REAL-TIME COMPUTING - BASIC CONCEPTS
H KOPETZ

Rapporteur: Rde Lemos
A Saeed

v

5 I‘Iz; - B

s10

TU Wien

A DRS CONSISTS OF AUTONOMOUS COMPONENTS

- A component is a hardware software unit

of specified functionality and performance

- Components communicate by the exchange

of RT messages only

- A component is a unit of information hiding

and intelligent under fault conditions

- At the reintegration point components

should contain minimal internal state

- Components should support reasonable
abstractions for fault tolerance

e.g. failsilent.

Iv.1

TU Wien areh

What is included in the architecure
design of a DRS?

* Specification of the DRS Requirements

(in the form of RT transactions)

* Allocation of the RT transactions to

the components of the DRS

* Specification of the functions, the
external interfaces and the relevant

internal states of the components.

* Specification of the messages

between the components.

The specification must cover the 'deep’

value and the timing properties.

Iv.2

load

TU Wien

Load and Fault Hypothesis

Load Hypothesis:
Specification of the peak load the system
has to handle

Fault Hypothesis:
Specification of the Faults the system

has to tolerate

The load hypothesis and the fault hypothesis
must be contained in the requirements

specification document.

V.3

GClobal

l TU Wien

Global versus Local Properties

Global properties:

* Meaning of a message

* ['unction of a component

* Timing between messages
Local properties:

* Representation of information

* Timing within a component

* Timing between an interface
component and the associated

environment

At the architectural level, only the

global properties have to be considered.

IV.4

TU Wien

Real Time Transaction

Precommitment Interactlon ’
Phase Phase -

CON u*&‘
ot s i
T] mvierun

Observation

Polnt of

Real Time

Y

Periodic RT—Transaction

Precommliiment Interactlon
Phase Phase

mmea e
—
#

bl |

start of next

Polnt of Transactlion

Stimulfus Commlitment

V.5

TU Wien | Hrming

Response time RT:
The maximum tolerated interval between

stimulus and response of a transaction

Period P
The minimum interval between two

transaction instances

Peak load:

All hard real time transactions occur

with their (minimum) period P

Maxt
Maximum execution time of a transaction

(on each node)

IvV.6

TU Wien

Transaction classes:

Emergency Transactions

immediate service

Hard Real Time Transactions

guaranteed service
Soft Real Time Transactions
Best effort service
Stimulus:

IExternal Transactions

external stimulus

Internal Transactions

internal stimulus

Iv.7

desev

TU Wien

Performance evaluation of DRS:
* Peak load is a 'rare event'’

* The maximum, not the mean response

times are of interest.

* Peak load is highly correlated by a

catastrophic external event e.g. by

| aligthning stroke
I

Therefore:

* [t is difficult to follow arguments

based on 'stochastics’

* Design must be based on deterministic

me chanisrr_ls

Iv.8

TU Wien

Time rigid scheduling

Assumptions:
Global time base (<100 usec) available
TDMA Protocol on LAN

Scheduling:

A task is started at a predetermined absolute
global point in time modulo the known

cycle time P

Before system initialization these time rigid
schedules are calculated for all hard real

time tasks

Simplification

Cycle durations 2**n of basic slot times

V.9

schedcon

TU Wien

Concurrency Control of RT Transactions

* Semantic Conficts

Immediate conflict resolution

* Schedule Conflicts

- Implicit Synchronization
at compile time
- IBxplicit Synchonizaticn

at run time

==

Iv.10

TU Wien

Direct Transaction Delay
The delay of a transaction provided

that this transaction has immediate

access to all required resources

Indirect Transaction Delay
The delay of a transaction caused

by resource coflicts (buffer,

Media Access etc.)

Total delay
Direct plus Indirect delay

Design goal:
Minimize indirect delay of hard real

time transactions.

IV.11

TU Wien

Timing Analysis

Ch. Koza

April 1989

Timing Analysis

e It is analyzed, whether the Timing Requirements of a
Transaction are met

e A Transaction is the Implementation of a Stimulus-

Response-Action

— It is a directed acyclic Graph

— Nodes represent Tasks

— Edges represent Messages that are exchanged between

Tasks

e Timing Analysis comes up with a Schedule that meets the
Timing Requirements

e The Schedule is a constructive proof that all Timing Re-
quirements are met at Runtime under all load circumstan-

ces

V.12

TU Wien

Timing Analysis

Ch. Koza

April 1989

Sample of a Transaction

executed on two Components

Komponente A

Sensor

Stimulus-
Task

18 ms

Komponente B

M4

M5

12 ms

6 ms

“y

M9

Response-
Task

Iv.

13

Ch. Koza

TU Wien Timing Analysis

April 1989

Search Tree

Nodes: Set of Tasks ready for Execution
Set of Messages ready to be sent on the MARS-Bus

Edges: Scheduling Decision Corresponding to the CPU-Slot
Which Task is in the next CPU-Slot of the Components
Which Task is sent in the next TDMA-Slot

Schedule:

e Path of the Search-Tree

e Sequence of Scheduling Decisions

IV.14

Ch. Koza

- - ;
TU Wien - Timing Analysis April 189
Sample of a Search Tree
CPU - Slot o {T0}a,{}s
(TO) 4. (=B (=)a(=)B
CPU - Slot , {T1,T2}4, {}5 {T0}a,{}s
A"""’ (T2)4.(-)g (=)ail=)g
CPU - Slot {(T1, T2}, (35 {T1,T2}a,{}s {T1,T2}a,{}s5
P /ﬂu.(-m (T2)44 (=18 N\ _(~)A+(~)p
CPU - Slot 5 {T1,T2} 4} {T1,T2}4,{}s {TL,T2}4,{}s
s ' /ﬂu.(-)u (T2)4.(=)p (=)a(=)p
CPU - Slot 4 {T1,T2}a, {}AT1, M4} 4, {T4}HT1, T2}, {}5
_ £ T . (r:.m«},.:(i'c)a_ -
CPU - Slot 5 {T1}4,{T4}5
' J
Sample of'a Schedule
Component A
TO T2 g i S
A M4 AlMms
T4 T6 TS T7
0 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16

Component B

... TDMA-Slot of Component A

IV.15

Ch. Koza

TU Wien Timing Analysis Xorll 1089

Scheduling—Algorithm

e Algorithm is based on Heuristic Search

e IDA*~Algorithm derived from A*

— It has linear need for memory (O(n))

— Heuristic of Structure f(t) = g(t) + h(t) used

— g(t) ... Costs (Execution Time) up to now

— f(t) ... Estimated Costs till the end of the Transaction

— Requirement of A*:
f(t) has to be Optimistic
i.e. f(t) must underestimate costs till the end of the
Transaction

e TUR: Time-Until-Response Heuristic to estimate the
Execution time of a Transaction till the Response

IV.16

EMERCENCY TRANSACTION

SCHEDULE SVITCH

IV, 17

TU Wien

MAXT-Calculation

P. Puschner

Sept. 88

Definitions:

Application Specific Maximum Execution Time

maximal amount of time needed to execute

a program in a given application context;

hardware performance must be known;
full CPU availability

Calculated Maximum [Execution Time

Least upper bound for the Application

Specific Maximum Execution Time derived

from program code

Goal: small difference MAXT_C - MAXT_A °

IV.18

P. Puschner

TU Wien MAXT-Calculation

Sept. 88

Problems for the MAXT Calculation in

Existing Programming Languages
- data dependency of program execution
- loops without bounds
- recursions
- function variables and parameters

- goto —

.19

C. Senft

TU Wien MARDS

R. Zainlinger

The Distributed Toolset

Design Creation Design Evaluation

Requirements
Definition

System Design

. Cluster Definition
Programming

mn the Large
Cluster Design i
Clusterpath Degign De&enacliasb.ll‘nty
Component Definition nalysis
Component Design Timin
Task Definition Analysis
Programming Task Design
in the Small Implementation

Iv.20

TU Wien Contract

Contract Description Language (CDL)

* Representation for the technical

specification

* It has been tried to make CDL
representations readable for man and

machine
* Technical specification is generated
in CDL by the client from the design

data base

Server can parse the CDL representation

and genecrate its local data base

The result of the server is coded in CDL

Iv.21

..

.

C. Senft

TU Wien 8th II'AC Workshop on DCSS

Scp-88

Ixample of a contract:

DOCUMENT: ralph/thomas.1/0RDER.1

ORDER

Project,.: PROJECT.1
Contract,: ralph/thomas,i
Document.,: ORDER.1
Reference:

HEADER:

Title......: timing analysis orderfl

Sender.....: ralph
Addressee..: thomas__

Duetime....: Rug. 25, 1988 at 17: 00

MANAGEMENT G6PECIFICATION:

check the timing behaviour of the even designed “car=-control”__
cluster, IF the scheduling can be solved. deliver the results__
as usual {n two ways:
(1) sorted by the passing of time
(2) sorted by tasks

TECHNICAL SPECIFICATION:

cluster car-control size=2 tdma-slot=imsec
component calc-throttle location=Q
inport wheels-rotation, car-status
export throttle-setting :
task current-speed bc=32 met=8 nonpret=1
input wheels-rotation
output current=speed.
end task
task calc-desired-speed bc=16 met=6 nonpret=1_________
Input car-gtatue

page 01 of <03

IV.22

DISCUSSION

Rapporteur: Rogério de Lemos
Amer Saeed

Professor Ercoli asked Professor Kopetz what was his definition for a safe state,
and how it could be checked whether the system was in a safe state or not.
Professor Kopetz answered that a safe state is always defined in the context of
a particular application, and a safe state cannot have an abstract definition
without looking at the requirements of the application. Also Professor Kopetz
said that it was possible to consider a situation where a safe state could be
(chfr;sidered as a bad state, but normally this generalization did not make a big
ifference.

Professor Turski questioned if it was possible to design systems that could
respond in real-time peak load, in accordance with the definition, by the
occurrence of two lighting striking in the power net. Professor Kopetz
answered that the specification of peak load must be part of the requirements
specification. It was always difficult to prove real world properties, we could
only prove in a mathematical system by setting them out as mathematical
problems.

Based on Professor Kopetz answer Professor Turski continued exposing his
thoughts stating that there are unpredictable things and the rest is predictable
by definition, so for predictable things there are very well designed tools
without all the variables that consider time, and the rest was unpredictable
anyhow. He continued stating that if the time splitting will have to continue
undefinedly there were always subunits of time that events could happen and
become unobservable. In his view, there are things which we are unable to
cope with and the rest is just relations of objects where time has no
importance. At this point Professor Anderson asked whether Professor Turski
was presuming that system design was then trivial. Replying to Professor
Turski's arguments, Professor Kopetz said there were always certain
assumptions which a designer must make and which are related, for example
to fault hypothesis - what are the faults which can be tolerated by the system,
and will “real” real life system exhibit only these ﬁroperties which the system
can tolerate. There are delicate assumptions that must be made at the
specification of the requirements and a similar set of assumptions which must
be made in relation to design properties of the system: the peak load that is to
be handled and considereg, and the peak load that cannot be handled. And
this is not only a question of peak or probability, or sometime, in real world
situations, the question of economics.

Professor Nehmer asked how resource conflicts will be handled if the system is
going to run without a real-time operating system. Professor Kopetz answered
in two parts. In the first part he said that tﬁe set of processes were restricted to
those which the execution time could be determined if they were executed in
one processor, considering that interruptions did not occur - this task could be
done efficiently off-line. In the second part, he said that their operating system
has only one interrupt - the clock interrupt, which determines the frequency
and allocates to every task a slot during which the task runs on the processor in
an uninterruptible manner, and therefore, since there is no need to consider
the interruption of execution tasks by operating system tasks, they can have a
reasonable estimate of the time.

IV.23

Iv.24

