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What is a "hard real time" system? 

A computer system, where 

the validity of the results depend. not 

only on their logical correctness, but also 

on their timeliness. If given real time 

constraints are not met there may 

potentially be catastrophic consequences. 

Examples oJ hard real time systems: 

Process control (e .g. nuclear power) 
I 

Traffic centrol (e.g . flight. train) 

Medical (e.g . intensive care monitoring) 
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The "rolling mill" example 
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SOFT REAL TIME vs. HARD REAL TIME 

Characteristic Hard Real Time On line I 

I 
Response Time hard soft ! 

Pacing by the environm. by the computer 

Peak load perform. predictable degraded 
I 

Granularity of time < 1 msec about 1 sec 

Basic com. service end to end transport service I 

Clustering important less important I 

data files small to medium large I 
data integrity short time long time 

Safety critical not critical 

Error detection lat, bounded by syst, responsibility of J 
Redundancy active standby I 

I' . 
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In a typical hard real time system 

• the Maximum Response time to a stimulus 

is determined by the environment 

• an explicit flow control cannot be 

exercised over the environment 

• the real time data is invalidated by 

the passage of real time 

• the economic justification is related to 

the predictable performance under peak 

load condition 

• Peak load is highly correlated 
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Flowcontrol: 

Adjusting the speed of the sender such that 

the receiver will not be flooded by messages. 

There is always an upper limit to the 

performance of a receiver! 

Explicit Flowcontrol: 

The receiver sends an acknowledgement message 

to the sender waiting for this message . 

(The sender must be in the sphere of control 

of the receiver). 

Implicit Flowcontrol 

There is an agreed maximum messages rate 

for the sender. It is assumed that all 

receivers can follow this rate . 
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There is a potential conflict at the boundary 

between implicit and explicit flow control: 

Is it possible to specify and guarantee 

the maximum sender rate? 

What happens, if a sender outside the sphere 

of control of the receiver sends more messages 

than the agreed limit? 

How do we size the buffers? 
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Wha t is the validity time of the 

information 

The traffic light is green? 
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tJ. t consistency between the real time 

data and the environment 

Strong consistency: 

correct and timely 

Weak consistency: 

U (f' 

correct and timely or undefine 

Inc onsistency 

incorrect or not timely 

/ . 8 

Computer System Environment 

Internal 6t 
State 

..... Input 

Output .... 
--;? 
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Peak Load 

In many cases, the services of a hard real 

time system are needed most urgently under 

peak load conditions ("rare event") : 

Examples: 

- Ligthning stroke into a power grid 

- Engine failure on takeoff of a plane 

- Rupture of a pipe in a nuclear reactor 

It is difficult to impossible to extrapolate 

from the behaviour under "normal situation '; I 

to the behaviour under "peak load situations" 

(rare events) . 

"Confidence by design" 
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Assumption about time base: 

All nodes have access to a global time base 

of known synchronization accuracy: 

rlml 

- The time base is chronoscopic. i.e it does 

not contain any point of dicontinuity 

- The metric of the time base is close to 

the metric of the time standard (TAl) 

- The granularity is chosen in agreement 

with the synchronization accuracy. 

Implementa tion issues of the time base are 

discussed in the chapter on real time. 
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Real Time (RT) entity: 

Something of relevance for the given purpose 

which contains a time varying internal state. 

A RT entity can be characterised by 

- a unIque name 

- a set of static attributes (type) 

e.g. maximum speed of change, value domain 

- a set of dynamic attributes (value set) 

Every RT entity is in the sphere of control of 

a subsystem, which determines the value set 

of the RT entity. 

Examples of RT entities: 

Temperature, setpoint, intendeci valve position 
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Relationship between entities and objects 

In our model. the entities of the world of 

interest will be represented by objects. 

Starting from the classical concept of 

an object we introduce 

- Real Time objects and 

- Distributed objects 
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OBJECT (classic): 

An object is an autonomous entity. containing 

an internal state and a set of associated 

operations . 

An operation can be invoked by the receipt 

of a message and the object reacts by 

sending a message containing the result 

of the operation. 

The external interface of an object is 

defined by the set of all messages it 

can receive or send (and its internal 

state space). 

Related objects can be grouped together 

to form a class (and a superclass etc.). 
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REALTIME OBJECTS: 

A realtime object is an object that 

- contains the global time as part of 

its internal state and 

- activates some of its internal 

operations whenever a predicate on the 

global time becomes true. 

rtob iect 

A realtime object is active, if output 

messages can be generated spontaneously. 

A realtime object is passive, if an 

ouptut message can only be generated as 

a consequence of a request to do so by 

an input message. 
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Distributed real time object: 

A distributed real time object is a 

set of coequal realtime objects 

located at different sites and 

belonging to the same class. 

Every local instance of a distributed 

RT object provides a specified service 

to the local site. 

The quality of service of a distributed 

RT object must be in conformance with 

some specified consistency constraints: 

Examples: 

Clock synchronization within delta 

Membership service 
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Observation (State): 

An observation is a specific message type 

containing information about the state of a 

RT object (and thus about the associated 

RT entity) at a particular point in time. 

An observation can be represented by 

the following tuple: 

<object name, value set, t_obs, Lval> 

i where 

object name: name of the observed object 

value set: the set of attribute values of 

the observed RT observed 

Lobs: time of observation 

Lval: validity time of the observation 
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Real time data base: 

An observation is current at a point in 

time Luse if 

La bs < Luse < Lval 

M 1(. 

An observation is archival at a point in 
« 

time Luse if 

Luse >= Lval 

The real time data base is defined as the 

set of current observations about a 

specified set of RT-entities. 

A subset of the archival observations of 

a specified set of RT-entities forms 

the archival data base. 
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State observation 

Triggered by a periodic time signal 

Contains full value set of the rt-entity 

Event observation 

Triggered by a state change 

contains the differences between old state 

and new state 

In a fault free system, the two observation 

techniques are functionally equivalent 

IV . 45 



TV Wien Mlr(!L 

States of the 
RT - entity 

! 
! Points of Observation I 

I 
i 
! 
I 

i 
I i 
i venton n i 
i + i 

i\ 
I I I venton n + 1 • I I 

venlon n-1 I I i l I I 

I I I I I 
I I I I I 

I I I I I I 
I I I I I I 

~ 

I_I I r t I t_r t - I real time 

Fig 1.: Versions of a RT - entity and points of 
observation 

I 

I 
I 

IV.46 



.1.13 
TU Wien Mig 

RELATIONSHIP BETWEEN STATES AND EVENTS 

Every change of a state is an event. 

An event cannot be observed--

only the "new" state is observable. 

Event Occurrence 

~ r--:"I A-----

Point of Observation 
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Comparison of State and Event Observation 

I State Event I 

I' 
I 
I S ' I lze large small (varying) 

Rate constant dynamic 

Loss not critical critical 

I Flowconlrol implicit explicit 

Protocob: simple complex , , 

: Peak load constant ??? . . . 
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RT TRANSACTION 

A real-time transaction is the time 

constrained execution of a set of 

communication and processing actions 

which transform the observed system from 

one consistent state (the start state) to 

another consistent state (the termination 

state) . 

The termination state can be the intended 

termination state or a safe exit state. 

A real tiIne transaction is started by a 

stimulus message and is terminated by 

a response message. 
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RT versus DB Transactions 

• RT Transaction is time constrained 

• Point of Commitment within a 

RT Tansaction (not at the end) 

rtdb .trs.n:!ll 

Me-I 

• Concurrency conflicts have to be 

resolved immediately in RT Transactions 

• Viewed from the outside, there are 
/ 

three states (not two) 
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Attributes of RT Transaction 

* Timeliness -- Has to finish before 

the deadline and access valid data 

* Data consistency - - Data consistency 

relations are statisfied 

* Atomicity -- Start State, 

Successful Termination, Safe Exit 

~ 

* Permanence -- Permana4 E"ffects on 

Sta ble Storage 
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Relationship between realtime transactions 

and realtime objects: 

Viewed from the outside, a real-time 

transaction can be considered as aRT-object 

the service of which is invoked by a 

request message and which returns the 

intended response message. 

Viewed from the inside, a real-time 

transactions consists of the exchange of 

messages between lower level objects and 

the execution of the invoked operations 

by these lower level objects. 

These two activities can be concurrent. 

Thus RT transactions and RT object.s are 

different views of the same phenomena. 
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The service request to a real time object, 

e .g readonly access to the internal state, 

can be quasi-independent from the execution 

of the the associated real time transaction. 

Triggered by a predicate on the time (which 

is part of the state of a real time object) 

the real time transaction can operate 

concurrently with the service request from 

the level above. 

This is the fundamental difference to the 

concept of procedural abstraction or 

protocol layering, where a service request 

from a higher level initiates the 

activities of the lower level. 
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Real Time Message: 

- Periodic, synchronized with the global 

time 

- Contains full observation 

- Contains observation and validity time 

- Not consumed (variable semantics) 

- New version overwrites previous 

version atomically 

Quantization of the system behaviour in the 

domain of real time! 
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Versions 

Point of Oburvatlon 

n+3 I Point of Validity I • 
I .1 1 

1 
n+2 I .' I 

1 
1 

n +1 I .1 1 
1 1 

I 1 1 
I 1 1 

11 I .1 1 1 
I 1 1 

1 1 1 1 
1 

n-1 I .' 1 1 1 
1 1 1 

1 1 1 1 1 ,. 1 ,. t t Real Time • 
Sequence of synchronized RT - messages 
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DISCUSSION 

Rapporteur: Rogerio de Lemos 

Professor Joseph inquired in what sense was the load on a computer highly 
correlated. Professor Kopetz replied that the load was highly correlated during 
emergency situations. For example, if a pipe bursts it will raise a lot of alarms, 
so it was very risky to base assumptions on the use of the Poisson distribution. 

Professor Leveson asked what was meant by a contract. Professor Kopetz 
answered that in terms of the cluster design tool it was an agreement between 
two subsystems for the passage of data. 

Professor Randell asked how in general one could identify, without knowing 
the internals of the system, what usage of a system could cause it to be 
overloaded . Professor Kopetz answered that in practice this issue was not 
difficult to resolve . 

Professor Bron asked about the problems of estimating parameters needed for 
creating static transaction schedules, prior to completion of an 
implementation . Professor Kopetz replied that one used an estimate initially, 
but checked this estimate during detailed design and if necessary re-calculated 
the schedule . 

Professor Randell asked whether it was reasonable to assume that one can 
usefully identify and classify all the various possible emergencies beforehand . 
Professor Kopetz answered that in his view it was essential for the designers to 
have fully adequate knowledge of the behaviour of the environment. 

On the same subject Mr Waterworth queried about an environment that you 
thought you knew but at the end unexpected events could happen . At this 
point Professor Leveson intervened stating that you could protect yourself 
against that by using a fail -safe model for the situations you have not 
predicted . Professor Kopetz added that what they basically had was one 
emergency situation which includes all the others. 

Professor Joseph wondered whether there was any limitation in checking the 
scheduling at the design time before having the code. Professor Kopetz 
answered that they knew the scheduling on the basis of the information about 
transactions and synchronization information. Later on they checked again 
from the code to see if the schedule which has been developed after the coding 
was in accordance with that generated. 

Professor Nehmer asked how the resource conflicts would be resolved if all the 
tasks were scheduled in sequence. Professor Kopetz replied that only those 
branches were followed which were in agreement with the requirements 
specification, which is a precedence selection between the tasks which were 
free of resource conflicts. Those schedules wh ich lead to resource conflicts 
were not considered and they were eliminated from the search. Professor 
Nehmer asked if semaphores were used . Professor Kopetz answered that they 
did not need semaphores in the operating system. They need a very simple 
schedule at the run-time because all the conflicts which could possibly occur 
would already have been considered in the compile time scheduling. 
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Professor Turski asked what could happen if something went slightly wrong 
with the scheduling at run-time, such as anyth ing extending a little longer to 
cause the collapse of the designed scheduler. Professor Kopetz answered that 
they did not build the scheduler in a way that would just satisfy the execution 
time of the tasks within a slot. Instead safety margins were introduced for the 
purpose of fault-tolerance . Professor Turski argued that off-line scheduling 
was a numerical computation which was numerically unstable, and questioned 
Professor Kopetz as to whether he had investigated the numerical stability of 
the numerical analysis. At this point Professor Anderson intervened stating 
that Professor Kopetz had already responded by saying that if you had got an 
answer at least you could validate that answer, whatever it was . The 
alternatives involved a very dynamic use of semaphores. 

Professor Mok asked whether the proposed scheme had any general run -time 
checks. Professor Kopetz answered that he had only timing checks. 

Professor Nehmer inquired why Professor Kopetz did not extend the timing 
constraints by a value of Ii to allow emergency transactions, in wh ich case he 
would not have to change the schedules. Professor Kopetz replied by saying 
that they felt that the switch over was simple and they could switch back to the 
normal case . 

IV.58 


