DESIGN OF A REAL-TIME COMPUTING SYSTEM
H KOPETZ

Rapporteur: R de Lemos

IV.25

IV.26

TU Wien hmjj_

What is a "hard real time" system ?

A computer system, where

the validity of the results depend not
only on their logical correctness, but also
on their timeliness. If given real time
constraints are not met there may

potentially be catastrophic consequences.

IFxamples of hard real time systems:
Process control (e.g. nuclear power)
Traffic centrol (e.g. flight, train)

Medical (e.g. intensive care monitoring)

Iv.27

TU Wien

sl1.16

.3

Model

Comm.

The "rolling mill" example

IV.28

TU Wien

A

SOFT REAL TIME vs. HARD REAL TIME

Characteristic

Hard Real Time

—_—

Response Time
Pacing

Peak load perform:
Granularity of time
Basic com. service
Clustering

data files

data integrity
Safety

Error detection lat.

Redundancy

hard

by the environmu
predictable

< 1 msec

end to end
important

small to medium
short time
critical

bounded by syst:

active

On line

soft

by the computer
degraded

about 1 se,c
transport service|
less important I
large l
long time

not critical
responsibility of ui

standby

Iv.29

hard

TU Wien 1.5

In a typical hard real time system

* the Maximum Response time to a stimulus

is determined by the environment

* an explicit flow control cannot be

exercised over the environment

* the real time data is invalidated by

the passage of real time
* the economic justification is related to
the predictable performance under peak

load condition

* Peak load is highly correlated

IV.30

flowcont

TU Wien A

Flowcontrol:
Adjusting the speed of the sender such that

the receiver will not be flooded by messages.

There is always an upper limit to the

performance of a receiver!

Explicit Flowcontrol:

The receiver sends an acknowledgement message
to the sender waiting for this message.

(The sender must be in the sphere of control

of the receiver).

Implicit Flowcontrol

There is an agreed maximum messages rate
for the sender. It is assumed that all
receivers can follow this rate.

V.31

TU wle n flowimex

l. 7

There is a potential conflict at the boundary

between implicit and explicit flow control:

s it possible to specify and guarantee

the maximum sender rate?
What happens, if a sender outside the sphere
of control of the receiver sends more messages

than the agreed limit?

How do we size the buffers?

Iv.32

TU Wien

s1.15

What is the validity time of the

information

The traffic light is green ?

" Iv.33

TU Wien

81.14

.8
At consistency between the real time
data and the environment
Ut

Strong consistency:

correct and timely
Weak consistency:

correct and timely or undefine
Inconsistency

incorrect or not timely

Computer System Environment

Input

Output >L

(

B &)

IV.34

TU Wien

Peak Load

In many cases, the services of a hard real
time system are needed most urgently under

peak load conditions ('rare event"):

Examples:
- Ligthning stroke into a power grid
- Engine failure on takeoff of a plane

- Rupture of a pipe in a nuclear reactor

It is difficult to impossible to extrapolate
from the behaviour under "normal situation '
to the behaviour under "peak load situations”

(rare events).

"Confidence by design"

IV.35

TU Wien MT St

Assumption about time base:

All nodes have access to a global time base

of known synchronization accuracy:

- The time base is chronoscopic, i.e it does

not contain any point of dicontinuity

- The metric of the time base is close to
the metric of the time standard (TAI)

- The granularity is chosen in agreement

with the synchronization accuracy.

Implementation issues of the time base are

discussed in the chapter on real time.

IV.36

rtm?2

TU Wien

M9

Real Time (RT) entity:

Something of relevance for the given purpose

which contains a time varying internal state.

A RT entity can be characterised by
- a unique name
- a set of static attributes (type)
e.g. maximum speed of change, value domain

- a set of dynamic attributes (value set)

Every RT entity is in the sphere of control of
a subsystem, which determines the value set
of the RT entity.

Examples of RT entities:

Temperature, setpoint, intendea valve position

IV..37

TU Wien M o

Control ‘ Real time

Object system ey
1 @ ®
0
R
3
A
L= -
30—
A Measured 8 Observation
Value s RT-entity /object
B Intended

——) Message flow
O Components

Valve Position

C Setpoint

RT — entities and Observations

Iv.38

ent.obj

TU Wien

M1l

Relationship between entities and objects

In our model, the entities of the world of

interest will be represented by objects.

Starting from the classical concept of

an object we introduce

- Real Time objects and

- Distributed objects

Iv.39

TU Wien

object

MI2

OBJECT {(classic):

An object is an autonomous entity, containing

an internal state and a set of associated

operations.

An operation can be invoked by the receipt

of a message and the object reacts by

sending a message containing the result

of the operation.

The external interface of an object is

defined by the set of all messages it

can receive or send (and its internal

state space).

Related objects can be grouped together

to form a class (and a superclass etc.).

IV.40

. rtobject
TU Wien L

™MLY

REALTIME OBJECTS:
A realtime object is an object that

- contains the global time as part of

its internal state and

- activates some of its internal
operations whenever a predicate on the

global time becomes true.

A realtime object is active, if output

messages can be generated spontaneously.

A realtime object is passive, if an
ouptut message can only be generated as
a consequence of a request to do so by

an input message.

IV.41

distobj

TU Wien MY

Distributed real time object:

A distributed real time object is a
set of coequal realtime objects
located at different sites and
belonging to the same class.

Every local instance of a distributed
RT object provides a specified service

to the local site.

The quality of service of a distributed
RT object must be in conformance with
some specified consistency constraints:

Examples:
Clock synchronization within delta
Membership service

IV.42

observ

TU Wien o

Observation (State):

An observation is a specific message type
containing information about the state of a
RT object (and thus about the associated

RT entity) at a particular point in time.

An observation can be represented by

the following tuple:
<object name, value set, t_obs, t_val>

where
object name: name of the observed object
value set: the set of attribute values of
the observed RT observed
t_obs: time of observation

t_val: validity time of the observation

IV.43

rt2.a

TU Wien I

Real time data base:

An observation is current at a point in
I e
time t_use if

t_obs < t_use < t_val

An observation is archival at a point in
)
time t_use if

t_use >=t__val

The real time data base is defined as the
set of current observations about a

specified set of RT-entities.

A subset of the archival observations of
a specified set of RT-entities forms

the archival data base.

IV. 44

rt3

TU Wien M7

State observation

Triggered by a periodic time signal
Contains full value set of the rt-entity
FEvent observation

Triggered by a state change

contains the differences between old state

and new state

In a fault free system, the two observation

techniques are functionally equivalent

IV.45

TU Wien

M1Fa_
4
States of the
RT — entity
: Points of Observation |
! version n i
i v
version n-1 | I
| | | |
| | | |
I | | | | I
E Bl I 1 ! .
tl it 00 tr tl real time

Fig 1.: Versions of a RT — entity and points of
observation

IV.46

31.13

TU Wien

M3

RELATIONSHIP BETWEEN STATES AND EVENTS

Every change of a state is an event.
An event cannot be observed--

only the "new" state is observable.

Event Occurrence

™~

Point of Observation

IV.47

|

| stat.eve

|
|
t
i
i
|

|
i

|

Comparison of State and Event Observation

State Event
| Size large small (varying)
'Rate constant dynamic
| Loss not critical critical
' Flowcontrol implicit explicit
| Protocols simple complex
Peak load constant 2?7

IV.48

TU Wien M 2 (;ttranl

RT TRANSACTION

A real-time transaction is the time
constrained execution of a set of
communication and processing actions
which transform the observed system from
one consistentstate (the start state) to
another consistent state (the termination
state).

The termination state can be the intended

termination state or a safe exit state.

A real time transaction is started by a
stimulus message and is terminated by

a respomnse message.

IV.49

: rtdb.trans
TU Wien M2l

RT versus DB Transactions
* RT Transaction is time constrained

* Point of Commitment within a
RT Tansaction (not at the end)

* Concurrency conflicts have to be

resolved immediately in RT Transactions

* Viewed from the outside, there are

three states (not t.wol)

IvV.50

TU Wien
Mzl
Real Time Transaction
Precommitment Interactien
Phase Phase
. Computer
! |t |
v o l | l Q..oirlo\.uu"
Observation
Stimulus z:l::mol'tm ont of Effect
Real Time

Periodic RT - Transaction

Precommiiment Interaction
Phase Phase

- .._...

Point of
Stimulus Commliiment

Start of next
Transaction

Iv.51

3 transattr
TU Wien

Attributes of RT Transaction

* Timeliness -- Has to finish before

the deadline and access valid data

* Data consistency -- Data consistency

relations are statisfied

* Atomicity -- Start State,

Successful Termination, Safe Exit

* Permanence -- Permaneg Effects on
Stable Storage

IV.52

objtrans

TU Wien | M7

| Relationship between realtime transactions

| and realtime objects:

Viewed from the outside, a real-time
transaction can be considered as a RT-object
the service of which is invoked by a

' request message and which returns the

intended response message.

Viewed from the inside, a real-time
transactions consists of the exchange of
messages between lower level objects and
the execution of the invoked operations

by these lower level objects.
These two activities can be concurrent.

Thus RT transactions and RT objects are

different views of the same phenomena.

IV.53

rtobj2

TU Wien

MZ23A

The service request to a real time object,
e.g readonly access to the internal state,
can be quasi-independent from the execution

of the the associated real time transaction.

Triggered by a predicate on the time (which
is part of the state of a real time object)
the real time transaction can operate
concurrently with the service request from

the level above.

This is the fundamental difference to the
concept of procedural abstraction or
protocol layering, where a service request
from a higher level initiates the

activities of the lower level.

IV.54

. rtmess
TU Wien 12 4

Real Time Message:

- Periodic, synchronized with the global

time
- Contains full observation
- Contains observation and validity time
- Not consumed (variable semantics)

- New version overwrites previous

version atomically

Quantization of the system behaviour in the

domain of real time!

IV.55

TU Wien

M2S
Versions
Polnt of Observation
n+3 | Point of Valldity il—'*
n+2 H
| |
n i E
| |
-
v ; Real Time

Sequence of synchronized RT — messages

IV.56

DISCUSSION
Rapporteur: Rogério de Lemos

Professor Joseph inquired in what sense was the load on a computer highly
correlated. Professor Kopetz replied that the load was highly correlated during
emergency situations. For example, if a pipe bursts it will raise a lot of alarms,
so it was very risky to base assumptions on the use of the Poisson distribution.

Professor Leveson asked what was meant by a contract. Professor Kopetz
answered that in terms of the cluster design tool it was an agreement between
two subsystems for the passage of data.

Professor Randell asked how in general one could identify, without knowing
the internals of the system, what usage of a system could cause it to be
overloaded. Professor Kopetz answered that in practice this issue was not
difficult to resolve.

Professor Bron asked about the problems of estimating parameters needed for
creating static transaction schedules, prior to completion of an
implementation. Professor Kopetz replied that one used an estimate initially,
but checked this estimate during detailed design and if necessary re-calculated
the schedule.

Professor Randell asked whether it was reasonable to assume that one can
usefully identify and classify all the various possible emergencies beforehand.
Professor Kopetz answered that in his view it was essential for the designers to
have fully adequate knowledge of the behaviour of the environment.

On the same subject Mr Waterworth queried about an environment that you
thought you knew but at the end unexpected events could happen. At this
point Professor Leveson intervened stating that you could protect yourself
against that by using a fail-safe model for the situations you have not
predicted. Professor Kopetz added that what they basically had was one
emergency situation which includes all the others.

Professor Joseph wondered whether there was any limitation in checking the
scheduling at the design time before having the code. Professor Kopetz
answered that they knew the scheduling on the basis of the information about
transactions and synchronization information. Later on they checked again
from the code to see if the schedule which has been developed after the coding
was in accordance with that generated.

Professor Nehmer asked how the resource conflicts would be resolved if all the
tasks were scheduled in sequence. Professor Kopetz replied that only those
branches were followed which were in agreement with the requirements
specification, which is a precedence selection between the tasks which were
free of resource conflicts. Those schedules which lead to resource conflicts
were not considered and they were eliminated from the search. Professor
Nehmer asked if semaphores were used. Professor Kopetz answered that they
did not need semaphores in the operating system. They need a very simple
schedule at the run-time because all the conflicts which could possibly occur
would already have been considered in the compile time scheduling.

Iv.57

Professor Turski asked what could happen if something went slightly wrong
with the scheduling at run-time, such as anything extending a little longer to
cause the collapse of the designed scheduler. Professor Kopetz answered that
they did not build the scheduler in a way that would just satisfy the execution
time of the tasks within a slot. Instead safety margins were introduced for the
purpose of fault-tolerance. Professor Turski argued that off-line scheduling
was a numerical computation which was numerically unstable, and questioned
Professor Kopetz as to whether he had investigated the numerical stability of
the numerical analysis. At this point Professor Anderson intervened stating
that Professor Kopetz had already responded by saying that if you had got an
answer at least you could validate that answer, whatever it was. The
alternatives involved a very dynamic use of semaphores.

Professor Mok asked whether the proposed scheme had any general run-time
checks. Professor Kopetz answered that he had only timing checks.

Professor Nehmer inquired why Professor Kopetz did not extend the timing
constraints by a value of § to allow emergency transactions, in which case he
would not have to change the schedules. Professor Kopetz replied by saying
that thley felt that the switch over was simple and they could switch back to the
normal case.

IV.58

