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Abstract 

[n this paper, we examine the relation between the actions of a computation and 

the nature of time associated with the execution. Using a method suggested by 
Whitrow, we first define an instant of time in terms of computational actions and 
then show that the set of such instants is isomorphic with the reals provided it 
satisfies cenain well-known propenies. Some of these propenies can be derived 
from a straightforward definition of actions and their ordering, but we also provide 
necessary and sufficient conditions for proving the denseness of the set. We then 
show how diiferent assumptions about computations relate to the requirements for 
denseness. From this, it can be seen that the apparent choice between representing 
computational time by a discrete domain, an arbitrary dense domain and the real 
domain, for example, is really a choice between different computational models . 
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1 Introduction 

The relation between time and computation has attracted some recent attention, largely 
through work on defining semantic models for real-time programs. However, the nature of 
this relation is of wider interest because of its effect on computational models in general. 

Consider the execution of a distributed program in which each process can read a 
'local' value of time, represented as a real number. Let the local time of each process be 
measured in the same units, start with value 0 when the process begins execution, and have 
the usual properties of increasing monotonically and uniformly . In such a program, Clock 
is an alarm-clock-like process which loops waiting for its local time to equal the successive 
values taken by its variable Tick. Assume that the time taken to execute a command is 

suitably small when compared to the waiting time of this process. 

Clock :: Tick := I; *[when Tick = Localtime\ do Tick := Tick + I] 
X is a similar process, but the waiting time of its loop is halved for each successive 

iteration. 
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X:: Halftime:= l;Inc := Halftime j2; 
. [when Halftime = Localtime2 do Halftime,lnc := Halftime + Inc,!nc j 2] 

In the parallel composition Clock ll X, what is the value of Halftime when Tick = 2 ? 

Will the value of Tick ever become 2 ? 
These two questions (and others of this nature) illustrate some of the hazards of using 

the mathematical properties of a continuous time domain to hide the natural limitations 
in arbitrarily dividing "real" time. If we make the common assumption that independent 
actions in different processes in a distributed program can occur arbitrarily close together 
in time, then although computations are 'discrete', the time of their execution must be 
represented as some dense domain. But it must also be assumed that there is a lower 
bound to the execution time of any instruction, for if this is not the case, in the program 
above Halftime will approach but never become 2 (rather like a computational equivalent 
of Zeno's paradox of Achilles and the tortoise) . On the other hand, if there is a fixed lower 
bound to the execution time of any command, it can be assumed without much loss of 
precision that the execution times of all commands are multiples of this (or some other) 
amount and the time can be expressed in natural numbers; in this case, the value of Inc 
will eventually become smaller than the lower bound. How then is a choice made between 
representing time by a dense or a discrete domain ? 

Quite independently of such considerations of time, Hewitt and Baker [4) discussed 
this problem and Best [3) pointed out that without some restriction to ensure finiteness, 
a 'Zeno machine' can be used to solve the Halting problem. With a slightly different 
objecti ve, the temporal logic model proposed by Barringer, Kuiper and Pnueli [2) contains 
an axiom of Finite Variability by which only finitely many computations can take place 
in an finite interval (this axiom enables them to distinguish between finite and infinite 
stuttering). The spirit of this axiom has been followed in some timed semantic models (e.g. 
Reed and Roscoe [8]) which represent time using the reals and, while placing no lower 
bound on the closeness in time of independent actions in different processes, limit a process 
to performing a finite number of operations in a finite interval. However, the choice of a 
dense order for time is by no means universal and Milner [7), for example, has argued that 
by appropriately choosing the level of granularity, a discrete domain can be used for time. 
And even where a dense domain has been chosen, there is no consensus about whether this 
should be the reals, the rationals or an arbitrary dense domain. 

In the world represented by the laws of physics, time is continuous and can thus 
be represented by the reals. The question then is how to relate discrete computational 
actions, which by their nature have granularity, with well-established physical theories of 
continuous time. However, this problem is not unique to computation and Whitrow [11) 
describes how from the work of Russell [9) and Walker [10) it is possible to obtain a 
continuous time domain from an appropriate definition of instants of time. A crucial aspect 
of this work is that time is defined in terms of actions, not conversely; this contrasts with 
the view so far taken in computational models, where actions are laid out in some order 
over a pre-ordained domain of time. 

In this note, we show how a real domain of time can be derived from a definition of 
computational actions. We make use of the account given by Whitrow [11) and define 
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instants of time in terms of computational actions. The set T of such instants can be shown 
to be isomorphic with the reals provided it satisfies certain well-known properties. Some 
properties can be derived from a straightforward definition of actions and their ordering 
and we also provide necessary and sufficient conditions for proving the denseness of T . 
We then show how different assumptions about computations relate to the requirements for 
denseness . From this, it can be seen that the apparent choice between discrete time, dense 
time and real time, for example, is really a choice between different computational models . 

2 A Model of Computation 

Assume that an execution of a program consists of a set of actions; an action can be 
considered as the execution of a terminating command in a program and so some actions 
may be performed sequentially and some in parallel. Let ACT be the set of all actions. 

An action a precedes another action b (a -< b) if b does not start before a terminates 
(but the beginning of b may coincide with the termination of a). Two actions a and b 
overlap if a does not precede band b does not precede a. The relation ' -<' on ACT is 
irreflexive and antisymmetric. It is also assumed to satisfy the following condition, called 
Walker's postulate ([ I 0,11]): 

\;fa,b,c,d E ACT: (a -< b 1\ b ~ c 1\ c -< d) => (a -< d) 

where '~' (overlaps) is a relation on ACT defined by 

\;fa, bE ACT : a ~ b ¢} -,(a -< b) 1\ -,(b -< a) 

Note that '~' is symmetric and refiexive, so Walker's postulate leads to the transitivity of 
'-<' and thus ' -<' is a strict partial order on ACT. 

It will often be necessary to deal with sets of actions and relations similar to the 
precedence and overlapping of single actions can be defined for sets of actions. Let A and 
B be subsets of ACT. Then A precedes B (A <J B) if 

\;fa E A : \;fb E B : a -< b 

and A overlaps B (A 0 B) if 
\;fa E A : 3b E B : a ~ b 

Note that '0' is not symmetric. If A <J B then 

(X C; A => X <I B) 1\ (Y C; B => A <I Y) 

For any action x, let the set After(x) consist of all actions which terminate after x has 
terminated. Similarly, let Before(x) be the set of all actions that have started before x. 
Assume that the relations representing these functions are irrefiexive, antisymmetric, and 
transitive. For A C; ACT, define 

{
ACT 

After(A) = n
aEA 

After(a) 
if A = 0 
otherwise 
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B ," (A) { ACT if A = 0 eJore = . 
naEA Bejore( a) otherwise 

Let ' -1 ' and 'f-' denote the relations 'right-aligned' and 'left-aligned' respectively. Action 
a is right-aligned with action b (i.e. a -1 b) if a terminates no later than band b terminates 
no later than a. Fonnally, 

a -1 b ¢'> a rt After( b) /\ b rt After( a) 

Similarly, 
a f- b ¢'> a rt Bejore( b) /\ b rt Bejore( a) 

The relations '-P and 'f-' are symmetric and transitive, and have the following properties. 

a) Va, b, c E ACT: [(a -1 b) /\ (c E After(a))] => [c E After(b)] 
b) Va, b, c E ACT: [(a f- b) /\ (c E Bejore(a))] => [c E Bejore(b)] 

3 Instants 

The precedence relation over actions, and the property of overlapping, suggests that each 
action has some 'duration'. Infonnally, two actions can be said to overlap if their durations 
overlap. But it is not possible to go further than that and talk about the extent of the overlap 
without introducing a metric over these durations, i.e. to introduce a notion of quantified 
time. A start can be made in that direction by introducing the idea of an instant, defined 
entirely in tenns of sets of actions. 

An instant of time can be considered as a durationless point in the time domain; it is 
defined as a set-theoretic 'cut' in ACT. Fonnally, {A, B} is a -<-cut if 

A;60/\ B;60 /\ A<IB 

/\VcEACT: (VbEB c-<b) => cEA 

/\VcEACT: (VaEA a-<c) => cEB 

and (A, B) is then an instant. 
Some of the important properties of sets of instants follow from the properties of an 

instant; e.g. since a domain of time composed of such instants cannot have any smaller 
elements, such a construction of time will be in the real domain iff the set of instants 
satisfies the properties associated with real numbers. 

If (A, B) is an instant and X ~ ACT, then 

(X <I B => X ~ A) /\ (A <I X => X ~ B) 

Let T be the set of all instants obtained from ACT. A precedence relation on T can be 
defined as follows. An instant t ~ (A,B) precedes another instant t ~ (A', B'), written 
as t < r, if A is a proper subset of A' or if B' is a proper subset of B. If A = A' then 
B = B', and the instants t and t are equal (t = r). The notation t ::; r stands for the fonnula 
t = r V t < r. 
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The set T of instants is isomorphic with the set of real numbers if it satisfies the 
following axioms ([I,ll)) : 

AI . (T, <) is a dense total order with no least and greatest elements . 

A2. Any nonempty subset of T that is bounded above (i.e., has an upper bound) has a 
least upper bound (or, alternatively, any non empty subset of T that is bounded below 
has a greatest lower bound). 

A3. T contains a denumerable subset F such that between any two instants of T there is 
at least one instant in F. 

Whitrow [11] has shown that (T, <) is a total order and that it satisfies Axiom A2. 
Using a proof similar to that outlined by Whitrow, it can be shown that if (T, <) is dense 
then it also satisfies Axiom A3. 

Let Z be the set of all integers. A bijection q, from T onto itself is called a time 
progression, or simply a progression, if it satisfies the following conditions in which, for 
positive integer n, q,-n = (r I)", q,-I is the inverse of q,. 

Tl. VtET: t<q,(t) 

n. 'It, t' E T: [t < t' => q,(t) < ¢(t')] 

T3. 'It, t' E T: 3k E Z: q,k-I(t) :<=; t' < q,k(t)] 

Condition T3 states that no chain in {{ q,n( t) I n E Z} I t E T} is bounded above or 
bounded below. A progression ¢ is said to be slower than another progression <If (q, < q,' ) if 

'It E T: q,(t) < q,'(t) 

Consider a totally ordered set (of>, <) of progressions for which 

( 1 ) 

Since T is dense (by assumption), such a set of progressions exists. 
Let 1 be any (possibly infinite) initial interval of the set of positive integers. Since Tis 

dense, given any to, tl E T such that to < tl, we can construct a chain C ~ {t, I r E I} of 
instants where to < t,+1 < t" for r = 1,2, .... Note that C is bounded below (to is a lower 
bound of C). Then, by Axiom A2 for instants, C has greatest lower bound, say T. 

Define subsets of>("T ) of of>, for rEI, by 

From property (1) of of>, the set of>(" T) is nonempty. 
To show that T has a denumerable subset for which between any two instants u, w in T 

there is an instant in that subset, suppose u < w. By property (1) of of>, there is a progression 
q, in of> such that q,(u) < w. Since u < q,(u) (property T1 of progressions), it follows that 

u < q,(ttl < w (2) 
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Now consider the chain C. Since T < q,( T) , q,( T) cannot be a lower bound of C (because 
T is the greatest lower bound of C). Hence, there is some In E C so that In < q,( T). For 
some progression q,n from the set of>(n,,), q,n( T) < In . Since In < q,( T), this gives q,n( T) < q,( T) 
which implies that q, cannot be slower than q,n' of> is totally ordered, so q,n < q" i.e. 

VI E T: q,n(l) < q,( I) 

Thus, q,n(u) < q,(u), and since q,( u) < w (result (2)), it follows that 

q,n(u) < W 

From property T3 of progressions, for some k E Z 

q,!-IH :S u < q,!H 

(3) 

(4) 

Since q,~-I (T) :S u, we deduce q,!( T) :S q,n( u). This together with the result (3) implies 
that q,~( T) < w. From the result (4) we then obtain 

u < q,!H < w 

The subsets of instants q,!( T) is denumerable, since p and n are both integers and T is 
fixed. Therefore, there exists an instant which lies between any two instants of T and the 
set of such instants is a denumerable subset of T. 

4 Denseness of T 

We have so far proved that (T , <) is a total order and that it satisfies axioms A2 and A3 
provided that (T, <) is dense. Hence (T, <) is isomorphic with the set of real numbers if it 
can be shown that it satisfies the remaining part of Axiom AI, i.e. that (T, <) is dense and 
that it has no least or greatest elements. 

Consider an action x. Let A~, B~ be subsets of ACT for which 

a) A~ is the maximal subset of ACT containing x so that Va E A~: a (j Afler(x) 

b) B~ is the maximal subset of ACT for which A~ <I B~ 

Let C~ be the maximal subset of (ACT - (A~UB~)) for which C~ <IB~ , Ax = (A~ U C~) 
and Bx = B~. Then, provided that Ax and Bx are nonempty, {Ax> Bx} is a -< -cut in ACT 

and x+ ~ (Ax> Bx) is an instant. 

Consider any instant I ~ (A, B). T contains another instant ( so that I < ( iff there 
exists an action x E After(A) and an action b in ACT so thatx < b (t < 4 if this condition 
holds). 

Theorem 1 The sel T of inslqr.zls is dense iff 
Vx, y,x',1 E ACT: 
[[x -< y II x' -< I II ~(x' -< y)] 
=;. [3x", y" E ACT : x" -< I' II x" E After(x) II y" E Before(l) JJ 

The proof is given in the Appendix. 
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5 Actions and Computations 

At one level, the relation between an action and a computation can be simply del •.. 
an action is an execution of a finite (i .e. terminating) program command. If the time 
associated with computation is to be in the real domain, then the actions derived from 
computations must be capable of producing a set of instants which is dense. 

To examine how program actions can result in a dense set of instants it is necessary to 
consider denseness in sets of actions. First, define intervals in sets of actions as follows. 
Let A be a set of actions. For any a, b E A such that bE After{a) , let the set A[a, b] consist 
of all actions of A that do not terminate before a or after b. i.e. 

A[a,b] g, {eEA larf-After( e) 1\ erf- After{b)} 

The set A[a,b] is an interval of A. When no confusion arises, we shall omit the prefix 'A' 
from the notation A[a, b] for intervals. 

A set A of actions is ~-dense (or overlap-dense) in A[a, b] ifffor any action e rf- A which 
lies in the interval (A U {e} )fa, b], there is some action d E A which does not terminate 
after e and e does not terminate after d. 

"Ie rf- A: {c E {AU {c})fa,bJ) =} (3d E A[a,b]: c -j d) 

Assumption 1,' Fixed Command Execution 
The execution of a command is modelled by exactly one action which bears a fixed relation 
to all other actions in the program. 

This is the simplest assumption that can be made about the execution of a command and 
it corresponds to the assumption that each command has a fixed execution time. Since 
in any program of finite size, there can be only a finite number of commands executing 
at any instant there can only a be a finite number of actions overlapping) at any instant. 
From Assumption 1 it follows that the set of actions in any single program execution is not 
~-dense. However, a number of different assumptions can be made about commands and 
their execution and, as will be seen, some do lead to a computational model in which the 
set of actions describing all possible executions of a program is ~-dense. 

In any single execution of a program, an action represents one finite execution of a 
program command. Due to the physical processes involved (e.g. gates with variable 
delays, buses with variable transmission times, etc.), each such execution is just one of a set 
of possible executions and it is not possible to determine a priori which of these executions 
will occur. A model of computation must consider all possible executions of a program. 

Lemma 1 A set A of actions is ~-dense in [a, b] only if for all x,;rI in [a, b] for which 
;rI E After(x) , there is some ;rIi" E A for which 

x" E After{x) 1\ x' E After{x") 

Proof: Follows from the definition of ~-denseness and the property of '-j'. o 
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For any command C executed in isolation, i.e. not in composition with any other 
command, let ACT( C) denote the set of all actions of C. Assume that, in any context of 
execution, C has an earliest action Cmin and a latest action c"""" where 

ACT( C) n Before( Cmin) = 0 
A [lib E ACT(C): Cmu. f/- After(b)J 

and 
ACT( C) n After( C""'X) = 0 
A [lib E ACT(C) : c""'" f/- Before(b)J 

For any two commands C and D, let Cmin in ACT(C) be left-aligned with dmin in ACT(D). 

Assumption 1 a: Denseness in Execution of Primitive Commands 

For any primitive command C, the actions in ACT( C) are left-aligned and the termination 
point of these actions is densely dispersed, i.e. for any primitive command C, ACT( C) is 
~-dense in the interval [Cmin, CmiJXJ. 

Although ACT( C) is ~-dense by assumption, in isolation it produces just one instant. 
More instants can be produced iff one or more actions of the command precede some 
other actions. Such a precedence relation on actions is obtained through the sequential 
composition of commands. 

In the sequential composition Cl ; C2 the starting and termination points of any action 
in ACT( C2 ) must be shifted, or delayed, by the same amount. For a command C, let 
Shifted( C) be the set of all actions generated by all possible ways of shifting the actions in 
ACT(C). 

Assumption 2: Sequential Composition 

Let Cl and C2 be two commands and C the sequential composition Cl; C2. If Shifted( C2, Cl) 
is the maximal subset of Shifted( C2) in which the starting point of any action coincides 
with the termination point of some action in ACT( Cl)' then 

Thus, sequential composition does not introduce any 'holes' between the execution of 
its constituent commands and one action starts immediately after the termination of the 
previous action. This provides an important result - if the set of actions of an infinite 
sequential composition is ~-dense, then the condition of Theorem I is satisfied and the set 
of instants derived from that set of actions is dense. An infinite sequential composition 
leads to a ~-dense set of actions. 

Consider the sequential composition Cl ; C2. Based on Assumption 2 the set A of the 
actions of this sequential composition is ~-dense in the intervals [Cl""., Cl_J and [c2""., C2_J. 
However, as the following lemma shows, A is not ~-dense in the interval [Cl_, C2"".l if 
C2",," E After( Cl_J. 
Lemma 2 Let a set A of actions be ~-dense in the intervals [a, bJ and [c, dJ where 
C E After( a) .. if A does not contain any action e for which 

e E After(b) AcE After(e) 

then A is ~-dense in [a, dJ iff c f/- After(b). 
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Proof: only if: Assume that A is ~-dense in [a,dj . Suppose e E After(b). Since both b 
and e are in the interval [a, d], from Lemma 1 there exists an action e in A such that 

e E After(b) /\ e E After(e) 

But this contradicts the hypothesis. Hence, e rf; After(b). 
if: Suppose the hypothesis of the lemma holds. Consider any e rf; A so that e E 
(A U {e} )[a, d j. Since e rf; After(b), e E (A U {e} )[a, bj or e E (A U {e} )[e,dj. Since A is 
~-dense in both [a, bj and [e, d], there exists anf E A such that e -I f. Hence, A is ~-dense 
in [a,dj. 0 

To show that the set of actions of an infinite sequential composition is ~-dense 

everywhere, consider the termination dispersion of a terminating command C. This is 
a measure of the distance between the earliest and the latest termination points of the 
executions of C. Assuming that intuitive meaning of the length or duration of an action, 
for any primitive command E, let min (E) and max(E) be the lengths of the actions emin and 
emax respectively. The termination dispersion 'It: of C is 

a) (max( C) - min( C)) if C is a primitive command, and 

b) Te, + ((max(C2 ) - min(C2 )) if C is the sequential composition CI ; C2 and C2 is a 
primitive command. 

Let c(i,n) be the sequential composition Ci; Ci+!; " . ; Cn, i ~ n. The set ACT( CI ,n)) 
is ~-dense from Ci onwards if, for any b E After(ei.J, ACT( C(I,n)) is ~-dense in [ei,.;, , bj. 

Theorem 2 Let C be the infinite sequential composition 

where each Ci is a terminating primitive command; then there is some finite k such that 
ACT(C) is ~-densefrom Ck onwards. 

Proof: Let D' be any terminating primitive command. Then ACT(IY) is ~-dense. From 
Lemma 2, the necessary and sufficient condition for the set ACT(D; IY) of actions of D;D' 
to be ~-dense is min(D') ~ TO. The proof of this theorem is based on this result. 

Tc('. i) increases monotonically with i. Since all the components of C are terminating 
primitive commands, there is some finite k such that min(Ci+ l ) ~ Tc(" i) for all i ~ k. 
Hence, ACT( C) is ~-dense from Ck onwards. o 

Theorem 3 If D is a primitive command such that 12) > min(E) for any primitive 
command E then,for any command D', ACT(D; D') is everywhere ~-dense. 

Proof: Similar that of Theorem 2. o 
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Assumption 3: Parallel Composition 
Let C be the parallel composition CdIC2 ; then 

ACT(C) = ACT(C1 ) U ACT(C2 ) 

If a set A of actions is ~-dense in an interval [a, b] then, for any c rt A, the set AU {c} 
is ~-dense in the interval (A U {c})[a,b]. So the set of possible executions of CdlC2 is 
~-dense wherever the sets of possible executions of C1 and C2 are ~-dense. This parallel 
composition rule models the case where the first commands of all parallel components 
begins execution simultaneously. Let this be Assumption O. An alternative is to assume 
that the starting points of the first commands in the parallel components can be delayed 
arbitrarily within a limit; let this be Assumption Oa. The effect of making this assumption 
is similar to that obtained by adding to the start of each Ci (i = 1,2) a primitive command 
Ei for which 

min(Ei) = 0 /\ TEi > 0 

I 
Let M be the longest of the lengths of the earliest actions of the primitive commands. 
Let maxdelay( C) be the greater of 'TE, and 'TE, . From Theorem 3, if maxdelay( C) ~ M, 
then ACT( C) is everywhere ~-dense. Thus, a sufficient condition for the set of actions 
obtained by sequential and parallel composition to be everywhere ~-dense is that either 
the termination dispersion of a primitive command or the delay in the starting of a parallel 
component is greater than or equal to M. 

Components of a program executed in parallel usually communicate with each other by 
sending messages. With synchronous communication, a message is transferred by executing 
the sending command and the receiving command simultaneously. Such communication 
is consistent with Assumption 3. But if the communication is asynchronous , there may be 
an arbitrary delay between the despatch of a message and its receipt. If C! is a sending 
command and C? its matching receiving command, then with asynchronous communication 
the possible executions of C? will span an interval [Cmi.?, cma.r?]. Let this be Assumption 4. 
As was shown for sequential composition, it can be shown that after a finite number k of 
communications, the set of actions is everywhere ~-dense. 

6 Range of Execution Models 

There are, of course, many different assumptions that can be made to relate computation 
with time. The assumptions chosen above are fairly basic and it has been shown how 
they lead to denseness in the set of possible executions of actions, and thereby to time 
represented by a dense domain. The table below shows how the assumptions interact to 
produce different representations of time. The conclusions in columns 3 and 4 have been 
proved above or can be derived by similar reasoning. 
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Starting Assumption Other Assumptions Set of Possible Actions Time 

0 1 + 2 Discrete ~ 

la + 2 Dense after a finite 3{ 

number of commands 
1+3 Discrete ~ 

la + 3 Dense after a finite 3{ 

number of commands 
4 Dense after a finite ~ 

number of commands 
Oa 1 + 2 Partly dense 3{ 

la + 2 Dense after a finite ~ 

number of commands 
1 + 3 Dense if maxdelay( C) :::: M ~ 

Partly dense otherwise 
4 Dense after a finite ~ 

number of commands 

When 'translated' into the more familiar association between commands and execution 
times, one common conclusion from the table is that a real number representation of 
time is needed when (from Assumption Oa) the relative starting times of different parallel 
components in a program are comparable to the execution time of commands, or when the 
execution times of commands have a continuous dispersion. 

7 Discussion 

The choice between representing time by a dense domain or a discrete domain clearly 
follows from the assumptions made in the model of computation. However, whether the 
dense domain should consist of all the reals, the computable reals, the rationals or an 
arbitrary dense domain is a more difficult question, and one for which the answers depend 
on further assumptions. If the physical processes, which have been assumed here to be 
the cause of the dispersion of the execution times, can produce times which are rational 
or irrational, then computations will take times which are in the real domain; given the 
nature of the equations governing propogation and delay, and the inherently statistical 
nature of many of the processes, a rigorous approach may require computational time to 
be represented by the reals. And in the same way that, for example, the area of a circle 
is specified in a way that may not lead to a computable real quantity, the specification of 
time may need to assume that it takes values from the whole real domain. However, the 
limitations of measurement and the lack of effect of minor variations in time may make it 
possible for simpler domains to be used. 

Throughout this paper we have assumed that commands have uniform executions, i.e. 
that the duration of a command and any dispersion in durations is independent of the 
context in which the command is executed. This assumption leads to the expected uniform 
nature of time. 
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One argument given for the use of time in the real domain in real-time systems is that 
the physical processes being observed and controlled by the system are often continuous, 
rather than discrete. However, the observations and control commands of the system can 
only occur in synchrony with the execution of commands by the system, and therefore they 
will lie in the same domain of time as the other actions of the system. 

Lamport (6) has considered interprocess communication in some detail and, making 
use of time in which clocks run continuously (i.e. have values which are differentiable), 
he shows how timestamps can be used in clock synchronization problems. In a later paper 
(5) he associates a global time model with time in the real domain and shows how a model 
of a system execution can be defined in terms of a mapping from time to the executions of 
the non-atomic operations of a program. Our task "here has been more basic, in that we 
have sought to determine what properties of time can be justified by different models of 
computation. 

In a comment, Lamport (5) mentions the condition that "the system is not expanding 
faster than the speed of light", as it could otherwise "have an infinite number of operation 
executions ... ". Whether on these grounds, or on account of a finite variability assumption, 
it must be the case that a system performs only a finite number of actions in a finite interval 
of time: if this does not hold, it is easy to describe a solution to the Halting problem 
(3). If we assume that a computer can be constructed either of matter or of energy, using 
if necessary some faster-than-light means of communication, an interesting speculation is 
then that according to the theory of computability, such a computer cannot travel faster 
than light! 
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9 Appendix 

Theorem 1 The set T of instants is dense iff 

\/x,y,x' ,y' E ACT: 
[[x -< y II x' -< y' II ..,(x -< y)] 
=> [3x",y" E ACT: x' -< y" II x' E After(x) II y" E Before(y')JJ 

Proof; (only if): Suppose T is dense. Let x, y, x, and y' be actions such that 

x -< Y II x' -< y' II ..,(x' -< y) 

Consider the instants x+ ~ (Ax, Bx) and x+ ~ (A~, B~). We have y E Bx. Since x f. Ax 
(because x does not precede y) and x E A~, we have x+ < x~ (because T is a total order). 

Now T is dense, so there is an instant t ~ (A,B) such that x+ < t < x+. Consider any 

action x' in the non-empty set (A - Ax) and the corresponding instant x~ ~ (A~,B~). 
Since x' f. Ax> x" E After(x). We now show that there is an action y" such that 
x' -< y" II y" E Before(y') . 

The instant t cannot precede x~, because if it does, then x' cannot be in A and this 
contradicts the selection of x'. Since T is a total order, we have x~ ::; t and, hence, x~ < x~ 
(because t < x+). Since B~ C B~, the set (B~ - B~) is nonempty. Consider any action y" in 
this set. Since y" E B~, we have x' -< y". It now remains to be shown that y" E Before(y). 
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Suppose y" if. Before(y). Then x -< y" (because x -< y'). Consequently, y" E B~ which 
also contradicts the selection ofy". So y" E Before(y). 

if Consider instants t ~ (A, B) and I' ~ (A', B') such thatt < I. We show that 

:Jx" E After(A) : :Jy" E Before(B' ) : x" -< y" (5) 

Suppose that the condition does not hold. Then forany x inA and any y in (B -If) , since 
y E B, x -< y. Now consider any x in After(A). Since y E Before(B' ), from the negation of 
condition 5 we have -,(x -< y). Since, for any y' E B', x' -< y', the actions x, y, x, y' satisfy 
the premise of the condition of the theorem. Hence, there exist x', y" E ACT such that 

x" -< y" 1\ x" E After(x) 1\ y" E Before(y') 

But, y' is an arbitrary element of If. Therefore, since y" E Before(y'), such a y" can be 
selected from Before(B' ), and condition 5 holds. Thus the negation of condition 5 leads to 
a contradiction. Therefore, condition 5 holds. 

Now consider the instant x~ ~ (A~, B~). Since x' E A~ and x' if. A, we have t < x~. 
Also, y" E Before(B' ). Thus, y" if. B' and, consequently, x~ < 1' . So an instant x'~ exists 
such that t < x'~ < 1'. 0 
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DISCUSSION 

Rapporteur: Dr N Speirs 

Professor Turski asked what is meant by saying that an action b does not start 
before action a finishes. Professor Joseph replied that it was an intuitive 
concept which could be made rigourous using the precedence relation . 

In a discussion of Sequential Composition Dr. Holt asked why there could be no 
"holes" during execution. Professor Joseph explained that this was an 
axiomatic definition of Sequential Composition . 

Professor Bron queried importance of the denseness property . Professor 
Joseph replied that it was an important property in order to be able to decide 
whether time should be represented by integers or reals. Professor Bron asked 
whether Professor Joseph's analysis was prejudicing the answer. Professor 
Joseph replied that he was showing how to do the mapping into both integers 
and rea Is. 

In the description of causality, Professor Randell asked whether Professor 
Joseph's use of the word "causality" was the same as "potential causality" . 
Professor Joseph agreed that it was. Professor Randell commented that in prior 
work, causality was often assumed to be a fundamental concept whereas 
Professor Joseph's analysis was deriving it. Professor Joseph said that he was 
showing how his work related to causality rather than how to derive it. 

Dr. Strong asked whether notions of computable real numbers had been 
examined. Professor Joseph said that they had but that the computability of 
time did not appear to be necessary. 

A speculative discussion ensued regarding whether events could occur 
arbitrarily close in time. 
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