
Rapporteur:

REAL-TIME COMPUTING - BASIC CONCEPTS

H KOPETZ

R de Lemos
A Saeed

IV

TU Wien
.10

A DRS CONSISTS OF AUTONOMOUS COMPONENTS

- A component is a hardware software unit

of specified functionality and performance

- Components communicate by the exchange

of RT messages only

- A component is a unit of information hiding

and intelligent under fault conditions

- At the reintegration point components

should contain minimal internal state

- Components should support reasonable

abstractions for fault tolerance

e.g. failsilent.

IV.l

.. ,

TU Wien

What is included in the architecure

design of a DRS?

• Specification of the DRS Requirements

(in the form of RT transactions)

* Allocation of the RT transactions to

the components of the DRS

* Specification of the functions, the

external interfaces and the relevant

internal states of the components .

* Specification of the messages

between the components.

The specification must cover the 'deep'

value and the timing properties .

IV . 2

arch

I
,j

Ii

I

II
:1
i!
I:
n
II
Ii Ii
l-

i!
q
I, I ..
II I:
ti I,
P Ii
II
II
Ii
II
II

I'

I

TU Wien
load

Load and Fault Hypothesis

Load Hypothesis:

Specification of the peak load the system

has to handle

Fault Hypothesis:

Specification of the Faults the system

has to tolerate

The load hypoth£sis and the fault hypothesis

must be contained in the requirements

specification document.

IV. 3

TU Wien
Glob al

I

!

Global versus Local Properties

Glo bal properties:

• Meaning of a message
.'

• Function of a component

I
• Timing between messages

!
,

Local properties : I
I
!

* Representation of information

* Timing within a component
I

* Timing between an interface

component and the associated

environment

At the architectural level, only the

glo bal properties have to be considered.

IV.4

..

TU Vficn

Real Time Transaction

Pre commitment
Ph al e

Interaction
Phal e

; +
; , ,
T

Stimulus

i
I

I

I

Point of
Commitment

Periodic AT-Transaction

Pre commitment
Phase

Stimulus

;
;
T

Interaction
P has.

Point of
Commitment

IV . 5

Oblervatlon
of Effect

RealTime

start of next
Tranlaction

TU Wien
limino

Response time RT:

I The maximum tolerated interval between
I
I stimulus and response of a transaction

I
i Period P

I The minimum interval between two

transaction instances

Peak load:

All hard real time transactions occur

with their (minimum) period P

Maxt

Maximum execution time of a transaction

(on each node)

IV.6

TU Wien

Transaction classes:

Emergency Transactions

irrunediate service

Hard Real Time Transactions

guaranteed service

SoH Real Time Transaclions

Best efforl service

Stimulus:

External Transactions

external stimulus

Internal Transaclions

internal stimulus

IV . ?

I

I

I ,

I

I

!I
I

=

TU Wien

Performance evaluation of DRS:

• Peak load is a 'rare event'

• The maximum, not the mean response

times are of interest.

• Peak load is highly correlated by a

catastrophic external event e .g. by

a ligthning stroke

Therefore:

, • It is difficult to follow arguments

based on 'stochastics'

• Design must be based on deterministic

mechanisms

IV .8

de sc v

.~

I! Ii TU Wien
1--1 ___ II
, I,

Ii
I
I

Ii Time rigid scheduling

I'

II
"

Assumptions:

Glo bal time base « 1 00 usec) available

TDMA Protocol on LAN

Scheduling:

A task is started at a predetermined absolute

glo bal point in time modulo the known

cycle time P

Before system initializa tion these time rigid

schedules are calculated for all hard real

time tasks

Simplification

Cycle durations 2 **n of basic slot times

IV .9

il TU Wien

Concurrency Control of RT Transactions

• Semantic Conficts

Irmnediate conflict resolution

• Schedule Conflicts •

- Implicit Synchronization

at compile time

- Explicit Synchonizatic:rl

Jot run time

!chedc on

~------,------ ---------------------------~

IV . lO

TV Wien

Direct Transaction Delay

The delay of a transaction provided

that this transaction has immediate

access to all required resources

Indirect Transaction Delay

The delay of a transaction caused

by resource coflicts (buffer.
\

Media Access etc.)
,
I

Ii
II
"
"

Tolal delay I:
" " " Direct plus Indirect delay I' ,
"
" 'I

il
I I
Design goal: I

I

Minimize indirecl delay of hard real
I
,
I

lime transactions. I

)

,
- I

I
I

I V. 11

=

April 1989

Ch. Kota
Timing Analysis TV \;Yien

Timing Analysis

• It is analyzed, whether the Timing Requirements of a
Transaction are met

• A Transaction IS the Implementation of a Stimulus
Response-Action

- It is a directed acyclic Graph

- Nodes represent Tasks

- Edges represent Messages that are exchanged between
Tasks

• Timing Analysis comes up with a Schedule that meets the
Timing Requirements

• The Schedule is a constructive proof that all Timing Re
quirements are met at Runtime under all load circumstan
ces

I V.1 2

TU Wien Timing Analysis

Sample of a Transaction

executed on two Components

Komponente A

Stimulus
Task

Sensor

1

M2

6 m.

Komponente B

MS

Aktor

IV . 13

Ch. Kot"

April 1989

TU \iVien Timing Analysis Ch. Ko.a !I
April 1989 " I'

!
\

I

I
I

I
i

Search Tree I
i
I ,
I

Nodes: Set of Tasks ready for Execution I

Set of Messages ready to be sent on the MARS-Bus

Edges: Scheduling Decision Corresponding to the CPU-Slot
Which Task is in the next CPU-Slot of the Components
Which Task is sent in the next TDMA-Slot

Schedule:
!

I
• Path of the Search-Tree

,

• Sequence of Scheduling Decisions
i ,
I
I
I

! ,
!
i
!
i ,
I
i
i
I
i
! ,
!

I ,

IV.14

Ch. Koza
Timing Analysis TU \Vien April 1989

Sample of a Search Tree

CPU - Slot 0 {TO} A, {} s

I (TOl A • (~-lA ' (-lS

CPU-Slot I {T1, T2 } A, {} D {TO } A, {} D

~ (-ID I (T2) A'(~-)A'(-)~ ···' '.
CPU-Slot, {T1,T2 }A, {}D {T1,T2}A,{}S {T1,T2}A,{}D

~A'(-lO I (T'lA' (~-lA' (-l~ '

CPU - Slot 3 {T1,T2 }A, O D {T1, T2 }A' {} s (T1, T2 }A, OS
. ~A.(-lo l (T2lA. (~-lA'(-)~ · . . • . .

CPU - Slot. {T1 , T2} A, {} n{T1 , M 4} A, {T4 } ,e{Tl, T2 } A, {} D

. . I(Tl.M4)·",, : (104) D . . .

CPU - Slot 5 {T1 }A , {T4 }s

Sample of a Schedule

Component A

I To l T2 T1 1T3 1

[] A M4 ~. []

T4 I T6 T5 I T71

0 1 2 3 4 5 6 7 8 9 10 11 1l 13 14 15 16

Component B

.. . TDMA-Slot of Component A

IV.lS

April 1989

Ch. Koza
Timing Analysis TV Wien

Scheduling-Algorithm

• Algorithm is based on Heuristic Search

• IDA *-Algorithm derived from A *

- It has linear need for memory (O(n))

- Heuristic of Structure f(t) = g(t) + h(t) used

- g(t) ... Costs (Execution Time) up to now

- f(t) ... Estimated Costs till the end of the Transaction

- Requirement of A *:
f(t) has to be Optimistic
i.e. f(t) must underestimate costs till the end of the
Transaction

• TUR: Time-Until-Response Heuristic to estimate the
Execution time of a Transaction till the Response

I V. 16

EMERC- ENC7 TRAN5ACT\O",

SC ~EOULE S\i"TCH

OL!)

.\)~'" A .B c:.. D
A ~---I'--+"""',,;-"_'" __ _
f3 I-I-~+-i~--. _g. -

C I~ __ ' F--r~_~-""--'.-
TJ 1--+--+_-1-. ~_~_, -.. _ --

I V. 17

..

TV Wien MAXT-Calculation P.Puschner

Sept. SS

Definitions:

Application Specific Maximum Execution Time

maximal amount of time needed to execute

a program in a given application context;

hardware performance must be known;

full CPU availability

Calcula led Maximum Execution Time

Least upper bound for the Application

Specific Maximum Execution Time derived

from program code

Goal: small difference MAXT_C - MAXT-A .

IV .18

.,

TU Wien MATI-Calculation
P. Puschner

Pro blems for the MAXT Calculation in

Existing Programming Languages

Sept: 88

- data dependency of program execution

- loops without bounds

- recurSIons

- funet,io-n variables and parameters

- goto

IV . 19

II
TV Wien

Programming
/n /Ile Large

Programming
/n /Ile Smllil

MARDS f-_~c.,""s~.n~tt~--III
R. Zainlin.er .

The Distributed Toolset

Design Creation

System Design
Cluster Definition

Cluster Design
Clusterpath Design

Component Definition

Component Design
Task Definition

Task Design
Implementation

I V.20

Design Evaluation

Dependability
Analysis

Timing
Analysle

=

TV Wien

Contract Description Language (COL)

* Representation for the technical

specification

* It has been tried to make COL

representations readable for man and

machine

, Technical specification is generated

in COL by the client from the design

data base

Contract

Server can parse the COL representation

a nd generate its local data base

The result of the server is coded in COL

IV . 21

II

-

I
'j

I

TV Wien 8th WAC Workshop on DCSS

Example of a contract:

ORDER
ProJ"ct. .. : PROJECT.1
Cont.ract. : ral ph/tnCl"las.1
Docu"ent.: OiUlER.1
Reference:

HEADER:

T1tl~ •.•••• : tl~lne onol~sls orderl ______________________ _

Sender : roiph
Addressee .. : thO'TlOS_

Ouctlme : Aut. 25.. 1988 at 17: 00

MANACEMENT SPECIFICATION:

check ~he tl~lnr behaviour of the even d~IIcned ·car-conerol N

__

cluster. I~ the cchedullnc can be colyed .. deliver the rcsults __
as u~u.l 1n tuo ~a~s:

(1) sorted b~ the passIn, of tl~e
(2) ~orted b~ tasks

TECHNICAL SPECIFICATION:

cluster cor-control slzc=2 t~o-slotzl~sec
c~nent cole-throttle locatLon-O

l~POrt wheels-rotation .. car-status
e~port throttle-ccttlnr
task current-~peed bc=32' ~et~9 nonpret=l

input wheels-rotatIon
output current-speed

end task
tosk calc-desircd-cpccd bc=16 ~ctt6 nonpret=l

input car-ctatuc

p'C~ 01 of :03

IV.22

C. Senft

Se ·ee

DISCUSSION

Rapporteur: Rogerio de Lemos

AmerSaeed

Professor Ercoli asked Professor Kopetz what was his definition for a safe state,
and how it could be checked whether the system was in a safe state or not.
Professor Kopetz answered that a safe state is always defined in the context of
a particular application, and a safe state cannot have an abstract definition
without looking at the requirements of the application . Also Professor Kopetz
said that it was possible to consider a situation where a safe state could be
considered as a bad state, but normally this generalization did not make a big
difference.

Professor Turski questioned if it was possible to design systems that could
respond in real -time peak load, in accordance with the definition, by the
occurrence of two lighting striking in the power net. Professor Kopetz
answered that the specification of peak load must be part of the requirements
specification . It was always difficult to prove real world properties, we could
only prove in a mathematical system by setting them out as mathematical
problems.

Based on Professor Kopetz answer Professor Turski continued exposing his
thoughts stating that there are unpredictable things and the rest is predictable
by definition, so for predictable things there are very well designed tools
without all the variables that consider time, and the rest was unpredictable
anyhow. He continued stating that if the time splitting will have to continue
undefinedly there were always subunits of time that events could happen and
become unobservable. In his view, there are things which we are unable to
cope with and the rest is just relations of objects where time has no
importance. At this point Professor Anderson asked whether Professor Turski
was presuming that system design was then trivial. Replying to Professor
Turski's arguments, Professor Kopetz said there were always certain
assumptions which a designer must make and which are related, for example
to fault hypothesis - what are the faults which can be tolerated by the system,
and will "real" real life system exhibit only these properties which the system
can tolerate . There are delicate assumptions that must be made at the
specification of the requirements and a similar set of assumptions which must
be made in relation to design properties of the system : the peak load that is to
be handled and considered, and the peak load that cannot be handled . And
this is not only a question of peak or probability, or sometime, in real world
situations, the question of economics.

Professor Nehmer asked how resource conflicts will be handled if the system is
going to run without a real-time operating system. Professor Kopetz answered
in two parts. In the first part he said that the set of processes were restricted to
those which the execution time could be determined if they were executed in
one processor, considering that interruptions did not occur - this task could be
done efficiently off-line. In the second part, he said that their operating system
has only one interrupt - the clock interrupt, which determines the frequency
and allocates to every task a slot during which the task runs on the processor in
an uninterruptible manner, and therefore, since there is no need to consider
the interruption of execution tasks by operating system tasks, they can have a
reasonable estimate of the time.

I V. 23

IV.24

