasoning about 
an important class of timed processes. 

The fact that our models are complete metric spaces and all recursions are contraction 
mappings make them natural vehicles for correctness proofs using the form of recUFsion 
induction described in [Ros,19S2]. (A predicate that represents a non-empty closed subset 
and which is preserved by a recursion must contain the unique fixed point.) The intro­
duction of stability seems to enhance the range of useful predicates which represent closed 
sets , since it (to a limited extent) allows us to look into the future. It is also our topolog­
ical structure which lets us have the choice of infinite hiding, infinite alphabet renaming, 
unbounded non-determinism, or the non-equivalence of deadlock and divergence as we 
wish. Our basic models are flexible with respect to these and many other issues which are 
predetermined in the partial order models_ 

Finally, we formulate a hierarchical structure via projection mappings from the more com­
plex models to the simpler ones. It is the uniformity of behaviour after a process has 
become stable that allows these projection mappings to preserve information. In partic­
ular, since the liveness properties predicted by the Timed Failures-Stability Model for a 
given process can be inferred from the time of stability on, we can often exploit this fact 
by reasoning in the simpler (Untimed-Failures)-(Timed Stability) Model. Indeed we have 
given case studies whereby the design of quite complicated timed processes can be started 
in the simple Traces Model and then moved gradually up the hierarchy to the Timed 
Failures-Stability Model, where at each step the specification and verification techniques 
of the relevant model are appropriate to the complexity of the design decision. 

VI- 3 



Ms - TMs 

t 

References. 

[B,1983] S.D. Brookes, A model for communicating sequential processes, Oxford University D.Phil. 
thesis 1983. 

[BR,1985] S.D. Brookes and A.W. Roscoe, An improved failures model for communicating pro­
cesses, Proceedings of the Pittsburgh Seminar on Concurrency, Springer LNCS 197 (1985). 

[H,1978] C.A.R. Hoare, Communicating sequential processes, CACM 21 (1978) , 666-677. 

[HJ980] C.A.R. Hoare, A model for communicating sequential processes, On the construction of 
programs CUP (1980), 229-248. 

[H,1985] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall International, 1985. 

[M,1980] R. Milner, A calculus of communicating systems, Springer LNCS 92 (1980). 

[M,1983] R . Milner, Calculi for synchrony and asynchrony, Theoretical Computer Science 25 
(1983),267-310. 

[Occ,1984] The occam programming manual, (Inmos Ltd.) Prentince-Hall (1984). 

[OH ,1983] E.R. Olderog and C.A.R. Hoare, Specification-oriented semantics for communicating 
processes, Springer LNCS 154 (1983), 561-572. (Also, Acta Informatica 23 (1986), 9-66.) 

[Re,1989] G.M. Reed, A hierarchy of models for real-time distributed computing, Proceedings 
of the Fifth Workshop on the Mathematical Foundations of Programming Language Semantics 
(April,1989), LNCS, to appear. 

[RR.1986] G.M. Reed and A.W. Roscoe, A timed model for communicating sequential processes, 
Proceedings of ICALP '86, Springer LNCS 226 (1986), 314-323; Theoretical Computer Science 58 
(1988) 249-261 . 

VI. 4 



[RR,1987] G.M . Reed and A.W. Roscoe, Metric spaces as models for real-time concurrency, 
Proceedings of the Third Workshop on the Mathematical Foundations of Programming Language 
Semantics (April,1987), LNCS 298 (1988). 

[Ros,1982] A.W. Roscoe, A mathematical theory of communicating processes, Oxford University 
D.Phil. thesis 1982. 

VI. 5 



VI. 6 



DISCUSSION 

Rapporteur: A Saeed 

The discussion was opened by Professor Joseph asking what is the result of 
sequentially composing a divergent process with skip and then hiding the events 
of the divergent process. Dr. Reed replied that the resulting process diverges. It is 
in order to deal correctly with these kind of situations that it is necessary to retain 
so much information in the semantics. 

Professor Mok then enquired as to how deadlines were specified, to which Dr . 
Reed replied that the specification would require that within a certain deadline 
period the event required must not be in the refusal set. He also commented that 
the wait construct is used in programs, not in specifications. 

Professor Randell recalled that the speaker had mentioned that part of this work 
is being done within an ESPRIT project, and wondered what his experiences of this 
had been. Dr. Reed commented that the ESPRIT project involves some 10 
partners, mainly working in temporal logic. He felt the collaboration to be very 
useful in that one often finds that someone working in one framework is 
struggling with a problem which in a different guise had been solved in another 
framework . Bringing the discussion to the teaching of Computing Sci ~nce, 
Professor Randell said he had the impression that what is being taught at a 
particular institution is whatever the researchers there happen to be working on . 
Dr. Reed agreed that this seems to be the case. 

Professor Bron observed that for sequential programs the unusual approach is to 
try to systematically derive programs from specifications, and wondered whether 
the CSP work was going in this direction? Dr . Reed replied that system design 
methodologies and tools were being developed for this . 

VI. 7 



VI. 8 


