
Rapporteur:

1

DESIGN OF A REAL-TIME COMPUTING SYSTEM

H KOPETZ

R de Lemos

IV.25

.,
I

IV.26

TU Wien
hard

What is a "hard real time" system?

A computer system, where

the validity of the results depend. not

only on their logical correctness, but also

on their timeliness. If given real time

constraints are not met there may

potentially be catastrophic consequences.

Examples oJ hard real time systems:

Process control (e .g. nuclear power)
I

Traffic centrol (e.g . flight. train)

Medical (e.g . intensive care monitoring)

IV.27
.~.

I. 2..

..

11. 18
TU Wien I. 3

c-) () I

\. ./ Speed: 10m/sec
~

() i'\ ("\ (

Sensor
I I)

._------ ,..------- ------- --------- -----

Real T ime Bu,

I
MM -Int. .. Comm.

Model

The "rolling mill" example

I V.28

TU Wien I. q

SOFT REAL TIME vs. HARD REAL TIME

Characteristic Hard Real Time On line I

I
Response Time hard soft !

Pacing by the environm. by the computer

Peak load perform. predictable degraded
I

Granularity of time < 1 msec about 1 sec

Basic com. service end to end transport service I

Clustering important less important I

data files small to medium large I
data integrity short time long time

Safety critical not critical

Error detection lat, bounded by syst, responsibility of J
Redundancy active standby I

I' .

IV.29

hard

1.5 TU Wien

In a typical hard real time system

• the Maximum Response time to a stimulus

is determined by the environment

• an explicit flow control cannot be

exercised over the environment

• the real time data is invalidated by

the passage of real time

• the economic justification is related to

the predictable performance under peak

load condition

• Peak load is highly correlated

IV.30

flowcant
TV Wien I. (,

Flowcontrol:

Adjusting the speed of the sender such that

the receiver will not be flooded by messages.

There is always an upper limit to the

performance of a receiver!

Explicit Flowcontrol:

The receiver sends an acknowledgement message

to the sender waiting for this message .

(The sender must be in the sphere of control

of the receiver).

Implicit Flowcontrol

There is an agreed maximum messages rate

for the sender. It is assumed that all

receivers can follow this rate .

IV . 31

.'

TU Wien
tlowimel:

I. 1-
Ir---------~--------------------------~~--------

There is a potential conflict at the boundary

between implicit and explicit flow control:

Is it possible to specify and guarantee

the maximum sender rate?

What happens, if a sender outside the sphere

of control of the receiver sends more messages

than the agreed limit?

How do we size the buffers?

IV. 32

TV Wien

Wha t is the validity time of the

information

The traffic light is green?

. IV . 33

,1.15

Ql o

TU Wien

tJ. t consistency between the real time

data and the environment

Strong consistency:

correct and timely

Weak consistency:

U (f'

correct and timely or undefine

Inc onsistency

incorrect or not timely

/ . 8

Computer System Environment

Internal 6t
State

..... Input

Output
--;?

IV.34

Internal 6t
State

1\.14

-E: -

Peak
TU Wien I. 10

Peak Load

In many cases, the services of a hard real

time system are needed most urgently under

peak load conditions ("rare event") :

Examples:

- Ligthning stroke into a power grid

- Engine failure on takeoff of a plane

- Rupture of a pipe in a nuclear reactor

It is difficult to impossible to extrapolate

from the behaviour under "normal situation '; I

to the behaviour under "peak load situations"

(rare events) .

"Confidence by design"

IV . 35

TU Wien

Assumption about time base:

All nodes have access to a global time base

of known synchronization accuracy:

rlml

- The time base is chronoscopic. i.e it does

not contain any point of dicontinuity

- The metric of the time base is close to

the metric of the time standard (TAl)

- The granularity is chosen in agreement

with the synchronization accuracy.

Implementa tion issues of the time base are

discussed in the chapter on real time.

IV . 36

~ .

TU Wien
rlm2

Real Time (RT) entity:

Something of relevance for the given purpose

which contains a time varying internal state.

A RT entity can be characterised by

- a unIque name

- a set of static attributes (type)

e.g. maximum speed of change, value domain

- a set of dynamic attributes (value set)

Every RT entity is in the sphere of control of

a subsystem, which determines the value set

of the RT entity.

Examples of RT entities:

Temperature, setpoint, intendeci valve position

IV. 37

TU Wien M 10

A

B

C

Control
Object

A

Real time
system Operator

•- -----@
1 "

o

Measured o Observation
Value • RT - entity j ob..ie.c.t
Intended • Message flow
Valve Position

Set point 0 Components

RT - entities and Observations

IV. 38

.,

=

TU Wien
1'111

Relationship between entities and objects

In our model. the entities of the world of

interest will be represented by objects.

Starting from the classical concept of

an object we introduce

- Real Time objects and

- Distributed objects

IV. 39

enl.obl

-

TU Wien
obiecl

MI2
1r----------~------------------~~--~~~------_41

OBJECT (classic):

An object is an autonomous entity. containing

an internal state and a set of associated

operations .

An operation can be invoked by the receipt

of a message and the object reacts by

sending a message containing the result

of the operation.

The external interface of an object is

defined by the set of all messages it

can receive or send (and its internal

state space).

Related objects can be grouped together

to form a class (and a superclass etc.).

IV . 40

TU Wien

REALTIME OBJECTS:

A realtime object is an object that

- contains the global time as part of

its internal state and

- activates some of its internal

operations whenever a predicate on the

global time becomes true.

rtob iect

A realtime object is active, if output

messages can be generated spontaneously.

A realtime object is passive, if an

ouptut message can only be generated as

a consequence of a request to do so by

an input message.

IV . 41

TV Wien

Distributed real time object:

A distributed real time object is a

set of coequal realtime objects

located at different sites and

belonging to the same class.

Every local instance of a distributed

RT object provides a specified service

to the local site.

The quality of service of a distributed

RT object must be in conformance with

some specified consistency constraints:

Examples:

Clock synchronization within delta

Membership service

IV.42

distobi

TU Wien
observ

Observation (State):

An observation is a specific message type

containing information about the state of a

RT object (and thus about the associated

RT entity) at a particular point in time.

An observation can be represented by

the following tuple:

<object name, value set, t_obs, Lval>

i where

object name: name of the observed object

value set: the set of attribute values of

the observed RT observed

Lobs: time of observation

Lval: validity time of the observation

IV.43

TU Wien

Real time data base:

An observation is current at a point in

time Luse if

La bs < Luse < Lval

M 1(.

An observation is archival at a point in
«

time Luse if

Luse >= Lval

The real time data base is defined as the

set of current observations about a

specified set of RT-entities.

A subset of the archival observations of

a specified set of RT-entities forms

the archival data base.

IV.44

rt2 .a

rt3
TV Wien Ir-________ ~ __________________________ ~M~l }~ ____ _

State observation

Triggered by a periodic time signal

Contains full value set of the rt-entity

Event observation

Triggered by a state change

contains the differences between old state

and new state

In a fault free system, the two observation

techniques are functionally equivalent

IV . 45

TV Wien Mlr(!L

States of the
RT - entity

!
! Points of Observation I

I
i
!
I

i
I i
i venton n i
i + i

i\
I I I venton n + 1 • I I

venlon n-1 I I i l I I

I I I I I
I I I I I

I I I I I I
I I I I I I

~

I_I I r t I t_r t - I real time

Fig 1.: Versions of a RT - entity and points of
observation

I

I
I

IV.46

.1.13
TU Wien Mig

RELATIONSHIP BETWEEN STATES AND EVENTS

Every change of a state is an event.

An event cannot be observed--

only the "new" state is observable.

Event Occurrence

~ r--:"I A-----

Point of Observation

IV . 47

!
TU Wien I alat.eve

MI~

Comparison of State and Event Observation

I State Event I

I'
I
I S ' I lze large small (varying)

Rate constant dynamic

Loss not critical critical

I Flowconlrol implicit explicit

Protocob: simple complex , ,

: Peak load constant ??? . . .
:
,I .,
I I;
:I
il

il
!
I

I ,
I
!
I
I
I
I

I
I

~
~. ,.",~

.;4!

IV.48

M20
rtlran.

TV Wien

RT TRANSACTION

A real-time transaction is the time

constrained execution of a set of

communication and processing actions

which transform the observed system from

one consistent state (the start state) to

another consistent state (the termination

state) .

The termination state can be the intended

termination state or a safe exit state.

A real tiIne transaction is started by a

stimulus message and is terminated by

a response message.

IV . 49

TU Wien

RT versus DB Transactions

• RT Transaction is time constrained

• Point of Commitment within a

RT Tansaction (not at the end)

rtdb .trs.n:!ll

Me-I

• Concurrency conflicts have to be

resolved immediately in RT Transactions

• Viewed from the outside, there are
/

three states (not two)

IV . SO

=

TU Wien

Real Time Transaction

precommllm •• t Inter.cll ••
Ph ...

t : ,
, , , ,
"

SlIlTJulu.

P

• 1 1 1 i
I

i
I

Point of
Commllm.nt

i
Oburv.llon
of Effect

____________________________ •• R •• I Tim.

Periodic RT - Transaction

Precommllm •• t
Ph a ••

Inter.ctlon
Ph •••

f----+-l +---1-[1-+-+--1 1 +---1 ---I---t-
Stlmulu.

Point of
Commllm.nt

IV.S1

St.rt 0' n.xt
Tr.nt.cllon

II TU Wien

Attributes of RT Transaction

* Timeliness -- Has to finish before

the deadline and access valid data

* Data consistency - - Data consistency

relations are statisfied

* Atomicity -- Start State,

Successful Termination, Safe Exit

~

* Permanence -- Permana4 E"ffects on

Sta ble Storage

IV.52

tran9atlr

II

11 __ T_u_w_ie_n_.---L _____________ L..J.M...:....=2'-'~;..Ob_i. ll_r._n· _ ___11

Relationship between realtime transactions

and realtime objects:

Viewed from the outside, a real-time

transaction can be considered as aRT-object

the service of which is invoked by a

request message and which returns the

intended response message.

Viewed from the inside, a real-time

transactions consists of the exchange of

messages between lower level objects and

the execution of the invoked operations

by these lower level objects.

These two activities can be concurrent.

Thus RT transactions and RT object.s are

different views of the same phenomena.

IV.53

rlobi2
TU Wien I1 l3 A

The service request to a real time object,

e .g readonly access to the internal state,

can be quasi-independent from the execution

of the the associated real time transaction.

Triggered by a predicate on the time (which

is part of the state of a real time object)

the real time transaction can operate

concurrently with the service request from

the level above.

This is the fundamental difference to the

concept of procedural abstraction or

protocol layering, where a service request

from a higher level initiates the

activities of the lower level.

IV . 54

-

rtme!!
TU Wien M 2. 4

Real Time Message:

- Periodic, synchronized with the global

time

- Contains full observation

- Contains observation and validity time

- Not consumed (variable semantics)

- New version overwrites previous

version atomically

Quantization of the system behaviour in the

domain of real time!

IV . 55

TV Wien M 2;;-

y,.,r';.#

Versions

Point of Oburvatlon

n+3 I Point of Validity I •
I .1 1

1
n+2 I .' I

1
1

n +1 I .1 1
1 1

I 1 1
I 1 1

11 I .1 1 1
I 1 1

1 1 1 1
1

n-1 I .' 1 1 1
1 1 1

1 1 1 1 1 ,. 1 ,. t t Real Time •
Sequence of synchronized RT - messages

IV . 56

DISCUSSION

Rapporteur: Rogerio de Lemos

Professor Joseph inquired in what sense was the load on a computer highly
correlated. Professor Kopetz replied that the load was highly correlated during
emergency situations. For example, if a pipe bursts it will raise a lot of alarms,
so it was very risky to base assumptions on the use of the Poisson distribution.

Professor Leveson asked what was meant by a contract. Professor Kopetz
answered that in terms of the cluster design tool it was an agreement between
two subsystems for the passage of data.

Professor Randell asked how in general one could identify, without knowing
the internals of the system, what usage of a system could cause it to be
overloaded . Professor Kopetz answered that in practice this issue was not
difficult to resolve .

Professor Bron asked about the problems of estimating parameters needed for
creating static transaction schedules, prior to completion of an
implementation . Professor Kopetz replied that one used an estimate initially,
but checked this estimate during detailed design and if necessary re-calculated
the schedule .

Professor Randell asked whether it was reasonable to assume that one can
usefully identify and classify all the various possible emergencies beforehand .
Professor Kopetz answered that in his view it was essential for the designers to
have fully adequate knowledge of the behaviour of the environment.

On the same subject Mr Waterworth queried about an environment that you
thought you knew but at the end unexpected events could happen . At this
point Professor Leveson intervened stating that you could protect yourself
against that by using a fail -safe model for the situations you have not
predicted . Professor Kopetz added that what they basically had was one
emergency situation which includes all the others.

Professor Joseph wondered whether there was any limitation in checking the
scheduling at the design time before having the code. Professor Kopetz
answered that they knew the scheduling on the basis of the information about
transactions and synchronization information. Later on they checked again
from the code to see if the schedule which has been developed after the coding
was in accordance with that generated.

Professor Nehmer asked how the resource conflicts would be resolved if all the
tasks were scheduled in sequence. Professor Kopetz replied that only those
branches were followed which were in agreement with the requirements
specification, which is a precedence selection between the tasks which were
free of resource conflicts. Those schedules wh ich lead to resource conflicts
were not considered and they were eliminated from the search. Professor
Nehmer asked if semaphores were used . Professor Kopetz answered that they
did not need semaphores in the operating system. They need a very simple
schedule at the run-time because all the conflicts which could possibly occur
would already have been considered in the compile time scheduling.

IV . S7

Professor Turski asked what could happen if something went slightly wrong
with the scheduling at run-time, such as anyth ing extending a little longer to
cause the collapse of the designed scheduler. Professor Kopetz answered that
they did not build the scheduler in a way that would just satisfy the execution
time of the tasks within a slot. Instead safety margins were introduced for the
purpose of fault-tolerance . Professor Turski argued that off-line scheduling
was a numerical computation which was numerically unstable, and questioned
Professor Kopetz as to whether he had investigated the numerical stability of
the numerical analysis. At this point Professor Anderson intervened stating
that Professor Kopetz had already responded by saying that if you had got an
answer at least you could validate that answer, whatever it was . The
alternatives involved a very dynamic use of semaphores.

Professor Mok asked whether the proposed scheme had any general run -time
checks. Professor Kopetz answered that he had only timing checks.

Professor Nehmer inquired why Professor Kopetz did not extend the timing
constraints by a value of Ii to allow emergency transactions, in wh ich case he
would not have to change the schedules. Professor Kopetz replied by saying
that they felt that the switch over was simple and they could switch back to the
normal case .

IV.58

