REAL-TIME COMPUTING - BASIC CONCEPTS

Η ΚΟΡΕΤΖ

Rapporteur:

R de Lemos A Saeed

TU W	ien
------	-----

A DRS CONSISTS OF AUTONOMOUS COMPONENTS

- A component is a hardware software unit of specified functionality and performance
- Components communicate by the exchange of RT messages only
- A component is a unit of information hiding and intelligent under fault conditions
- At the reintegration point components should contain minimal internal state
- Components should support reasonable abstractions for fault tolerance
 e.g. failsilent.

	•	
TU Wien		arch
What is in	cluded in the architecure	
design of	a DRS?	
* Specifica	ation of the DRS Requireme	ents
(in the fo	orm of RT transactions)	as the off
* Allocatio	on of the RT transactions to	DaoGen
the comp	ponents of the DRS	
* Specifica	ation of the functions, the	ap A -
external	interfaces and the relevan	tions
internal	states of the components.	
		11.18. f
* Specifica	ation of the messages	vods -
between	the components.	
The specif	ication must cover the 'dee	ep'
value and	the timing properties.	

ien load	
oad and Fault Hypothesis	
Hypothesis:	
cification of the peak load the system	
to handle as a contract of the second states of the	
 Timing between messages 	
Hypothesis:	
cification of the Faults the system	
to tolerate	
ad hypothesis and the fault hypothesis	
be contained in the requirements	
cation document.	
be contained in the requirements ication document.	

3

TU Wien	
Global ver:	sus Local Properties
Global pro	perties:

- * Meaning of a message
- * Function of a component
- * Timing between messages

Local properties:

- * Representation of information
- * Timing within a component
- * Timing between an interface component and the associated environment

At the architectural level, only the global properties have to be considered.

Global

Response time RT:

The maximum tolerated interval between stimulus and response of a transaction

Period P

The minimum interval between two transaction instances

Peak load:

All hard real time transactions occur with their (minimum) period P

Maxt

Maximum execution time of a transaction (on each node)

Transaction classes:

Emergency Transactions immediate service

Hard Real Time Transactions guaranteed service

Soft Real Time Transactions Best effort service

Stimulus:

External Transactions external stimulus

Internal Transactions internal stimulus

TU Wien		desev
Performan	ce evaluation of DRS:	
* Peak loa	d is a 'rare event'	
* The maxi times are	mum, not the mean respon of interest.	ıse
* Peak load catastrop a ligthnin	d is highly correlated by a ohic external event e.g. by ng stroke	
Therefore:		
* It is diffic based on	ult to follow arguments 'stochastics'	
* Design m mechanis	ust be based on determinis	stic

TU Wien

Time rigid scheduling

Assumptions: Global time base (<100 usec) available TDMA Protocol on LAN

Scheduling:

A task is started at a predetermined absolute global point in time modulo the known cycle time P

Before system initialization these time rigid schedules are calculated for all hard real time tasks

Simplification Cycle durations 2**n of basic slot times

TU Wien		schedcon
Concurren	cy Control of RT Transacti	ons
* Semantic Immedia	e Conficts ate conflict resolution	
* Schedule	Conflicts	Schedul
- Implicit at con	Synchronization npile time	in South So
- Explicit at run	Synchonizaticn time	Netone ay debedayles

-

Direct Transaction Delay The delay of a transaction provided that this transaction has immediate access to all required resources

Indirect Transaction Delay The delay of a transaction caused by resource coflicts (buffer, Media Access etc.)

Total delay Direct plus Indirect delay

Design goal:

Minimize indirect delay of hard real time transactions.

TII Wien	Timing Analysis	Ch. Koza
		April 1989
	Timing Analysis	
• It is a Transa	nalyzed, whether the Timing Requ ction are met	uirements of a
• A Tra Respon	nsaction is the Implementation on nse-Action	of a Stimulus-
— It :	is a directed acyclic Graph	
- No	des represent Tasks	
– Ed Tas	ges represent Messages that are exch sks	anged between
 Timing 	Analysis comes up with a Schedule Requirements	that meets the
• The Sc quirem ces	hedule is a constructive proof that ents are met at Runtime under all lo	all Timing Re- ad circumstan-

IV.13

TIWion	Timing Analysis	Ch. Koza
	Thing Analysis	April 1989
X		
	Search Tree	
Malabas		
Nodes: Set Set of I	of Tasks ready for Execution Messages ready to be sent on the MA	ARS-Bus
Edges: Sch Which Which	eduling Decision Corresponding to t Task is in the next CPU-Slot of the Task is sent in the next TDMA-Slot	he CPU-Slot Components
Schedule:		
D		
• Pa	in of the Search-Iree	
• Sec	luence of Scheduling Decisions	
change of the		
l seren est		
ta in	• *	

	•	
TIL Wien	Timing Analysis	Ch. Koza
	Thing Analysis	April 1989
Scheduli	ng-Algorithm	
• Algorit	hm is based on Heuristic Search	
• IDA*	Algorithm derived from A*	
- It $- He$ $- g(t)$ $- f(t)$ $- Re$ $f(t)$ i.e. Training	has linear need for memory $(O(n))$ uristic of Structure $f(t) = g(t) + h(t)$ () Costs (Execution Time) up to now () Estimated Costs till the end of the quirement of A*: () has to be Optimistic f(t) must underestimate costs till the ansaction	used w Transaction e end of the
• TUR: Execut	Time-Until-Response Heuristic to e ion time of a Transaction till the Resp	stimate the onse
La serie de la constance	Second Strategy and Strategy an	

EMERGENCY TRANSACTION SCHEDULE SWITCH

TILWinn	WAXT-Calculation	P. Puschner
10 wien	MAXI-Calculation	Sept. 88
Definitior	15:	
Applicatio	on Specific Maximum Exec	ution Time
maxim	al amount of time needed	to execute
a prog	ram in a given application	context:
hardwa	are performance must be k	nown.
	II e perior manee mast be k	
Tun CP	0 availability	
Calculate	d Maximum Execution Tim	e
Least u	pper bound for the Applic	ation
Specifi	c Maximum Execution Tim	e derived
from p	rogram code	
Goal: sm	all difference MAXT_C - MA	XT_A

TU Wien	MAXT-Calculation	P. Puschne
		Sept. 88
Proble	ms for the MAXT Calcul	ation in
Exis	sting Programming Lan	guages
- dat	a dependency of progra	am executio
	an a	
- 10	pops without bounds	
	System Draign	
- r	ecursions	
Contraction of the		
directant)	mation workighles and m	a marmat and
- 11	incusit variables and p	arameters
	Company Company Company	
- g	oto	
	noticin statigmi	

•

.

0

.

.

Contract Description Language (CDL)

- Representation for the technical specification
- ⁴ It has been tried to make CDL representations readable for man and machine

Technical specification is generated in CDL by the client from the design data base

Server can parse the CDL representation and generate its local data base

The result of the server is coded in CDL

TU Wien	8th IFAC Workshop on DCSS	C. Senft Sep-88
	Example of a contract:	14 (B) (B) 5
\bowtie	DOCUMENT: ralph/thomas.1/ORDER.1	
	ORDER	
Proje Contr Docum Refer	ct: PROJECT.1 act.: ralph/thomas.1 ent.: ORDER.1 ence:	ili na geo
HEA	DER:	100 100
Sen Add	der: ralph ressee: thomas	sadea
Due	time: Aug. 25, 1988 at 17: 00	0.015:03
MAN chec clus as u	AGEMENT SPECIFICATION: k the timing behaviour of the even designed "car-co ter. If the scheduling can be solved, deliver the r sual in two ways: (1) sorted by the passing of time (2) sorted by tasks	ontrol"
T E C clust	HNICAL SPECIFICATION: ter car-control size=2 tdma-slot=1msec imponent calc-throttle location=0 import wheels-rotation, car-status export throttle-setting task current-speed bc=32 met=8 nonpret=1 input wheels-rotation output current-speed end task task calc-desired-speed bc=16 met=6 nonpret=1	
	'. input car-status page 01	of -03

.

DISCUSSION

Rapporteur: Rogério de Lemos

Amer Saeed

Professor Ercoli asked Professor Kopetz what was his definition for a safe state, and how it could be checked whether the system was in a safe state or not. Professor Kopetz answered that a safe state is always defined in the context of a particular application, and a safe state cannot have an abstract definition without looking at the requirements of the application. Also Professor Kopetz said that it was possible to consider a situation where a safe state could be considered as a bad state, but normally this generalization did not make a big difference.

Professor Turski questioned if it was possible to design systems that could respond in real-time peak load, in accordance with the definition, by the occurrence of two lighting striking in the power net. Professor Kopetz answered that the specification of peak load must be part of the requirements specification. It was always difficult to prove real world properties, we could only prove in a mathematical system by setting them out as mathematical problems.

Based on Professor Kopetz answer Professor Turski continued exposing his thoughts stating that there are unpredictable things and the rest is predictable by definition, so for predictable things there are very well designed tools without all the variables that consider time, and the rest was unpredictable anyhow. He continued stating that if the time splitting will have to continue undefinedly there were always subunits of time that events could happen and become unobservable. In his view, there are things which we are unable to cope with and the rest is just relations of objects where time has no importance. At this point Professor Anderson asked whether Professor Turski was presuming that system design was then trivial. Replying to Professor Turski's arguments, Professor Kopetz said there were always certain assumptions which a designer must make and which are related, for example to fault hypothesis - what are the faults which can be tolerated by the system, and will "real" real life system exhibit only these properties which the system can tolerate. There are delicate assumptions that must be made at the specification of the requirements and a similar set of assumptions which must be made in relation to design properties of the system: the peak load that is to be handled and considered, and the peak load that cannot be handled. And this is not only a question of peak or probability, or sometime, in real world situations, the question of economics.

Professor Nehmer asked how resource conflicts will be handled if the system is going to run without a real-time operating system. Professor Kopetz answered in two parts. In the first part he said that the set of processes were restricted to those which the execution time could be determined if they were executed in one processor, considering that interruptions did not occur - this task could be done efficiently off-line. In the second part, he said that their operating system has only one interrupt - the clock interrupt, which determines the frequency and allocates to every task a slot during which the task runs on the processor in an uninterruptible manner, and therefore, since there is no need to consider the interruption of execution tasks by operating system tasks, they can have a reasonable estimate of the time.

An and the second statement is the second of the destrict equivalence is a statement in the second secon

IV.24