
Rapporteurs:

REAL-TIME LOGIC SCHEDULING:

MODELLING AND SPECIFICATION

VERFICATION PROBLEMS

SCHEDULING ISSUES

First Lecture

Second Lecture

Third Lecture

AMOK

R de Lemos
A Saeed

A Saeed

A Saeed

v

.,

Real Time Logic, Programming and Scheduling

Aloysius K. Mok t
Department of Computer Sciences

University of Texas at Austin
Austin, Texas 78712

1. Introduction

Many definitions have been proposed for real-time systems. However, what we
really need to consider is why and how "time" enters into design considerations. This is a
fair question since conventional wisdom dictates that programs should be designed to
function "correctly" independent of hardware speed. To answer this question, consider
the following reasons why timing constraints are necessary and/or desirable .

• Time is an explicit parameter in ensuring system integrity in some applications. For
example, the control surfaces of some modern aircrafts must be adjusted at a high rate to
prevent catastrophic destruction. This places an upper bound on the response time of the
avionics software system. Lower bounds are also needed, as in the case of an operating
system which requires a potential intruder to wait for some minimum time before retyp
ing a password that has been entered incorrectly. In these cases, the "physics" of the
application dictates the timing requirements .

• Time is an essential synchronization mechanism for solving certain task coordination
problems. An example is the Byzantine Generals problem for which it has been proven
that there is no asynchronous solution. However, a solution is possible if the generals
adopt the synchronous protocol of voting in rounds. Each round of voting imposes a tim
ing constraint on the good generals. Another example of time as an essential synchroni
zation mechanism is the self-stabilization problem of state machines in a disoibuted
environment. Here, a set of state machines are required to always reach a safe
configuration in the global (joint) state space in a bounded number of steps from any ini
tial configuration. The machines are allowed to communicate with one another by pass
ing messages only. It has been proved that a solution to this problem is impossible unless
some form of timeout is allowed. A solution to this problem requires a machine to be
able to determine if a communication channel is empty, e.g., by asking the sender to stop
sending and then examining the input buffer after a set period of time. This imposes a

. tiriling constraint on the communication network.

It should be noted that timing constraints are required in the above two examples to
introduce synchrony so that the task coordination problems can be solved. Even though

t Supported by United States Office of Naval Research under contract number NOOO 14-89-I -14 72.

V. l

timing constraints are not identified explicitly as such (they are introduced by way of the
control abstractions: voting in rounds, testing for an empty channel), they are nevenhe
less needed to solve the problems. It is possible that there is waiting to be discovered an
interesting theory about how partial synchrony imposed by timing constraints can help
solve otherwise unsolvable reliability problems .

• Time is a powerful control mechanism which can be exploited to solve problems more
efficiently. An example can be found in communication protocols which use rate control
to improve throughput, e.g., the NETBLT protocol proposed by Dave Clark's group at
MIT. In these protocols, the receiver guarantees the sender that it will be able to process
incoming packets at a cenain rate, or alternatively, it will meet the deadline associated
with each packet Since the sender does not need to wait for an acknowledge from the
receiver, network throughput can be significantly improved, especially for networks
where the round-nip transmission time is long compared with the width of a packet This
is going to be very imponant for fiber optics communication systems. Another example
of time as a powerful control mechanism is a solution to the disnibuted election problem
in the case of an Archimedean ring. Here, a set of processors arranged in a ring wants to
elect a leader by passing messages around. It has been shown that if the processors work
at a pace that are not too different (at most a bounded ratio) from one another, the
number of messages that are required to elect a leader can be reduced to less than the
theoretical lower bound required in the asychronous case.

In reality, the world is often neither completely synchronous nor completely asyn
chronous. Timing constraints are a useful means to introduce partial synchrony to sys
tems. How we can exploit the partial synchrony to gain efficiency is an open problem. It
should be pointed out that in this case, we should design algorithms which must not
cause catastrophic failure if a timing constraint is not met. Rather, an exception may be
generated and system performance should be able to degrade gracefully. However, the
imponant point remains that our design objective is to meet the timing constraints. If
analysis shows that the timing constraints cannot be met, there is little hope to reap the
performance benefits.

It is not our intent to advocate the imposition of arbitrary timing constraints; a dis
cipline needs to be developed to allow us to use timing constraints as control mechanisms
in a systematic way.

Having said all of the above, we now give an "academic" definition of a real-time
system which does not have the word "time" in it:

A real·tirne system is one that must synchronize with processes whose progress
it cannot directly control.

V.2

=

We hasten to caution the reader not to deduce from the above definition that real
time programming need not involve "time". Timing constraints are sometimes necessary
anellor desirable, as the foregoing discussion shows.

1.1 Real-Time Programming lssues

Traditionally, real-time systems have been programmed at the level of assembly
languages. This is certainly unsatisfactory from a maintenance point of view. There are
two basic issues that must be resolved so that high level languages can be confidently
used to program real-time applications:
(1) Expressibility: how should high level languages support the expression of the wide

spectrum of absolute timing properties required of software running in the hard-real
time environment?

(2) Enforcement: what language constructs can help/hil)der the enforcement of critical
timing constraints?

In this paper, we shall discuss these two basic issues by exploiting RTL, a logic for
expressing absolute timing properties and by relating results from real-time scheduling
theory to language design. There are two major contributions in this paper. The first is a
formal way to impose timing constraints on programs. The second is an investigation of
the real-time scheduling problems that will allow us to make technical assessments of the
efficacy of programming constructs for real-time programming.

Past work in language design for distributed real-time programming includes
[Comhill & Sha 87], [Lo 87], [Donner 87], [Shaw 87], [Volz and Mudge 87], [Lee &

Gehlot 85]. In [Lin, Natarajan & Liu 87], a programming system for imprecise computa
tions in real-time applications was introduced. In this paper, We shall discuss a novel
approach for expressing timing constraints which can be superimposed on any block
structured language. Our emphasis is on the mechanization of the enforcement of timing
constraints.

1.2 Organization of This Paper

To be concrete, our discussion will be centered on an Ada-like language.@. We
emphasize that the discussion in this paper applies not only to Ada but also to block
structured languages in general.

The rest of this paper is organized as follows. Section 2 examines the problems in
expressing timing constraints by using ad hoc time-related constructs in Ada. A formal
system of annotating Ada-like programs will be introduced so as to make it possible to
specify the absolute timing behavior of real-time Ada programs. Section 3 investigates
the problems of scheduling time-critical Ada tasks and analyze the efficacy of the Ada

® Ada is a registered ttademark of the United States Department of Defense.

V.3

tasking facility in the real-time domain. Section 4 is the conclusion.

2. Expressibility of Timing Constraints

Since Ada is a general-purpose programming language, one may use a Turing
universality argument to show that Ada can be used to simulate any desired real-time
behavior. In a distributed environment, however, the issue is not so simple. Suppose our
job is to program a computer on board a train which is going into a railway crossing. The
train is to stop if, after 45 seconds, the controller at the crossing still fails to lower the
gate. The following piece of Ada code might be used for this purpose. (The use of the
timed entry call below follows the suggestion in the Ada Language Reference Manual
[Ada Manual 831 . Also, comments in Ada stans with the delimiter "--".)

select
GA TE_CONTROLLER.REQUEST;

or
delay 45.0;
STOP_TRAIN; -- controller not responding, stop the train.

end select;

The select statement above has two alternatives. The first alternative is a rendezvous
with the gate controller (the entry call GATE_CONTROLLER.REQUEST). The other
alternative simultaneously stans a watchdog timer. The semantics of the timed entry call
is given in the Ada Language Reference Manual: "If a rendezvous can be staned within
the specified duration (or immediately, as for a conditional entry call, for a negative or
zero delay), it is performed and the optional sequence of statements after the entry call is
then executed. Otherwise, the entry call is cancelled when the specified duration has
expired and the optional sequence of statements of the delay alternative is executed."
Thus if the controller does not respond within 45 seconds, the train will automatically be
stopped. However, if the rendezvous with the controller starts within 45 seconds but
takes a long time to complete (or never completes owing to a controller breakdown in the
middle of the rendezvous), then the watchdog timer will not be able to take effect
according to the Ada Language Reference Manual. The train will therefore not stop even
though the intended timing constraint is to stop the train when the controller fails to
lower the gate within 45 seronds, i.e. , the train should stop if the rendezvous does not
complete in bounded time. .

The point of the above example is that in a distributed environment, a timing con
straint may involve the execution of more than one task. Since tasks may synchronize

and interact with one another in many ways, it is not obvious whether the constructs in a
language like Ada are sufficient to express at least the timing constraints that are of

t There is no easy way in Ada to express timing conslIaints like this. The resolution of this semantic
problem is being debated in the Ada community. The annotation system introduced \ater in this paper will
provide a precise way to specify the intended timing property.

V. 4

practical import. To answer this question, we need a way to specify timing constraints on
computation that should be independent of the particular choice of synchronization
mechanisms of the programming language. We can then examine a language to see if it
is sufficiently powerful to enforce the timing constraints of interest. For this purpose, we
shall provide a system of formal annotations for specifying timing constraints in any
block -structured language later in this paper.

Given the absolute timing behavior that we want a program to satisfy, the obvious
question to ask is whether we can derive the intended timing behavior from a program.
To be effective for real-time applications, the timing behavior of a real-time program
should be readily deducible from the program text, preferably by a syntactic analysis. For
otherwise, there is insufficient information to allocate resources to meet the specified tim
ing constraints. More importantly, a real-time program whose timing behavior is difficult
to analyze is also hard to maintain, since it is all too easy to introduce subtle time-related
errors when modifications are made. In the next section, we shall discuss the difficulties
in deducing the timing behvior of real-time Ada programs.

2.1 Examining the Timing Behavior of an Ada Task

Consider the following skeleton of an Ada task:

task body T1 is

declare
use CALENDAR;
NEXT_TIME: TIME := CLOCK+INTERVAL;

begin
loop

delay NEXT_TIME - CLOCK;
1'2.SYNCHRONIZE; --synchronize with task 1'2
CRITICAL_SECTIONO; --execute a critical section
NEXT_TIME:= NEXT_TIME+INTERVAL;

end loop;
end;
end T1

The above task. T1 is intended to be scheduled exactly once every INTERVAL time
units. Every time Tl is run after the delay. it will synchronize with another task T2
before executing a critical section. and then compute the time at which it shoilld be next
scheduled. Suppose we want to write an analysis tool to mechanically determine the
intended timing behavior of the task Tl. Since the delay statement in Ada only puts a
lower bound on when a task can be next scheduled. one might expeL't the semantics of

V. S

Ada to permit an analysis tool to suggest that the task Tl should be scheduled at most
once every INTERVAL time units. A correct implementation can legally execute Tl far
less frequently. Furthermore, if the actual parameter to the delay statement evaluates to a
negative number, the delay statement will have no effect, and the task Tl might be exe
cuted more than once within a time interval shorter than INTERVAL time units. Thus the
semantics of delay does not guarantee that the task Tl will be executed no more than or
no less than once every INTERVAL time units.

One might attempt to prescribe the intended periodic timing constraint by raising an
exception whenever the actual parameter of delay is negative as follows.

task body T1 is

declare
use CALENDAR;
NEXT_TIME: TIME:= CLOCK+INTERVAL;

begin
loop

TIME_LEFT := NEXT_TIME - CLOCK;
ifTIME_LEFT<O then

raise ERROR;
else

delay TIME_LEFT;
end if;
T2.SYNCHRONIZE; --synchronize with task 1'2
CRITICAL_SECTIONO; --execute a critical section
NEXT_TIME := NEXT_TIME+INTERVAL;

end loop;
end;
end T1

While the use of an exception does force the run-time system to signal an error if a
period is missed, it does not in itself lead to the mechanical derivation of the intended
timing constraint which requires task Tl to be executed exactly once every INTERVAL
time units. Specifically, a mechanical tool may not be able to ascribe the condition that
causes the exception (TIME_LEFT <0) to the failure of this particular timing constraint.
It may be the case that the programmer intends the variable TIME_LEFT to be always
non-negative for some reason other than to enforce a timing constraint. For example, the
TIME_LEFT variable may be used subsequently in an arithmetic calculation whose
result is meaningless unless TIME_LEFT is non-negative. It is also possible that some
other timing constraint which also makes use of the TIME_LEFT variable will fail if
TIME_LEFT is negative. In other words, an analysis tool cannot simply assume that the

V. 6

exception is meant to signal the violation of the intended periodic timing constraint.

In general, the delay statement gives the programmer only limited control over the
timing behavior of the program. In fact, unless the programmer can take into account the
time it takes to evaluate the actual parameter of a delay statement, the actual duration of
the delay is bound to be bigger than that specified by the computed value. To be fair to
the designers of the Ada language, however, one should understand their reluctance to
adopt a powerful construct whose semantics effectively dictates an upper bound on how
soon certain computation must be completed. To do so would require the compiler to
guarantee that the generated code will indeed meet the specified timing constraints, a
technical challenge beyond the technology of the time.

It is easy to give a fonnal proof to show that it is impossible to write an analysis tool
which can mechanically deduce the intended timing behavior of an Ada program from its
text alone; such a tool would have to be able to solve the halting problem which is of
course undecidable. More importantly, the intent of the above discussion is to convince
the reader that it is non-trivial even to deduce simple timing constraints even when they
are expressed in a straightforward fashion.

It has been suggested by some authors that a pragma can be used to inform an Ada
compiler of a program's intended timing behavior. For example, a simple pragma may be
used to indicate that a task is cyclic and must be executed at a specified rate. This is a
good approach, but there are two difficuties with it:

(1) A pragma is only a suggestion to the compiler. The actual timing behavior of the pro
gram is still determined by the delay statements in the program text. It is possible that the
timing behavior as suggested by a pragma may conflict with the delay statements. Thus
the compiler may end up having io check that no conflict exists as it takes advantage of
the pragma information to meet the intended timing constraints. This consistency check
ing problem is just as hard as the previous one.

(2) The timing behavior of a complex real-time program may be quite involved, and the
official repertoire of pragmas may not be sufficient to express the wide spectrum of tim
ing constraints. For example, in every period, the task Tl must also synchronize with task
T2 and to gain access to a critical section before the end of the period runs out. These
requirements involve interactions among tasks and complicate the timing behavior of the
program. In Ada, enforcement of both the synchronization and critical section constraints
~e usually carried out by using the rendezvous construct. Later in this paper, we shall

. show that in order to meet all the timing constraints, it is very important to be able to dis
tinguish the places in the program text where a rendezvous is used for synchronization
from where a rendezvous is used for implementing critical sections. The need to convey
this type of information to the compiler calls for more pragmas. However, this tends to

V. 7

encourage proliferation of implementation-defined pragmas, thus hurting program porta
bility. Portability is, of course, a major design objective of Ada.

2.2 A Uniform System for Timing Behavior Annotation

We now propose a system for annotating Ada programs that will help us to deal
with the two difficulties discussed above. For ease of understanding, the reader may
regard our approach as introducing a unifonn system (a language really) to define
timing-related pragmas. Thus instead of establishing an official repertoire of timing
related pragmas which every validated Ada compiler must support, we advocate a facility
for interpreting timing-related annotations (fonnalized pragmas). We shall explain our
system by annotating the tasking program which is our running example.

Program Text::

task body Tl is
declare

use CALENDAR;
--NEXT_TIME: TIME:= CLOCK+INTERV AL;

--v- RUN_Tl
begin

--delay NEXT_TIME - CLOCK;
T2.SYNCHRONIZE; --synchronize with task T2
--'- SYNC_WITII_T2
CRITICAL_SECTIONO; --execute a critical section
--NEXT_TIME:= NEXT_TIME+INTERV AL;

end;
--'- SUSPEND_Tl
end Tl

task body T2 is
begin

--statements of T2 before synchronization
accept SYNCHRONIZE; --synchronize with task Tl
--'- SYNC_WITII_Tl
--statements of T2 after synchronization

end T2;

procedure CRITICAL_SECTIONO is
begin

. --v- ENTER_CS
--body of critical section

--'- m(lT_CS
end CRITICAL_SECTION;

V.S

Timing Behavior Specification::

Vi (i-l)"INTERVAL ~ @(RUN_Tl, i) "
@(SUSPEND_Tl, i) ~ i"INTERVAL

Vi @(SYNC_WITH_T2, i) =@(SYNC_WITH_Tl,i)

Vi @(ENTER_CS, i+ 1) ~ @(EXIt_CS, i)

(Note: For simplicity of explanation, we have left out the axioms
for system initialization.)

The reader may notice that in task Tl, we have commented out the delay statement
and related time calculations. This is because the semantics of the delay construct in Ada
does not lend itself to specifying stringent timing constraints which involve upper bounds
on task suspension, as we have discussed earlier; the intended periodic timing constraint
is being taken care of by the annotations. We have also included the source codes for task
T2 and the critical section which is a procedure.

Our annotation system has two parts: event marker definitions and timing behavior
specification. Event markers are stylized comments that are placed strategically in the
program text. There are two syntactic forms:

--v- <event name>

--"- <event name>

A event marker can be thought of as a time-keeper of computational activity. Every
time a CPU executes a statement on one side of and right next to an event marker, the
event marker records the time instant at which it happens. More precisely, if a CPU ini·
tiates the execution of a statement which is right below a event marker, say n __ v_ En at
time 1, then we say that an instance of the event E occurs at time t If a CPU completes
the execution of a statement which is right above a event marker, say n __ "_ E,n at time t,
then we say that an instance of the event E' occurs at time t. For example, if the first time
the scheduler starts running the task Tl is at 8:10 a.m., then the first occurrence of the
event RUN_Tl is at 8:10 a.m.

A timing behavior specification is a set of assertions that relate the time of
occurrences of different events to one another. The notation @«event name>,<index»
denotes an application of the function n@n (the occurrence function) to an event and an
integer argument. The n@n function can be thought of as the master time-keeper who can
interrogate an event marker for the time at which some instance (specified by the
<index> argument) of the event occurs. The three assertions in our running example

V.9

should be interpreted as follows.

The first assenion states that the i th time at which the task T I is run must be after
the i th period has started, and Tl must be suspended, having completed its execution
before the end of the i th period. (For ease of explanation, we assume that the system
starts executing at time=O.)

The second assenion states that the ith time the task TI completes the issue of an
entry call to T2 must be at the same time at which T2 completes the acceptance of the
same entry call.

The third assenion states that the i+ 1 th time the critical section is entered by some
task must not occur before the i th time the critical section is exited by some task.

The timing behavior specifications should be regarded as obligations that any
correct implementation should honor. However, if a compiler (or an analysis tool work
ing in collaboration with the compiler) determines that an implementation might miss a
timing constraint, then some of the timing behavior assenions cannot be regarded as
axioms. If this is acceptable, an exception can be raised to indicate which assenion has
been violated. Assenions in the form of implications can be added to the program to
catcn the exceptions and force recovery actions to happen. For instance, we can define
event markers around the entry call in the first alternative of the select statement in our
train crossing example, and add an assenion to put a time bound, say 10.0 seconds on the
duration of the rendezvous:

--v- REQUEST_TO_LOWER_GATE
GA TE_CONTROLLER.REQUEST;
__ A_ GATE_LOWERED

This system of annotation helps to avoid the two difficulties with pragmas because
unlike the latter, our annotation system is based on formal logic (actually an extension of
Presburger Arithmetic) and so does not permit ambiguity in expressing timing behavior.
Our uniform syntax for describing timing propenies does away with implemenation
dependent pragmas which may take many special forms.

2.3 Relation with RTL (Real Time Logic)

The approach of annotating Ada programs described here in fact makes use of RTL
(Real Time Logic) which is a formal system for reasoning about timing behavior. Details
of RTL can be found in [Jahanian & Mok 86]. Briefly, RTL is invented to describe sys
tems for which the absolute timing of events and not only their relative ordering is
important. RTL reasons about occurrences of events. We distinguish between four

V.lO

,-

classes of events: (1) External event, e.g., device interrupts, (2) Start event which marks
the initiation of an action (an action in this case is the execution of an Ada statement), (3)
Stop event which marks the completion of an action (executing an Ada statement), and
(4) Transition event which marks a change in the system state. (Transition events have
not been discussed in this paper. They can be used, however, to keep track of the results
of expression evaluations, but we shall not develop this idea here.)

In RTL, time is captured by the occurrence function, denoted by the character "@",
which assigns time values to eVent occurrences. The occurrence function is a mapping
from the space (E,W) to W where E, W are respectively the set of events and non
negative integers.

Definition:

@(e,i) '" time of the i th occurrence of event e; where e is a start, stop,
external or transition event, and i is an interger constantlvariable.

The notion of the occurrence function is central to RTL. In particular, nnung
requirements imposed by the system specifications are restrictions on the "@" function~
A system satisfies a timing propeny P if there is no mapping of event occurrences to time
values which is consistent with the negation of the propeny P in conjunction with the
system specification. RTL formulas are constructed using the equality/inequality predi
cates, universal and existential quantifiers, and the first order logic connectives.

In the foregoing discussion, we have examined the deficiencies of Ada in the
specification of critical timing constraints. We have proposed a system of formal annota
tions which can be used to remedy these deficiencies. The rest of this paper will address
the issues of timing constraint enfQrcement in Ada-like languages.

3. Enforcement of Timing Constraints

The formal annotation system that we have presented in the previous section is a
very rich language with which a wide spectrum of timing constraints can be specified. It
is impossible for a run-time system to meet the wide spectrum of timing constraints with
a resource allocation policy that is independent of the class of timing constraint to be
met. The ability of the run-time system to exploit the semantics of a programming
language to optimize resource allocation is thus crucial for meeting critical timing con
straints. This observation suggests a rigorous approach to evaluate the efficacy of pro
gramming language constructs for real-time programming: For any given class of timing
constraints, we first investigate the related real-time scheduling theory and determine
what type of information is crucial for making good resource allocation decisions. A pro
gramming language can then be analyzed to see if its interface with the run-time system
is sufficiently powerful to convey the crucial information.

V.11

In section 2, we have used as a running example a task that has a periodic timing
constraint, synchronizes with another task and also enters a critical section. The
corresponding timing constraints were formalized by RTI.. formulas given in the timing
behavior specification. We shall investigate the the efficacy of the Ada-like tasking facil
ity for meeting specifically these types of timing constraints. For this purpose, we shall
augment the tasking model with timin~ constraints to formalize the corresponding real
time scheduling problems. This model is sufficiently sophisticated to include task syn
chronization and critical sections as they are implemented by the Ada rendezvous.
Through our analysis of the related real-time scheduling problems, we shall be able to
evaluate task scheduling support in Ada and the use of the Ada rendezvous for con
currency control in the real-time environment.

3.1 A Tasking Model with Timing Constraints

There are two classes of tasks in our model: user tasks and semaphore tasks. We
shall refer to a user task simply as a task for brevity; semaphore tasks will be explicitly
stated. For scheduling purposes, the computation of a task T. consists of a chain of I _

scheduling blocks, (T. " j=l,n.) where T . . is a piece of code to be executed after
T.. l ' Each T .. has a S6und or: computatio~Jtime, c . . which is known a priori and the

I,J- f th IJ. th tal . . I,] k T C 1 . sum 0 e c· . IS e to computation time, c· or tas ' . oncurrency contro IS
h· ed thr IJ h hi hI I 1 be hed l' ac lev oug communication pmmtlves w c may appear on y tween sc u 109

blocks. These communication primitives are used to pass information among tasks for
coordination purposes. Their semantics is important only to the extent that they impose
certain scheduling restrictions corresponding to task synchronization or mutual exclusion
requirements. The precise semantics will be given later when we discuss the related
scheduling problems.

When a task is made ready to run, say at time t, it must be finished by a specified
deadline, di relative to t, i.e., the last scheduling block of Ti must complete execution on
or before t+di. In general, tasks can be either periodic or sporadic. If T i is periodic, it is
requested (becomes ready to run) every Pi time units, starting from time O. The deadlines
of periodic tasks are normally shorter than the corresponding periods. If it is sporadic,
then it may be requested at any time, but consecutive requests of. Ti are kept at least Pi
time units apart, where Pi is a specified minimum period which is required to prevent a
sporadic task from monopolizing system resources. For the purpose of this paper, we
shall limit ourselves to periodic tasks. (A technique exists which transforms periodic
I!lsks to "equivalent" sporadic tasks and can be found in [Mok 83] .)

An instance of our tasking model is a pair (M, S). M is a finite set of tasks { Ti }.
The ith task, T. = (C.,p.,d.) has three parameters: C. (a chain of scheduling blocks with __________ ~I __ ~I~I~I__ I

t The inclusion of task ~hronization and critical sections in our model extends previous models
such as [Liu and Layland 73],lLeung & Merrill 80] that treat independent tasks only.

V.12

communication primitives in between blocks), di (deadline), Pi (period) In this model, we
assume that ci~iili'i' The ith task Ti is requested at time=(k-l)Pi for every positive
integer k and the i execution ofTi must be completed no later than time=(k-l)Pi+di' S
is a finite set of semaphore tasks (Si) whose sole function is to communicate with (to
enforce mutual exclusion among) the tasks in M.

All time parameters are non-negative integers. (In practice, time parameters are
presumably given in integral multiples of a basic time unit, e.g., a processor instruction
cycle.) Preemption of a task by another is allowable only at integral time instants and
may be subject to additional scheduling restrictions imposed by communication primi
tives placed between scheduling blocks of a task. A task set is feasible if and only if there
is a schedule in which all its deadlines can be met.

3.2 Real-Time Scheduling

Unlike classical scheduling problems, real-time scheduling deals with the problems
of continually meeting periodic and sporadic timing constraints. In general, a real-time
scheduling problem involves two schedulers: an off-line scheduler and a run-time
scheduler. The off-line scheduler examines the instance of the task model and creates ii
run-time scheduler together with a database for making scheduling decisions at run time.
The run-time scheduler is the code for allocating resources in response to requests gen
erated at run time, e.g., timer or external device interrupts. The purpose of a real-time
scheduling algorithm is to create an off-line scheduler for a class of real-time scheduling
problems. A run-time scheduler is totally on-line if its decisions do not depend on a
priori knowledge of the future request-times of the task(s). A run-time scheduler is clair
voyant if it has an oracle which can predict with absolute certainty the future request
times of all tasks. A run-time scheduler is optimal if it always froduces a feasible
schedule whenever it is possible for a clairvoyant scheduler to do so. .

In the following, we shall present some relevant real-time scheduling results that
will shed light on the design of concurrency control facilities in real-time programming
languages, particularly Ada. For clarity of presentation, we shall formulate the real-time
scheduling problems, state the results and discuss their implications; proofs are relegated
to the appendix.

3.3 Dynamic versus Static Priority Scheduling for Independent Tasks

A set of tasks are said to be independent if they do not synchronize with one another
and do not execute critical sections. (In our tasking model, this corresponds to the

. absence of any communication primitives in the tasks.) Independent tasks are allowed to

t It can be proved that knowledge about request times is needed for optimal scheduling for sppradic
tasks with critical sections [Mok 83]. The rationale for the above definitions will be clear after the follow
ing discussion.

V.l3

preempt one another at any integral time instants. In the case the set of tasks is indepen
dent and the deadline of each task is equal to its deadline, a well known result in [Liu &
Layland 73] showed that a task set is feasible if and only if the utilization factor of the

task ·set does not exceed 1. (The utilization factor of the ith task Ti is c/Pi' The utiliza
tion factor of a task set is the sum of the utilization factors of the tasks in it.) The run
time scheduler used by Liu to achieve 100% utilization is the earliest deadline algorithm
which executes at every instant the ready task with the nearest deadline. The earliest
deadline scheduler is a totally on-line optimal scheduler. (There are in fact infinitely
many totally on-line optimal schedulers if tasks are independent [Mok 83]. Let us denote
the remaining computation of a ready task at time t by c(t) and its current deadline by d(t)
and define the slack of the task at time t by maximum(d(t)-t-<:(t),Oj, i.e., the slack is the
maximum time the run-time scheduler can delay running the task before it is bound to
miss the current deadline. Another optimal scheduler is .the least slack scheduler which
runs at any time the ready task with the least slack, ties being broken arbitrarily.)

Both the earliest deadline and the least slack schedulers are dynamic priority
schedulers, i.e., the priority of a task does not remain fixed throughout a schedule. Unfor
tunately, Ada does not suppon dynamic priority scheduling.t In Ada, the only way to
control task response times is by assigning static (fixed) priorities to tasks. However, a
static priority scheduler is theoretically not as efficient as dynamic priority schedulers,
since it has been shown ([Liu & Layland 73]) that the achievable utilization factor of the
best static priority scheduler is about 70%. (A scheduler is said to have an achievable
utilization factor f if it can always successfully schedule a set of tasks whenever the
utilization factor of the task set does not exceed!) More imponantly, the impact of task
scheduling overheads on the achievable utilization factor is likely to be worse for static
priority schedulers since the lowest priority task can be preempted by every one of the
other tasks. Since the best static priority scheduler (the rate monotonic algorithm [Liu &
Layland 73]) assigns the lowest priority to the task with the longest period, it is likely
that the task with the lowest priority will be preempted more than once by each of the
other tasks. The worst-case response time of the lowest priority task must therefore
account for the scheduling overheads of many more preemptions. This is not so for the

earliest deadline scheduler.

On the other hand, a static priority scheduler is easier and cheaper to implement and
may thus offset the theoretical advantages of dynamic priority schedulers. In practice, a
balance may be struck by the use of a hybrid scheduler, e.g., one that adjusts priorities
l~ss frequently than the earliest deadline scheduler. In any case, the lack of suppon for
dynamic priority scheduling is an imponant weakness in a programming language for

real-time applications such as Ada.

t It has been claimed that there are ways to "simulate" dynamic priority assignment by using entry
families in Ada. In addition to being cumbersome and impractical, it is Unlikely to be the intent of tile Ada
designers to support dynamic priority scheuling this way.

V. 14

3.3.1 The Priority Inversion Problem

In [Cornhill & Sha 87], L. Sha and D. Cornhill first discussed a problem called
priority inversion that can have a serious impact on the response time of high priority
tasks in Ada programs. Priority inversion is the phenomenon where a higher priority task
is forced to wait for the execution of a lower prioritY task. This happens if for example,
the highest priority task must rendezvous with a low priority task before its execution
can proceed any further and the low priority task is preempted by all the other tasks with
a higher priority. In [Sha, Rajkumar & Lehoczky 87], protocols were introduced to allow
a lower priority task to temporarily adopt the highest priority of the tasks that are waiting
for it. These protocols were named priority inheritance protocols. While priority inheri
tance protocols can alleviate the impact of priority inversion, it is unlikely that the
achievable utilization factor can be maintained even at 70%, as in the case of indepen
dent tasks. In the next section, we shall investigate the impact of task synchronization on
dynamic priority schedulers. We shall show that under certain conditions, the achievable
utilization factor can still be maintained at 100% in our tasking model.

3.4 Synchronization with the Ada Rendezvous

In our tasking model, the computation of a task consists of a chain of scheduling
blocks which are separated by communication primitives. We now consider the case
where a communication primitive is used solely for enforcing synchronization between
two tasks, i.e., a task may try to rendezvous with another task by executing a rendez
vous command (i.e., an entry call or an accept statement).

We call two tasks which synchronize (by means of the rendezvous) with each other
communicants. (This definition defines a communicant relation on the set of tasks.) When
a task T. attempts to execute a rendezvous (entry call/accept) command, it must wait

1 .
until the corresponding communicant is also executing the corresponding rendezvous
(accept/entry call) command. Information may be exchanged by two tasks at a rendez
vous, but the nature of the exchange is not of interest to us. The primary purpose of the
rendezvous primitive is for synchronizing two tasks. More specifically, a rendezvous
establishes a precedence constraint which requires that all the computation before the
rendezvous command in each task must precede all the computation after the
corresponding rendezvous command in the other task. For scheduling purposes, a ren
dezvous is assumed to take zero time. In practice, this can be justified by splitting the
rendezvous overhead and including it in the scheduling blocks right before the rendez
yous.

If two user tasks are communicants, then we require that either they have the same
period, or one period is an exact multiple of the other. This requirement does not seem to
be overly restrictive since in practice tasks which synchronize with one another are likely
to perform related periodic application functions; in any case, the scheduling problem is

V. l S

not significantly harder without this restriction. Also, two communicants are assumed to
execute the same number of rendezvous primitives targetting each other in every (the
longer of the two) period in order not to miss any deadline.

3.4.1 The Impact of Synchronization on Task Scheduling

The scheduling problem will now be examined. The following example shows that
the earliest deadline algorithm modified to run the ready task which has the nearest dead
line and which is not blocked by a rendezvous command is not optimal.

Example

There are three periodic tasks. T 1 consists of two scheduling blocks with
c11=c 12=1, d1=3, Pl=5. T2 has two scheduling blocks with c21=1, c22=3, ~=P2=10.
T3 has one scheduling block with c3=1, d3=9, P3=10. T 1 must rendezvous with T2 after
the first scheduling block, and T 2 must rendezvous with T 1 after the first and second
scheduling block. (See figure 1.)

The earliest deadline algorithm will execute the scheduling block TIl at time~
since task T 1 has the nearest deadline. At time= 1, T 1 is blocked by a command to syn
chronize with task T 2. However, T 2 cannot be executed immediately because task T 3 has
a nearer deadline. Thus the scheduling block T 21 will not be executed until time=2 and
the rendezvous with task T 1 will not be completed until time=3. Thus task T 1 will not
be able to make its deadline at time=3.

V.16

ask

cll c 12
I
I

rendzvous

c 21 c22
. I I

I I

T,1
1 2 3 4 5

C u IC
3 I c 21 I c12 I -Time

cll I c21 I c12 c 3 I c 22 I cll

cll c 12
I ,

rendezvous

I J I
I

I
c ,j

6 7 8 9

Earliest Deadline

Schedule fails
at time = 3

Earliest Deadline Schedule fails

at time = 8 even with priority
inheritance

c22 I c 12

I
I

P 1=5
d 1=3 c 11=1

C 12=1

P2=10
d 2=10
C21=1
C22=3

10

•
Time

Figure 1. Example of scheduling constraint imposed by task synchronization

This example is the analog of the priority inversion problem for the earliest deadline
scheduler. The earliest deadline scheduler fails because the highest priority (nearest
deadline) task must wait for a low priority task which can be blocked by other tasks with
higher priority. This problem can be solved by adopting a technique for revising dead
lines to eliminate precedence constraints in the classical model of scheduling (e.g.,

v . 17

j

[Blazewicz 76]). In real-time scheduling. an off-line scheduler is needed to compute a set
of dynamic deadlines which can then be used for scheduling at run time by a earliest
deadline scheduler.

We recall that tasks T. and T. are said to be related by a communicant relation if
there is a matching pair of s~chrond:ation (rendezvous) commands in the computation of
the two tasks. The reflexive transitive closure of this communicant relation induces a
partition of the task set into equivalence classes such that tasks in the same equivalence
class synchronize directly or indirectly with one another. Let us consider the computa
tion that must be performed for task Ti in the interval [O.L) where L is the longest period
among the tasks which belong to the same equivalence class as T i. Denote the chain of
scheduling blocks generated in chronological order for Ti in [O.L) by TP). Ti(2) • ...•
Ti(ni). In addition to the precedence constraint (a chain) on the scheduling blocks within
a task. the scheduling blocks must also obey additional precedence constraints as a result
of the synchronization (rendezvous) commands. Specifically. suppose task Ti targets
task T. for a rendezvous between the scheduling blocks T.(k) and T.(k+l). and the
corresJonding rendezvous command in T. occurs between ~e sCheduli~g blocks T.(l)
and T.(l+l). Then T.(k) --+ T.(l+l). and .r.(l) --+ T.(k+l). Having thus defined the Jrec:
ceden~e constraints. ~e procied to assign J a deadl~e to each of the scheduling blocks
generated in [O.L).

(1) Sort the scheduling blocks generated in [O.L) in reverse topological order.
(2) Initialize the deadline of the kth instance of the scheduling block Ti: to (k-l)*Pi+di.
(3) Revise the deadlines in reverse topological order by the J formula: dS =

MIN(dS.ldS'-cS' : S --+ S'}) where S and S· are scheduling blocks and cs .. dS' are
respectively the computation time and current deadline of S·.

The purpose of the above procedure is to move up the deadline of a scheduling
block if it must precede another scheduling block which has a nearer deadline. The
revised deadlines can be used for scheduling at run time by recycling them every L time
units. i.e .• if task Ti is ready to execute the mth instance (modulo L) of a scheduling
block. then it must be assigned a (dynamic) deadline equal to the revised deadline of that
scheduling block relative to time=(m-l)*L. The optimality of the Deadline Update pro
cedure is stated in:

Lemma!

Suppose (M.S) is a tasking model where all the communication primitives are reno
dezvous commands for task synchronization. Then the feasibility of the model is not
affected by using the dynamic deadlines as given by the Deadline Update procedure
above. Furthermore. whenever the dynamic deadline of a ready task Ti is nearer than
that of another ready task T.. then scheduling T. ahead of T. will not violate any

J 1 J

V.18

.1

precedence constraints involving the two tasks.

Theorem 2

If a feasible schedule exists for an instance of a tasking model where all the com
munication primitives are rendezvous commands for task synchronization, then the task
set can be scheduled by modifying the earliest deadline algorithm to schedule the ready
task which is not blocked by a rendezvous and which has the nearest dynamic deadline.

To achieve optimal scheduling, the compiler (or some preprocessor) must therefore
collect information about the synchronization commands among tasks and prepare an
appropriate database for the run-time scheduler. The concept of an off-line scheduler is
currently not in the language Ada.

It could be argued that the database of dynamic deadlines may require too much
memory space and that a totally on-line scheduler based on the idea of priority inheri
tance ([Sha, Rajkumar & Lehoczky 87]) might be sufficient for optimal scheduling. Intui
tively, if a high priority task tries to rendezvous with a low priority task, then the low
priority task should be temporarily given the priority of the high priority task so that it
can compete for the CPU with the rest of the tasks. To see if priority inheritance is
sufficient, we now consider an analog of the priority inheritance protocol for the earliest
deadline scheduler which we call the ED-PI (Earliest Deadline- Priority Inheritance)
scheduler.

The ED-PI scheduler works in the following way. In addition to running at every
instant the ready task with the nearest deadline, the ED-PI scheduler also assigns tem
porary deadlines as follows: If task T 1 executes a rendezvous command to try to syn
chronize with task T 2' then the deadlines of both T 1 and T 2 will be set to the smaller of
their two deadlines. After the rendezvous has completed, the deadlines of the two tasks
will be restored to their previous values.

Unfortunately, the ED-PI scheduler is not optimal, as the example in figure 1 shows.
(The bottom schedule in figure 1 illustrates how the ED-PI scheduler fails .) The ED-PI
scheduler fails because it does not make use of the information that task T 2 is forced by
the second rendezvous to finish before the second deadline of T I' i.e., the real deadline
for T 2 is at time 7 instead of at time 10 and is therefore nearer than the deadline of T 3
which is at time 9.

Fortunately, the ED-PI scheduler does work under fairly non-restrictive conditions.
~pecifically, we can prove the following theorem.

Theorem 3

If (I) tasks that synchronize with one another have the same period, and (2) the
period of every task is the same as its deadline, then a necessary and sufficient condition

V.19

for scheduling a task set with synchronization constraints is that the utilization factor of
the task set does not exceed 1.

If the conditions of theorem 3 are satisfied, then the ED-PI scheduler is indeed
optimal. Again, a dynamic priority scheduler can be used to maintain a 100% achievable
utilization factor, thus giving further credence to the need to support dynamic priority
scheduling in a real-time programming language such as Ada.

3.5 Critical Sections

In our formulation, an instance of a task model is given by a pair (M, S). M is a set
of periodic tasks and the computation of a periodic task is a chain of scheduling blocks
separated by communication primitives (rendezvous commands). We say that two
scheduling blocks in different tasks are mutually exclusive if their executions are not
allowed to overlap. We shall call such scheduling blocks critical sections. The set S in
our model is a set of semaphore tasks that enforce mutual exclusion on critical sections.
Before executing a critical section, a periodic task must execute a rendezvous command
with some task in S. Upon leaving the critical section, the periodic task must again ren:.
dezvous with the same task in S. The two rendezvous correspond to a P and V action on
a semaphore. We call S the guard of the critical section. In general, a semaphore task S
may be the guard of more than one critical section. For scheduling purposes, the execu
tion time of a rendezvous with a task in S can be considered to be O. This can be justified
by charging the rendezvous overhead to the computation time of the critical section.

3.5.1 The Impact of Critical Sections on Scheduling

The need to share critical sections among tasks is another source for the priority
inversion problem. Suppose a low priority task succeeds in entering a critical section
before a high priority task becomes active, and the high priority task also wants to exe
cute the same critical section. Then the high priority task will have to wait until the low
priority task has exited from the critical section. The priority inheritance protocols pro
posed in [Sha, Rajkumar & Lehoczky 87] can alleviate the problem, but again it is
unlikely that the achievable utilization factor can be maintained at 70% for static priority
schedulers.

It is not difficult to see that with arbitrarily long critical sections, the earliest dead
line algorithm is no longer optimal. In fact, we can prove the following theorem.

Theorem 4*

The problem of deciding whether an instance of the tasking model (M, S) has a

feasible schedule or not is NP-hard even for the case where the deadline of each task is

V. 20

I

the same as its period.

In general, the achievable utilization factor can be arbitrarily low even for dynamic
priority schedulers if there is no resolction on the size of critical sections. To see this, we
can add to any task set an additional task whose computation time is longer than any of
the deadlines in the task set and whose period is so long that its utilization factor is negli
gible. If this new task is mutually exclusive with all the other tasks, then the task set will
be infeasible regardless of its utiliiation factor. In practice, the size of critical sections
are usually kept small. If we resolct the lengths of critical sections to be no bigger than a
certain size, say q, then the run-time system can enforce mutual exclusion on critical sec
tions by not permitting a task to be preempted unless it has received at least q units of
CPU time. This is indeed a common strategy in operating system kernels for protecting
system state information, and is compatible with the technique of using non-preemptible
"code solps" for real-time programming (the TOMAL language [Hennessy 77]). How
ever, the earliest deadline scheduler is still not optimal even if all critical sections are of
the same length, as shown by the following example.

Example

There are two periodic tasks T I' T 2' T 1 consists of a single critical section of length
c l =2 and has a deadline d1=2 and period PI=5. T2 has two scheduling blocks with the
following parameters: c21 =2, c22=2, P2~=1O. The second scheduling block of T2 is
the same critical section as T I ' The preemption time quantum q is set to be 2.

The second deadline of T 1 will be missed if the second scheduling block of T 2 is
scheduled at time 4, since the second instance of T I must be scheduled as soon as it is
requested at time 5, and T2 cannot be preempted before it uses up the second quantum of
CPU time allocated to it at time 4. A cleverer scheduler would have left the CPU jdle in
the interval [4,5] and execute T22 in the interval [7,9]. The earliest deadline scheduler
fails because it never leaves the CPU idle when there is a task ready to run, whereas in
this case an optimal scheduler must not allocate a new quantum of CPU time to any task
after time=3 and before time=5 so that a future deadline may be met. Figure 2 illustrates
the situation when the second instance of T 1 misses its deadline because T 22 is started in
the interval (3,5).

t In [Mok 83J, we proved that the problem of deciding whether it is possible to schedule a set of
periodic tasks which use semaphores only to enforce mutual exclusion is NP-fiard. However, the construc
tion in that proof requires taskS whose deadlines are not the same as their periods. Theorem 4' is a strOnger
result.

V. 21

Task

1 j 1 !
P 1=5
d l =2

TI~ __ C~I __ -+ __ -+ __ ~ __ ~~_C+I __ ~ __ ~ __ ~~11=2

1 l
P2=IO

I
d2=IO

T2 Cl21 . I c c2 C21=2
~--~---+----~--~·----+1----~·--~----4~----+---~ c~=2

I 2 3 4 5 6 7 8 9 10

T i andT 22
are critical
sections

T 1 misses deadline

at time=7 because
r-------.------,-------.------~

I

T 22 starts in the
c 22

I mterval (3,5) •

Figure 2. Example of scheduling constraint imposed by critical sections

Notice that in the above example, the more urgent task T I misses its deadline
. because it is blocked by a less urgent task T 2 which has entered a critical section before

T I becomes ready to run again. This illustrates the analog of the priority inversion prob
lem for the earliest deadline scheduler even under the restriction that the size of all criti
cal sections is bounded by a constant. Unlike task synchronization, the achievable utili
zation factor when tasks have critical sections is no longer 100%, even if all critical sec
tions have the same size. However, we can put a lower bound on the achievable utiliza
tion factor as a function of the parameter q, the upper bound on the size of critical sec
tions as follows. We define the augmented utilization factor of a task T. by (c·+q)/PI· . 11
where ci'Pi are respectively the computation time and period of task Ti. The augmented
utilization factor of a task set is the sum of the augmented utilization factors of the tasks
in it.

TheoremS

V. 22

A task set is feasible if the following conditions are satisified: (1) The period of
every task is the same as its deadline and is at least as long as its computation time plus
q. (i.e., ci+q S Pi = di for every task Ti). (2) All scheduling blocks that are critical sec
tions have size less than q. (3) The augmented utilization factor of the task set does not
exceed 1.

The earliest deadline scheduler can be modified to generate a feasible schedule for a
task set which satisfies the above conditions as follows. At any instant, the scheduler runs
the task with the nearest deadline unless the task being executed is in a critical section, in
which case no preemption is allowed until the critical section is exited. We note that
theorem 5 still holds if tasks also synchronize with one another in addition to executing
critical sections, as long as tasks that synchronize with one another have the same period.
The ED-PI scheduler can likewise be modified to enforce mutual exclusion on critical
sections.

Theorem 5 gives a technical justification for keeping critical sections small. Obvi
ously, a high achieveable utilization factor can be obtained if the value of q*I:(I/Pi) is
small.

3.6 Efficacy of Ada-like Tasking in Real-Time Programming

In order to meet stringent timing constraints, it is important to be able to exploit the
semantics of the programming language to make good resource allocation decisions. For
the class of timing constraints captured by our tasking model, we can now draw some
conclusions about the efficacy of the Ada tasking facilities.

Firstly, as Cornhill and Sha have observed, the priority inversion problem can be
detrimental to the achievable utilization factor whenever tasks need to synchronize or
share critical sections. Our investigation indicates that a dynamic priority scheduler can
be very useful in maintaining a high achievable utilization factor even with task syn
chronization and critical sections. Even though implementation overhead tradeoffs may
call for schedulers that do not change task priorities as frequently as for example, the ear
liest deadline algorithm, there is a real need to support dynamic priority scheduling for
real-time programming . . Currently, dynamic priority schedulers are not supported by
Ada.

Secondly, there is substantial benefit in making the enforcement of task synchroni
zation and mutual exclusion distinct to the run-time scheduler since this piece of infor
~tion is crucial to efficient scheduling. In the case of task synchronization, the online
scheduler should allow the task with the more distant deadline to inherit the shorter dead
line of the other task until synchronization is achieved. In the case of mutual exclusion,
the scheduler can disallow preemption for q time units once a task has entered a critical
section. In Ada, the same construct (the rendezvous) is being used for both purposes. As
we have seen in the section 2, it is very difficult to derive the timing behavior of an Ada

. V. 23

program from its text. More importantly, it is in general impossible to automate the
deduction of timing constraints from Ada programs. Without knowledge of the type of
timing constraints involved, it is impossible for an analysis tool to determine
whether timing constraints can be guaranteed or not. In contrast, this type of infor
mation can be easily obtained from annotated programs. Our scheduling results thus
reinforce the utility of the formal annotation system that we have introduced in this
regard.

Thirdly, when two or more tasks attempt to rendezvous with a semaphore task, a
choice must be made to select one of the tasks for completion of the rendezvous. In Ada,
this is determined by the implementation of the select statement and the FIFO discipline
is usually adopted. Clearly, the FIFO discipline is non-optimal when stringent timing
constraints must be considered. In general, nondeterministic constructs such as the select
statement need not be stochastic but are better regarded as providing a margin of freedom
to the scheduler for achieving performance objectives. Instead of (over) specifying the
behavior of the scheduler, it is more profitable to devise language mechanisms with
which the scheduler can be manipulated to achieve desired performance objectives. In
other words, the behavior of the scheduler should not be defined by the language but by
application constraints. Our formal annotation again provides such a mechanism.

4. Conclusion

Programming language designers have traditionally abstracted away the notion of
real time from high level languages, common wisdom being that programs are more
robust if their correcmess does not depend on execution speed. In real-time programs,
however, the absolute timing of events may be crucial to the safe functioning of the sys
tem because of performance requirements, and because there are task coordination prob
lems whose solutions depend on the satisfaction of stringent timing constraints. Herein
lies the challenge: how do we design programming languages that allow us to reason
about and enforce real time properties without tying the language to specific systems
details? The approach taken by current real-time programming languages such as Ada is
to add constructs, e.g., the delay command of Ada to explicitly schedule computation.
We have shown that there are two serious problems with this approach. Firstly, the
semantics of ad hoc time-related commands and concurrency control mechanisms may
not be sufficient to express the wide spectrum of timing constraints. Secondly, it may not
~. possible to derive the necessary information about timing constraints for efficient
scheduling from the concurrency control constructs in the language.

To help resolve the first difficulty, we have presented a formal system of annotating
Ada-like programs to express timing constraints. This system of annotation is indepen
dent of language-specific concurrency control mechanisms and can be applied to block-

V.24

=

structured languages. Since it is based on a logic (RTL) , it does not suffer from the
imprecise semantics of the time-related constructs in current real-time programming
languages. To help resolve the second difficulty, we have examined the real-time
scheduling problem by augmenting the tasking model with timing constraints. We have
investigated the theoretical efficiency of dynamic priority schedulers in solving the prior
ity inversion problem, both for the case of task synchronization and critical sections. Our
results indicate that there is technical justification for making task synchronization and
mutual exclusion syntactically distinguishable since this piece of infonnation is crucial to
the construction of efficient real-time schedulers.

There are many other important issues in real-time systems research. For example,
how do we recover from faults which violate design assumptions in the hard-real-time
approach? This is often a source of misunderstanding of what real-time system design is
all about. In the hard-real-time approach, we strive to design systems which are
guaranteed to meet certain timing constraints. This does not mean that systems built to
such specifications will not fail. There are fallible assumptions underlying the design of
hard-real-time systems, e.g., underestimation of resource requirements, worst-case work
load etc. However, the hard-real-time approach gives us a way to separate concerns. We
can now estimate the reliability of a system by considering how likely the assumptions
are to fail (hypothesis coverage analysis), independent of resource allocation details.
Furthermore, a resource scheduler designed to meet a given set of hard-real-time . con
straints is likely to be more amenable to detecting when a design assumption has failed,
e.g., a task is using up more CPU time than is specified. Consequently, it may be easier to
adjust resource allocation policies to avoid catastrophic failure. Indeed, it may not be too
farfetched to think of the hard-real-time approach as the closed-loop control approach (as
opposed to the open-looped traditional approach) to achieve system reliability.

V. 2S

Bibliography

[Ada Manual 83]
United Slates Department of Defense (1983) "Reference Manual for the Ada Programming
Language". ANSIIMIL-STD-1815A,1983.

[Blazewicz 76]
Blazewicz. J. (1976) "Scheduling Dependent Tasks with Different Arrival Times to Meet Dead
lines", Modelling and PerformtJnce Evaluation of Computer Systems, E. Ge/enbe, ed., North-Holland
Publishing Company, 1976, pp. 57-65.

[Comhill & Sha 87]
Comhill, D. and Sha L. (1987) "Priority Inversion in Ada". Ada Letters, vol. 7, no. 7, November
December, 1987.

[Donner 87]
Donner, M. (1987) "Language and Operating System Integration for Real-Time Systems", Proceed
ings of the Fourth Workshap on Real-Time Operating Systems. Cambridge, MA.. July 1987

[Hennessy 77]
Hennessy, J. L. (1977) "A Real-Time Language for Small ProCessors: Design, Definition, and Imple
menlation", PhD thesis, State University of New York at Stony Brook. 1975.

[Jahanian & Mok 86]
Jahanian F. and Mok. A. K. (1985) "Safety Analysis of Timing Properties in Real-Time Systems".
IEEE Transactions on Software Engineering, Vol . SE-12, No.9, September 1986.

[Lee & Gehlot 85]
Lee, 1. and Gehlot, V (1985) "Language Constructs for Distributed Real-Time Programming",
Proceedings of the IEEE Real Time Systems Symposium. December 1985, San Diego, CA, pp. 57-66.

[Leung & Merrill 80]
Leung, Joseph Y. T. and Merrill, M. L. (1980) "A Note on Preemptive Scheduling of Periodic, Real
time Tasks" In/ormtJtion Processing Letters 11115-118.

[Lin. Natarajan & Liu 87]
Lin. K. J .• Nalarajan, S. and Liu, J. (1987) "Imprecise Results: Utilizing Partial CompUlations in
Real-Time Systems", Proceedings of the IEEE Real Time Systems Symposium, December 1987, San
Jose, CA,pp. 210-217.

[Liu & Layland 73]
Liu, C. L. and Layland, James W. (1793) "Scheduling Algorithms for Multiprogramming in a Hard
Real-Time Environment" JACM 20, January 1973, 46.01.

[Lo 87]
Lo. Virginia (1987) "Distributed Scheduling Calendars for Scheduling under Real-Time and Syn
chronization Constraints", Proceedings of the Fourth Workshap on Real-Time Operating Systems,
Cambridge. MA., July 1987

[Mok 83]
Mok, Aloysius K. (1983) "Fundamental Design Problems of Distributed Systems for the Hard-Real
Time Environment" PhD Thesis, Department of Electrical Engineering and Computer Science,
Massachusetts InstitUle of Technology, Cambridge, Massachusetts.

[Mok 85]
Mok. A. K. (1985) "SARTOR-a Design Environment for Real-Time Systems". IEEE Proceedings of
the 9th COMPSAC Conference. October, 1985, Chicago, Illinois, pp. 174-181.

[Mok et al 87]
Mok, A. K., Amerasinghe, P., Chen, M., Sulanthavibul, S., Tantisirivat, K. (1987) "Synthesis of a
Real-Time Message Processing System with Dala-Driven Timing Constraints", Proceedings of the
IEEE Real-Time Systems Symposium. December 1987, San Jose, California, pp.133-143.

V.26

[Sha, Rajkumar & Lehoczky 87]
Sha, L, Rajkumar, R. and Lehoczky, J. (1987) "Priority Inheritance ProIocols: an Approach to Real
Time SynchroniUltion", unpublished manuscript, Departments of CS, ECE and Stillistics, Carnegie
Mellon University, November, 1987.

[Shaw 87]
Shaw, A. (1987) "Reasoning About Time in Higher-Level Language Software", Department of Com
puter Science Technical Report 87-08-05 University of Wdshington , Sealrte, WA 98195, August 1987

[Yolz & Mudge 87]
Yolz, R. A. and Mudge, T. N. (1987) "Instruction Level Timing Mechanisms for Accurate Real
Time Task Scheduling", iEEE Transactions on Computers, vol. C-36, no. 4, pp. 449-459, April 1987.

V.27

V.28

DISCUSSION

First Lecture

Rapporteur: Rogerio de Lemos
Amer Saeed

In one of the first examples presented which concerned two concurrent systems
A and B, members of the audience questioned how the system A could detect a
property of system B. Professor Mok answered that this is an implementation
issue not a specification issue. Professor Turski asked if all considerations must
be taken at the implementation level what was meant by" at the same time" at
the specification level. Professor Mok answered that he could explained" at the
same time" in terms of logic.

Another example presented, made up of a natural language specification and
the respective formal specification in terms of RTL, members of the audience
questioned some ambiguities found in the english specification . Professor Mok
argued that an english description does not give a precise specification to
which Professor Turski disagrees and said that the given specification was very
precise. At this point Professor Shrivastava noted that the natural language
specification was precise enough in the sense that a system could be built which
could satisfy the specification .

Professor Turski questioned the notation of the operator "@" . Professor Mok
answered that the operator "@" considers absolute time and maps fhe
occurrence of events to the integers (discrete time).

Professor Turski argued if the verification used (SPA,SA) checks if the safety
assertion is satisfiable or provable. Professor Mok replied that was provable if
not satisfiable in the context of the model.

After the lecture Professor Nehmer asked how will the annotation of a
program help in the analysis of the implementation in languages like ADA
which have many nondeterministic properties; in his opin ion languages should
be modified to remove all nondeterminism . Professor Mok replied that the
nondeterminism gives an important degree of flexibility which allows the
scheduler to adapt to certain levels of performance, and instead of proposing a
new language the choice was to use an annotation system, based on the claim
that an engineer should not have to learn an entirely new language to benefit
from the presented approach .

Second Lecture

Rapporteur: Amer Saeed

During the lecture

Professor Randell asked if the reduction process over the graphical
representation preserves the cycles of the graph. Professor Mok replied that
the reduction process preserves the number of positive cycles, and these are the
only cycles he needs to determine satisfiability.

Professor Bron asked what conclusions can be declared after node reductions,
in particular can you determine satisfiability or not. Professor Mok replied that

V.29

if all edges in a positive cycle (when reduced) correspond to unit clauses of the
safety assertion then the assertion must be unsatisfiable. However, if some
edges correspond to disjunctive clauses then further analysis will be required .

Professor Kopetz asked to what extent is analysis automated, and how practical
is the approach. Professor Mok stated that a program which implements some
of the algorithms has been constructed, and he hopes that in the future an
automated tool to aid the analysis will be available. Professor Mok also said
that at the moment he does not know how practical the approach is for timing
analysis, but was aware of the fact that timing analysis is very hard.

At end of lecture

Professor Randell asked what part does he envisage for the approach in the
construction of real-time systems. Professor Mok replied that two main
objectives must be met before the approach could become engineering
practice, these where the availability of tools to automate much of the analysis
and a means·to structure the system to minimise the components over which
real-time constraints are imposed .

Professor Randell asked if their where any equivalent techniques or
approaches which could be used to express and analyse the safety assertions.
Professor Mok replied by stating that there were some alternative approaches,
perhaps the most well known was temporal logic. Professor Mok then stated
that several problems are encountered when temporal logic is used to express
real-time constraints, in particular care must be taken on how time is modeled
otherwise the usefulness of the logic can be limited. Finally, Professor Mok
stated that he did not claim that his approach was the best, but that some
approach which explicitly states the timing constraints is required.

Mr A. Waterworth stated that if the verification of the safety assertion can be
exponential, how useful is the approach for very large systems. Professor Mok
replied that the analysis of a complicated system would always be a difficult
task . But at the moment he did not know how practical the approach would be
for very large systems, the practicability ofthe approach could only be assessed
after detailed experiments - which have not yet been performed . Professor
Mok also stated that he felt that the verification problem could be simplified if
the approach was used in conjunction with a structuring technique .

Third Lecture

Rapporteur: Amer Saeed

During the lecture

Professor Randell stated that if a system is constructed with enough processors
to ensure that the system is heavily under loaded (as suggested by Professor
Bron) then, surely, the importance of scheduling is reduced. Professor Mok
agreed that if enough processors are available to ensure that a system will be
heavily under loaded the problem of scheduling is no longer critical, and
conceded the point that there may exist many (industrial) systems in which this
is possible. But he also stressed that there are many (avionics and military)
systems where it will not be possible, and it was these he was primarily
concerned with.

V. 30

Dr Holt pointed out to Professor Mok that in the implementation of any
scheduler the action of swapping processes will take some finite time, and
asked how this would effect his scheduling strategy. Professor Mok stated that
if for periodic processes an upper bound can be placed on the number of
preemptions then an upper bound can be placed on the total time required to
swap the processes. If such an upper bound can be computed it can be easily
encoporated into the scheduler.

At end of lecture

Professor Bron stated that he felt that the algorithm used for the earliest
deadline scheduler was an application of the bankers algorithm in which
money is replaced by time. Professor Mok conceded the point that there are
certain similarities with the bankers algorithm (and others). but - as far as he
was aware- it was not the same. However he did not claim that the algorithm
was entirely original.

Professor Randell asked to what extent are the scheduling problems in
computing science comparable to those in operations research, and how much
use can computer scientists make of the work done in operations research.
Professor Mok replied that there is a definite overlap between the scheduling
issues in operations research and computing science scheduling issues. But
operations research usually deals with factory level scheduling, in which there
are fixed tasks and no (or minimal) mutual exclusion problems. Professor Mok
also stated that in a recent and supposedly complete classification of
scheduling problems (in operations research). many of the problems
encountered in computing science were not covered .

V.31

=

V. 32

