
Rapporteur:

TRANSFORMATION METHODS FOR IMPLEMENTING
CORRECT REAL-TIME PROGRAMS

M JOSEPH

G M Megson

111.17

III.18

Implementing Real-Time Systems by Transformation

Abha Moitra', Mathai Joseph"

August 25 1989

Abstract

A common method for designing a complex system is to start with a specification
of its functional properties and then to refine this specification into units that may
be directly implemented. By itself, such a method is inadequate for implementing
a real-time program because, in addition to the functional properties defined in the
specification, the implementation must satisfy real-time constraints. In this paper, we
suggest that a real-time system can be designed in two stages. First, the functional
specifications are used to refine the design into successively smaller units; during
this refinement, it is merely assumed that the program is implemented with sufficient
computing resources (Le. processors of adequate speed, enough memory, etc.) for all
the timing constraints to be met. In the next stage, this implementation is transformed
into one for a specific system and it is determined if the real-time constraints can
be satisfied. We show how such transformations can be done in general and then
illustrate their use in producing implementations for systems with priorities for
processes, pre-emptible executions, etc.

Keywords: real-time programming, implementation, transformation, correct­
ness, feasibility

1 Introduction

A typical real-time system is linked to its external environment through sensors from which
it receives data, and actuators to which it must send data. In many systems, the arrival of an
input induces a timing constraint on the despatch of an output. Different kinds of real-time
system are distinguished by the nature of this constraint; e.g. in a hard real-time system
no input must be lost and each output must take place within a limited interval. Many
such systems have periodic processing requirements: inputs appear at regular intervals,
the data must then be processed and outputs sent periodically in response. The structure
of the real-time software often mirrors this: low-level processes service the input devices
periodically, and higher-level processes perform computations based on the inputs and
send output to lower-level processes for despatch to the devices.

-General Electric CRD, Schenectady, N.Y., U.S.A.; part of this work done while at Odyssey Research
Associates under U.S. Air Force RADC contract F30602-86-C-OllS. ··University of Warwick, U.K.
(supported by Research Grant GRJD173881 from the Science and Engineering Research Council)

III .19

A common method for designing any complex system is to decompose a concise
higher level specification into more detailed lower level units, repeating the procedure until
units which are sufficiently simple to be directly implemented are obtained. If the design
is compositional (10), then provided that the implementation of these units meet their
specifications, the implementation as a whole will meet the specification of the system. A
strategy of this kind is used in many problem-solving procedures: for example in design
by stepwise refinement, or in the refinement steps used in formal program design methods.

The specification of a real-time program will define its functional properties and the time
constraints that must be satisfied by its implementation. If the design strategy described
above is followed, both of these requirements will need to appear in the specification
of smaller units. But while the functional properties may be decomposed using a
standard method, there is no obvious way in which the timing constraints can similarly be
decomposed. And the closer a design gets to an implementation, the harder it is to consider
the functional and timing requirements of a design simultaneously. Moreover, both of
these requirements will need to be examined afresh after every program modification.

1.1 Implementation by Transformation

As an alternative method, assume that a real-time system is designed in two stages. First,
the functional specifications are used to refine the design into successively smaller units;
during this refinement, no attempt is made to tailor the design to ensure that the timing
properties will be satisfied. Instead, it is merely assumed that the program is implemented
with sufficient computing resources (i.e. processors of adequate speed, enough memory,
etc.) for all the timing constraints to be met. Let this be called the maximum resource
implementation. If the functional specification and the design refinement are correct, then
such an implementation must exist.

The next stage of the design is to transform the maximum resource implementation into
an implementation on a specific system. Such transformations will not in general be unique
and may not always be possible, for example if the system lacks the resources needed to
satisfy the time constraints of the specification.

Assume that in the maximum resource implementation, each process is implemented
on a separate processor (8); normally, the processors will not be fully utilised. We may
then determine if two processes can be combined to execute on a single processor so that
each process still meets its timing constraints. This will allow the number of processors
needed for the implementation to be reduced by one. The procedure can be repeated until
the number of processors (or, in general, the size of any other resource) is reduced until it
is equal to that available in the system, or until no further reduction is possible if the timing
constraints for each process are to be satisfied. The method is in some ways similar to
the implementation technique called "process inversion" which is used in Jackson System
Development (4) though there no particular attention is paid to the execution times of
processes. Note that the question of finding an optimal implementation (i.e. one using the
fewest resources) is in general NP-complete. The procedure merely enables the amount of
resource needed for a particular program to be reduced by combining processes to share

III. 20

resources. The choice of processes to be combined is left to the designer. so there may be
cases where more reduction is possible using a different choice.

Processes can be combined by transforming their execution schedules for execution
on one processor. Such transformations must preserve the sequential ordering of each
process execution and the dependencies induced by communication between processes.
In this paper. we define such transformations and show how they can be used to
model implementations with different scheduling disciplines. The transformations are
commutative and associative. and so can be applied in any order.

2 Program Model

Let the real-time program P consist of n processes P lo P2 • .••• P n' Assume that the
processes are cyclic. i.e. that each process contains a loop which is executed forever. Thus
the structure of process Pi can be represented as a sequence of commands

whereInit(Pi) = C1• C2 • .•• • Cj - 1 is the initialisation section and Cycle(Pi) = Cj • ..•• Ck

is the loop. For convenience we will at times consider Init(Pi) and Cycle(Pi) to be sets in
which each command Ci is unique.

In general. a command C will be executed after anyone of several different commands
have completed execution; similarly. execution of anyone of several different commands
may immediately follow the execution of C. For example. C may follow or precede the
execution of a nondeterministic command containing several commands as alternatives.
Let Prec(C) be the set of sequential commands which are the immediate predecessors
of C in all possible executions: in any execution. if C is not the first command in the
program then exactly one of the commands in Prec(C) will be executed immediately before
C. Similarly. let Post(C) be the set of sequential commands which are the immediate
successors of C in all possible executions. Then the following invariant assertions INVI
can be made about Init(Pi) and Cycle(Pi):

VC E Init(Pi). Prec(C) ~ Init(Pi)
:lC E Prec(Cj), C E Init(Pi)
:lC E Prec(Cj). C E Cycle(Pi)
VC E Cycle(Pi) , C =I Cj • Prec(C) ~ Cycle(Pi)
VC E Cycle(Pi) , Post(C) ~ Cycle(Pi)
VC' E Prec(C). Prec(C') n Prec(C) = 0

Assume initially that all communication between processes is synchronous and let
Match(C1, C2) be a predicate which is true if C1 and C2 are syntactically matching
communications in different processes.

Pred(C). the set of all commands that may immediately precede C. can be defined as

III. 21

For a different communication mechanism, e.g. asynchronous communication, the
definition of Pred can be changed appropriately.

3 System Model

Assume that the real-time system is connected to a number of input and output devices.
For simplicity, let each device either send inputs to the system or receive outputs from the
system. Assume that the real-time program is structured in levels such that processes at the
same level do not communicate with each other.

The input and output devices are treated as processes at level LO. Processes at level
Ll are device processes and there is a one-to-one 'connection' between level LO and
level L1 processes. Processes at level L2 are the servers. A level L2 process may be
connected to more than one level LI process; however, it never initiates any computation
(i.e., it is reactive). Assume initially that there are just two levels in the program, LI
and L2: generalisation to more levels with the same constraints on process connections is
straightforward.

In the class of programs we shall initially consider, there is one important constraint:
each communication command must match syntactically with exactly one communication
statement in another process. There is then no distinction between syntactic and semantic
matching [I] but note that this still allows processes to have nondeterministic behaviours.
The restriction enables programs to be statically analyzed.

The real-time constraints of the problem are specified as deadlines, or as timed input­
output relations. Assume that all the input devices and some output devices are cyclic.
(Any devices which receive outputs produced as responses to inputs and which can accept
successive outputs with some minimum interval can also be considered cyclic in the
worst-case). The deadlines for level Ll input processes and output processes come from
the characteristics of their associated devices and can be converted into deadlines over the
execution of the communication commands within these processes. The deadlines for level
L2 processes can then be derived from these deadlines, and will once again translate into
deadlines over communication commands.

Informally, the system's real-time requirement can then be defined briefly as (i) receive
all inputs, (ii) send outputs at regular intervals to cyclic output devices, and (iii) send
outputs within deadlines to acyclic output devices. The worst case load on the system from
a single device arises when successive inputs from the device arrive with the minimum
separation time. The worst case load on the system as a whole arises when all the input
devices produce their individual worst case loads and the first inputs from all processes
arrive simultaneously [6].

Example: In the following program, inputs from· two devices are received by processes
P I and P2, and outputs are sent to a device by process P3. Processes PI, P2 and P3 are
level I processes. Process P4 is a level 2 process which receives inputs from processes
P I and P2 and then produces an output for process P3. The deadline for process P I is
specified by requiring that the statement Receive(x) be executed every dl units. Similarly,
dz and d3 specify deadlines for processes P2 and P3. So in the program, each deadline is

III. 22

I .

=

the maximum time between successive iterations of the loop.

PI :: lnitl;
*[d l : Receive(x); P4 ! x]

P2 :: Init2;
*[d2 : Receive(y); P4 ! y]

P3 :: Init3;
*[d3 : P4? z; Send(z)]

P4 :: Init4;
*[PI ? x --> P2 ? y; P3 ! f(x,y)

o
P2? Y --> PI ? x; P3 ! f(x,y)]

Definition : In a maximum resource implementation, execution of a program is never
suspended for lack of computing resources.

Thus, for example, each process in a program will be executed on a separate processor
and there will be sufficient memory to keep all the program's variables immediately
accessible at all times during the execution. In a maximum resource implementation of this
program, there will be four processors for the four processes PI to P 4 and we assume that
such an implementation will meet the deadlines. Other implementations of this program
which meet the deadlines may also be possible and so, for example it is possible to ask
under what conditions the program can be implemented on fewer than four processors and
still meet all its deadlines.

The rest of this paper develops a method by which such questions, and the broader issues
of limited resource execution, can be addressed. We shall assume that the implementations
to be considered have the properties defined in the following two policies.
Policy 1: All of the commands of a process are executed on a single processor.
Policy 2: A processor is never idle if it can execute a command from any of the processes
that run on it.

4 Semantics of Limited Resource Execution

The execution time of a command depends on the availability of resources such as
processors, memory, communication channels etc. There are bounds, Lower(C) and
Upper(C) (which is the maximal requirement), to the resources needed for any command
C. If the available resources exceed the upper bound, the execution time of C is the same
as that with the maximal resource. Execution of a command becomes impossible if the
available resource is smaller than the lower bound for the command.

The effect of limiting the resources for the execution of a command C can be described
by associating each behaviour with a set of wait intervals. If I is a wait interval for a

III. 23

behaviour F, then, in the corresponding execution, one or more component commands of C
are suspended during the interval I and wait intervals are included in the execution times of
those components. If a sequential component S in C is suspended in an interval I, then the
resources allocated to S for the interval I can be re-assigned to another command running
concurrently with C.

Let us call a command C the functional equivalent of C if they use the same variables
and if each behaviour of C is a possible behaviour of C (but possibly with different times).
For example, if C is an assignment command then C is the same assignment command
but executed at different times due to the limited availability of resources. The semantics
f (C) of a command C is a set of quadruples < R, C, F, W >, where F is a behaviour of C,
W is the set of (command,wait interval) pairs associated with F, R is a description of the
resource availability and C is a functional equivalent of C for which R is the upper bound
of the resource requirement. The command C is called an R-representation of C. The
resource availability R may vary between Lower(C) and Upper(C) (it is assumed that there
is a total ordering on the resource availability descriptions of C). The set of quadruples in
f (C) with R as the first component is the R-semantics of C.

If C is a primitive command, then Lower(C) and Upper(C) are the same, and C is C.
The set W may be nonempty even for a primitive command if its termination depends on
cooperation from other commands.

4.1 Combinators and limited resources

Individual commands in a program are composed together using combinators. For example,
in the sequential composition CI ; C2 the combinator';' composes the two commands CI and
C2 while in the parallel composition CI IIC2 11 ... II Cn , the n individual commands CI .•• Cn

are composed using the parallel combinator II.
Let 0 be an n-ary combinator and

a
C = CI 0 ·· · o Cn

The R-semantics of C is obtained by combining

< Ri, C;, F;, Wi > E r(C;)

for i E [1, n], such that the F;'s are consistent with respect to 0 and an execution of C with
R can be obtained by executing CI with R I , C2 with R2, and so on.

Consider the case of the parallel composition combinator. A limited processor
behaviour of a parallel command can be obtained from the limited processor behaviours
of its constituent commands, noting that the constituent commands may contain further
parallel SUb-components. Let each constituent command be partitioned so that if a sub­
component does not contain processes its variables are in the same element of the partition,
while if it has nested processes each such process is assigned to a different element of the
partition.

Given such a partitioning, let "I ~ {XI, ... ,Xp} be the p-partition of a command CI

and "2 ~ {YI , ... , Yq} the q-partition of a command C2. Then the k-combination of "I and

III. 24

"2, written "I $ k "2, is defined if p + q ~ k and is a set of k-partitions, each of the form
{ZI, ... , Zk} where Zi E "I U "2 or Zi is the union of two or more elements of "I U "2.

Obviously, if p + q = k, then for example "I $ k "2 = "I U "2 .

It is usual to take the specific case of the processors when considering resource
limitations but the approach can readily be generalized to any resource whose requirement
can be determined from the syntax of a command. Limited processor semantics of several
other combinators have been defined [5] and further details are available elsewhere [3].

5 Resource Annotation

A command serves as a unit for the allocation of resources in an implementation. Execution
of a command requires a set of computational resources (e.g. processors, memory etc.)
and each command can be annotated with its resource requirements. Typically, a resource
requirement is defined in terms of the size and the time for which it is required.

It is common practice to define resource requirements in relation to a specific architecture
or system. Initially, we shall consider all resource requirements in terms of a canonical
system So with processor type Po , memory Mo etc. We shall assume that these requirements
can be transformed into those for a particular target architecture. This will allow us to
ignore the particular characteristics of a system during the resource annotation of each
command. Then, during the transformation, the requirements for each command can be
redefined to those for a particular system, retaining the possibility that the architecture
may contain heterogeneous systems by using different transformations for the resources
required by different components in the system.

Resource requirements tend to be dominated by the requirements for processors: a
computation cannot proceed at all unless it has at least one processor for its execution.
Given the necessary processors , the progress of a computation is dependent on the provision
of its other resource requirements. These requirements are often not fixed, but will always
have a minimum below which the computation cannot proceed. Assuming that it is possible
to place upper bounds on loop iterations, communication delays and memory use, there
will also be a maximum above which the computation cannot use further resources.

We will use the following notation to annotate the resource requirements of a command.
Length(C, r, s) is the time required to execute the command C when s units of the resource r
are available. We assume that increasing the resource size never decreases the performance
of the system. This is captured as the following axiom.

sl ~ s2 => Length(C, r, sl) ~ Length(C, r, s2)

We will sometimes abbreviate Length(C, r, s) to Length(C), usually when the resource is
the processor and the size is 1.

In a maximum resource implementation, if a process (and therefore any command
within a process) is able to execute, it will be executed. That is, the execution of a process
is never suspended for the lack of sufficient resources or for any interleaving introduced
during implementation.

III. 25

6 Feasible Schedules

The implementation of a program enables a command Chk in the program to be executed
on some processor. Let an executed command, or e-command, cij be the)-th program
command to be executed by processor i. The execution of cij spans the non-empty interval
[cij /start, cij/end). Let Length(cij) = cij/end - cij/start. A processor schedule Si is a
sequence of e-commands Cil, ... , Cim such that

VCij E Si, 1 ~) < m, cij/end ~ CiU+I)/start

A schedule SCH is a sequence of processor schedules.
For any e-command cij in a schedule, let F(cij) be a function which returns the

corresponding command in the program and Process (cij) be a function which returns the
identifier of the process containing that command, For a cyclic execution, there may be
several e-commands Cpi, ... , Cpj which map to the same program command F(Cpi).

If Cij is an e-command in a schedule SCH, then Pred(F(cij)) is a set of commands in the
program at least one of which will be executed immediately before every execution of C;j:
Pred(F(cij)) is a statically defined set. We can define a similarfunction Prev(cij) which is
the set of e-commands which immediately precede the execution of Ci/ there are at most
two e-commands in Prev(cij) and they are chosen dynamically.

Let Trunc(S,,) - 1) return the sequence consisting of the first) - 1 elements of Si and
S/ Process(cij) be the restriction of the execution sequence S to those elements which are in
P rocess(cij) . Then

Prev(cij) ={Last(S) IS' = Trunc(Si,) - 1)/Process(cij) /\ #S > I}
U {Last(S') I Match(cij, Chk)

/\ s' = Trunc(Sh' k - 1) /Process(chk)
/\ #S' :::: I}

where the predicate Match has been used with e-commands.
The dependencies between e-commands induce a relation which defines a proper

schedule with the following invariant properties INV2:

1. VSi E SCH, VCij E Si, Length(cij) = Length(F(cij)).

2. VSi E SCH, VCij E Si, Prev(cij) '10 => cij/start:::: max{Prev(cij)/end}

3. For each process Pi,

3Sj E SCH, 3k, 1 ~ k ~ #Sj: :F(Rest(Sj,k)/p;) = (Cycle(pi))+

:F is like F but operates on sequences, and the + denotes one or more cycles.

We have assumed that since the real-time system is cyclic, satisfaction of any real-time
constraint can be verified by considering finite runs of such a system. The first execution
of each process starts with the initialisation section and then continues with the execution

III. 26

..

of the cycle; subsequent executions of the cycle then take place normally. The worst case
processing load on the system occurs when all the inputs arrive simultaneously and will
repeat after a time equal to the least common multiple of the time periods of the inputs.
The system must meet its deadlines for the worst case load, including any initialisation
before cyclic processing.

Afeasible schedule is a schedule which is proper and which always meets its deadlines.
If dU is the deadline for command F(Cij) , then it is the deadline for each execution of Cij.

Feasible(SCH) = Proper(SCH)
A \lSi E SCH, \lCij E S" :ik > j : F(c,,) = F(cU)

=} :ih > j : F(Cih) = F(cU)
A cihl end - cijl end S; dij

7 Transformations

The annotated command description can be used to map a program to an implementation.
If the commands are annotated with maximum resource requirements, this implementation
is the maximum resource implementation. We shall assume that for the implementation
on the canonical system, each process meets its deadlines. Practical systems will usually
have fewer resources than the maximum needed and will execute at speeds lower than
those of the canonical system. So any practical implementation of the program will be
a reduced implementation, when compared with the maximum resource implementation.
Unless the maximum resource implementation meets the system's deadline, no reduced
implementation can meet the deadlines.

A reduced implementation is produced by transforming a feasible schedule into another
feasible schedule for a system with fewer resources. In general, this would mean starting
with the maximum resource implementation, since that can be defined directly from the
program and the characteristics of the real-time environment. A transformation is valid if,
gi ven a feasible schedule, it produces a new feasible schedule.

In these transformations, we shall assume (i) that the speeds of the actual processors
can be defined relative to that of the canonical processor, (ii) that the actual processors are
identical and (iii) that before and after transformation, Policy 2 is followed, i.e. all the
commands of a process will be executed on the same processor. Assumption (ii) is not
essential but allows the presentation to be simplified. Assumption (iii) follows common
practice as the overheads of executing a process on different processors can be substantial.

7.1 Transformations and target architectures

A valid transformation converts a feasible schedule into another feasible schedule. Notwith­
standing the assumptions (i) - (iii), which are made largely for simplification, transfor­
mations should not be viewed as depending on either the components or the structure
of the target architecture. Rather, transformations are like functions which operate on

III. 27

schedules: it is the choice of transformation which is dictated by the target architecture. For
example, a transformation which combines two processor schedules into a single processor
schedule can be applied to reduce the number of processors required in an implementation
provided that, in doing so, an appropriate choice is made of the processes to be combined.
Repeated use of such a transformation can then convert, for example, a multi-processor
implementation to a single processor implementation.

In the transformations we shall describe, a common operation will be to merge two
processor sequences into one sequence, for execution on a single processor. Typically, such
a merge will require some shifting in time of the elements of one or both sequences, and
the communication dependencies between schedules may then cause shifts of the elements
of other sequences. There may be more than one way in which one processor sequence is
merged into another, so the merge will in general require nondeterministic choices. Let
each process have a unique identifier and for any schedule Sk let the set of identifiers for
the processes in the schedule be JdS(Sk) = {x l:3y E Sk : Process(y) = x}. Then the
merge of sequences Si, Sj in a schedule < S I, ... , Sn > is represented by

Informally, SeqMerge(< SI, ... , Sn >, Jds(Si) U Jds(Sj)) is a set of schedules in each of
which the e-commands executed on the original Si and Sj are merged into a single sequence.

More formally, SeqMerge is defined as:

SeqMerge(< SI, ... , Sn >,lds(Si) U Jds(Sj))
= {SCH ISCH satisfies the following 5 conditions}

1. SCH = < S;, ... , Si_I' Si+I'"'' Sj-I' Sj+I'"'' S~, Sij >
2. Proper(SCH)
3. 1 ::; k::; n, k '" i, k '" j, ShijtedSeq(S'." Sk)

/\ Jds(Sij) = JdS(Si) U Jds(Sj)
/\ 'Ix E Jds(Si), ShijtedSeq(Si/x, Sdx) V ShiftedSeq(SVx, Sj/x)

4. ShiftedSch(SCH, SCH') /\ SCH '" SCH' => ~Proper(SCH')
5. SCH satisfies Policies 1 and 2

where

ShiftedSeq(Si, Sj) = if #Si = #Sj
/\ V 1 ::; h ::; #Si, F(Cih) - F(Cjh)
/\ Length(Cih) = Length(Cjh)
/\Cihl start ;::: cjhl start

then true
else false

ShiftedSch(< SI> '" Sn >, < S;, '" S~ » = Vi, 1 ::; i ::; n,
ShijtedSeq(Si, Si) - true

III. 28

=

Condition (4) specifies that each processor sequence is shifted no more than necessary,
and condition (5) that no processor in the resulting schedule is idle if it can execute some
command from any of the processes running on it.

For notational convenience we will also define SeqMerge on a set of schedules as
follows.

SeqMerge(SchSet,lds(Si) U Ids(Sj))
- {y I 3x E SchSet : 3zl ,Z2 Ex: Ids(Si) = Ids(zd

II Ids(Sj) = Ids(z2) II y E SeqMerge(x,lds(Si) U Ids(Sj))}

7.2 Properties of transformations

Schedule transformations can be shown to be commutative and associative. Hence the order
of application of transformations can be ignored and a particular reduced implementation
can be obtained by choosing the appropriate transformations in any order.

Theorem 1 (Commutativity): If SC is the schedule < SI, ... , S. > with n ~ 2 then

SeqMerge(SC,lds(Si) U Ids(Sj)) = SeqMerge(SC,Ids(Sj) U Ids(Si))

Proof: Follows trivially, from the definition of set union.

Theorem 2 (Associativity): If SC is the schedule < SI> ... , S. > with n > 3 then
SeqMerge(SeqMerge(SC,Ids(Si) U Ids(Sj)),lds(S;) U Ids(Sj) U Ids(Sk)) =
SeqMerge(SeqMerge(SC,Ids(Sj) U Ids(Sk)),lds(Si) U Ids(Sj) U Ids (Sk)) (I)

Proof: Let the left hand side of eq. (1) be called LHS. We can rewrite LHS as follows.

LHS
- {A I 3T E SeqMerge(SC,lds(Si) U Ids(Sj))

: A E SeqMerge(T,Ids(Si) U Jds(SJ U Ids(Sk))}

Define Q as follows.

Q = {P IP satisfies the following 5 conditions}

1. p = < S~I'" I S;_11 S~+l"'" S;_11 S1+II'" I S~_ll S~+l"" I S~, Sijk >
2. Proper(P)

3. 1 ::; h ::; n, h '" i, h '" j, h '" k ShijtedSeq(Sh' Sh)
Mds(S;jk) = Ids(Si) U Ids(SJ U Ids(Sk)
II Vx E Ids(Sijk)' ShiftedSeq(S;jk/x, S;/x) V ShijtedSeq(Sijk/X, Sj /x)

V ShijtedSeq(Sijdx, Sdx)
4. ShiftedSch(P, Pi) II P '" pi => ~Proper(pl)
5. P satisfies Policies 1 and 2

III. 29

o

-

We will now show that Q = LHS.
Part 1. The elements of LHS satisfy the 5 properties satisfied by the elements of Q.

Hence LHS ~ Q.
Part 2. Consider an arbitrary scheduleR in Q. Leti?' be a copy of the scheduleR in which

the elements belonging to the original Sk appear in a new schedule; the start and end times of
all the e-commands remain the same. By construction it follows thatR' is proper and satisfies
Policy 1. We can obtain a new schedule R" from R' by shifting the e-commands to the left to
satisfy Policy 2. By this construction it follows thatR" E SeqMerge(SC,Ids(Si) U Jds(Sj)).
It then follows thatR E SeqMerge(R",1ds(Si) U Jds(Sj) U JdS(Sk)). HenceR E LHS.

So Q = LHS. A similar argument shows that the right hand side of eq. (1) = Q. 0

8 Processor Reduction Without Pre-emption

Merging processor schedules allows the number of processors needed for an implementation
to be reduced. The choice of processor and the properties of the new processor schedule
are governed by Policies 1 and 2. By definition, the maximum resource implementation
satisfies these policies. SeqMerge defines the set of schedules obtained by merging two
sequences and in most practical cases it is only a subset of these schedules that will be of
interest. In fact, different subsets are obtained by considering different restrictions on the
ways in which sequences can be merged.

In this section we shall consider transfonnations which follow Policies 1 and 2 in
reducing the number of processors, e.g. using a procedure such as SchMerge:

SchMerge « SI, ... ,Sn »
- { < SI >} if n = I

{T I 3 R E SeqMerge(< SI, S2 >,ldS(SI) U JdS(S2))
: T E SchMerge(R)} otherwise

Theorem 3 There is a feasible schedule S' of P on one processor under Policies 1 and 2
iff 3S" E SchMerge(S) such that Peasible(S').

Proof: Define Q as follows.

Q = {P IP satisfies the following 5 conditions}
1. P = < SI2 ... n >
2. Proper(P)
3. 'Vx E JdS(SILn), 3 i : ShijtedSeq(SI2 .. n/x, S;/x)
4. ShijtedSch(P, P') 1\ P i' P' => , Proper(P')
5. P satisfies Policies 1 and 2

By an argument similar to that in proof of Theorem 2, SchMerge(S) = Q. Thus
SchMerge(S) generates all possible schedules for one process satisfying the above 5
properties. Since any feasible schedule on one processor satisfying Policies 1 and 2 must
also satisfy these same 5 properties, the theorem follows. 0

III. 30

8.1 Reduction from n to m processors

The method used to reduce the number of processors to 1 can be generalised to reduce the
processor requirement from n to m processors. However, here an initial choice must be
made of the processes to be merged (and more generally of the processor schedules that
are to be merged). The method has therefore to be used in conjunction with a strategy for
choosing processor schedules to be merged. Many simple strategies can be used; however,
the problem of finding an optimum strategy is NP-complete.

An obvious method is at each step to merge the schedules of the least loaded processors,
and to repeat this until the number of processors has been sufficiently reduced. However,
this might lead very soon to a schedule in which no further merging is possible when
it is clear that with a different order of merging further progress could have been made.
An improvement on this strategy would be at each step to merge processor schedules so
that in the resulting schedule the remaining processors are least loaded. In the first case
the processes can be chosen by simple inspection (in linear time) while in the second the
complexity will be O(n2) for n processor schedules.

8.2 Priorities

So far, all processor schedule merging has been attempted assuming that each process runs
to completion or until it is blocked, and that when two processor schedules are merged,
the choice of which process is executed first is made arbitrarily. If processes are assigned
priorities, a new strategy is possible: processes are still run to completion or until blocked
but when two processor schedules are merged, the process with the highest priority is
always executed before processes of lower priority. This will reduce the size of the set of
schedules produced by SeqMerge at each step but it is still far from the commonly-known
and more efficient method of pre-empting the execution of lower priority processes.

9 Processor Reduction With Pre-emption

When higher priority processes pre-empt lower priority processes, each process is run to
completion, until it is blocked, or until it is pre-empted. The 'unit' of scheduling is then
dynamically determined and this can convert an infeasible implementation into a feasible
implementation in many cases. We consider two ways in which this may be done.

9.1 Arbitrary Pre-emption

Priorities are used for the pre-emptive allocation of the processor: i.e. if a process of
lower priority is executing, it is suspended when it is necessary for a process of higher
priority to be executed and then its execution is resumed. This is identical to the familiar
pre-emptive priorities implemented in typical real-time processor hardware. While we had
earlier discussed the execution of each process in terms of the execution of a sequence
of its commands, it now becomes necessary to define the smallest non-pre-emptable unit

III. 31

of a process. In most cases, this is a single machine instruction (or even part of such an
instruction) as it is at this level that the state of the process can be saved on pre-epmtion
and later restored.

If a program is represented solely in terms of its machine instructions, many of the
merging operations described here could become prohibitively expensive in terms of
computation times. It would therefore be more useful for the program to be represented
at more than one level of detail: the highest level of detail, or the largest unit of
program command could be used wherever pre-emption is not necessary and the points of
pre-emption could be defined more precisely by using the lowest level of representation.

Scheduling with pre-emptive priorities results in a number of switches between
processes (context switches) and has some associated overhead. This can be modelled in
the transformations by adding some 'cost' to each switch. However, as in practice, an
apparently feasible schedule may be found to be infeasible when the overhead of context
switching is taken into account.

9.2 Voluntary Pre-emption

It is often possible to reduce the overhead of context switching to a minimum by determining
points in the execution when processes can voluntarily relinquish the processor when needed
by other higher priority processes. This will typically have the effect of delaying any
particular point of pre-emption but it can also reduce the number of context switches.

Merging schedules with points of voluntary pre-emption marked will further reduce the
size of the resulting set of schedules. However, determining the best points for voluntary
pre-emption is an issue that must be solved at both the language and the implementation
level [7].

10 Discussion and Conclusions

The paper discusses techniques that can be used to develop a method for the design and
implementation of verifiable real-time systems. It focusses on the problem of converting
a correct 'abstract' implementation of a program into a correct 'concrete' implementation.
There has been other work on language-based static program analysis for single processor
implementations [2], and on pre-emptive scheduling methods for accommodating resource
limitations [9]. Our concern has been to show that a variety of such techniques can be
accommodated in a formal design method.

As part of a continuing programme of research into real-time system design at the
University of Warwick, the work described here is to be extended and equipped with tools
to support the transformations: this phase of the work is being supported by the Information
Engineering Directorate Advanced Technology Programme.

III. 32

11 Acknowledgement

We are grateful to Asis Goswami for suggesting improvements to the notation.

III. 33

References

[1) K.R. Apt, N. Francez, and W.-P. de Roever. A proof system for Communicating
Sequential Processes. ACM Transactions on Programming Languages and Systems,
2(3):359- 384, 1980.

[2) A.D. Stoyenko E. Klingerman. Real-time euclid: a language for reliable real-time
systems. IEEE Transactions on Software Engineering, 12(9):941-949, 1986.

[3) A. Goswami and M. Joseph. A semantic model for the specification of real­
time processes. In CONCURRENCY 88, Lecture Notes in Computer Science 335,
pages 292-306, Springer-Verlag, Heidelberg, 1988.

[4) M. Jackson. System Development. Prentice-Hall International, 1983.

[5) M. Joseph and A. Goswami. What's 'real' about real-time systems? In Proceedings
of the 9th IEEE Real-Time Systems Symposium, pages 78-85, Huntsville, Alabama,
1988.

[6) c.L. Liu and I.W. Layland. Scheduling algorithms for multiprocessing in a hard
real-time environment. Journal of the ACM, 20:46-61,1973.

[7) A. Moitra. Voluntary Preemption: A Tool in the Design of Hard Real-Time Systems.
Technical Report, Odyssey Research Associates, Ithaca, NY 14850, 1988.

[8] A. Salwicki and T. Miildner. On the algorithmic properties of concurrent programs. In
Lecture Notes in Computer Science 125, pages 169-197, Springer-Verlag, Heidelberg,
1981.

[9) W. Zhao, K. Ramarnritham, and 1.A. Stankovic. Preemptive scheduling under time
and resource constraints. IEEE Transactions on Computers, 36(6):949-960, 1987.

[10) J. Zwiers, W.-P. de Roever, and P.E.M de Boas. Compositionality and concurrent
networks: soundness and completeness of a proof system. In Lecture Notes in
Computer Science 194, Springer-Verlag, Heidelberg, 1985.

III. 34

DISCUSSION

Rapporteur: Dr G M Megson

The presentation described a transformational approach for converting a real
time system specification into an implementation with limited physical resources.
The central theme was to produce a feasible schedule of processes using a
maximum resource requirement and then to move towards the limited resources
by a sequence of transformations from one feasible schedule to another.

There were two main threads to the discussion comprising of comments on the
validity of the transformation process and queries regarding the actual
specification of the limited resources.

The first point regarding the transformation was the explicit mechanism through
which the maximum resource implementation could be verified with the
specification, and the way that the limited resource schedule could be validated
with respect to timing requ irements againist the max resource implementation . It
was acknowledged that if the transformations were valid that an automatic
method (e .g compiler) should be capable enforcing the rules and guaranteeing
correctness so that no explicit validation by a designer would be required .
However, explicit verification and validation was an integral part of defining and
proving that transformations were in fact correct during development. A related
point was raised as to the generality of such transformations, the argument being
that each system would require different resource requirements in order to
maintain the t ime deadlines. The danger being that new transformat ions would
have to be developed for each new application making it impossible to develop
automatic transformation methods. It was emphasized that the transformation
approach was based on moving from feasible schedule to feasible schedule a
method which made no explicit use of the problem structu re. A possible
drawback was that a large number of possible schedules (although this was finite)
existed and that an optimal schedule involved the solution of an NP- complete
problem .

The comments on the resource specification can be summarized in three points.
The first problem being that the available resources needed to be specified and
the transformation method mapped from a maximum resource solution to that
available . If the specified limited resources were not sufficient to solve the
problem and still meet all the timing constraints the method would be useless. In
particular all the feasible schedules would have to be examined to find out that a
particular transformation sequence did not produce a solution . It was suggested
that it may be more appropriate to generate the minimum resources required
after moving from one schedule to another. Related to this last point it was
remarked that the way in which resources were quantified would have great
bearing on the success of the transformation . For example if processing speed
was used as a metric it may be possible to meet ali the deadl ines with a (RAY, but
how many transputers would we need to achieve the same task . Thus t he
resource requirement depended not only on the computing power available but
on how processors were interconnected - this would be difficult to quantify in
general. As an extension to the problems quantifying physical components it was
remarked that the approach assumed static load balancing in that processes once
allocated to a processor d id not move . The point being that dynam ic load
balancing may allow the physical resource requirements to be reduced even
further. In particular a problem may not be feasible with a ce rtain resource
specification using static load balancing but possible with dynamic load
balancing . It was concluded that the basic approach was a useful step towards
achieving these more ambitious goals.

III. 35

III.36

