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Abstract: We advocate the use of the synchronous declarative language 
LUSTRE as a unique language for specifying and programming real-time 
systems. Furthermore, we show that the finite automaton produced by the 
LUSTRE compiler may be used for verifying many logical properties, by 
model checking. The paper deals with an example program, extracted from a 
railways regulation system. 

INTRODUCTION 

The formal validation of programs is an especially important goal in the design of real

time systems, as these systems are involved in such crucial applications as automatic 

plant regulation and supervision, railways, aircraft or spacecraft control, etc ... As usual, 

the validation of these programs raises the problems of specification and programming 

languages, together with the problem of verification methods. In particular, the question 

of the adequation between the specification and the programming languages is an 

important one. However the adressed domain presents some characteristic features: 

• From its "real time" nature, some notion of time must be taken into account during the 

design and the verification processes: clearly, the correctness of a real-time program , 
does not only depends on what it does, but also on when it does it. 

Paper presented at the Workshop on Automatic Verification of Finite State Systems, 

Grenoble, june 89. To appear in LNCS. 

This work was partially supported by MRT under contract nr 88-E-0444 

II.27 



:I 
I 

• From our experience, the crucial properties of a real-time program (for instance 

"whenever a dangerous situation occurs, an alarm must be set") rarely depend upon 

deep arithmetic theorems. So, one can hope that they can be proven only by analysis 

of the logical dependencies of logical events. 

As a consequence of these remarks, the present paper makes the following propositions: 

I) Use a programming language which be formal enough to be easily extended towards a 

convenient specification language. So, the same concepts are used in the program and 

in the expression of the desired properties. 

2) Provide the language with a notion of time which be together simple, formal, and 

general enough. Such a goal is approached here by means of a synchronous model: a 

program is intended to react instantaneously to external events; more precisely, no 

external event is supposed to occur during the reaction of the program. 

3) Design a model checker to evaluate the desired properties over some logical 

abstractions of the program behaviour. 

This paper intends to show that the programming language LUSTRE satisfies the first two 

propositions. LUSTRE is a synchronous, data-flow language, inspired from LUCID [16]. 

A program is made of equations - in the mathematical sense - specifying identities 

between flows. A flow is a sequence of values together with a clock specifying the 

sequence of instants when these values appear. So a flow equation may be viewed as an 

invariant assertion specifying that, at any instant of their common clock, the two 

members of the equation are equal. This point of view suggests that the language can be 

easily extended to express more general temporal assertions. The third proposition can 

be satisfied using the LUSTRE compiler: As for other synchronous languages [1 ,2], the 

compiler produces efficient code by synthesizing the sequential control structure of the 

object code. This structure is a finite automaton which summarizes many logical 

properties of the program. So, existing model checkers [4,13,14] can be applied to this 

automaton. However, we shall see that it seems useful to design a verification tool 

especially suited for LUSTRE. 

The first part of the paper,is devoted to a rapid presentation of LUSTRE (more complete 

presentations of the language, its formal semantics and its compiler, can be found in 

[3,9,10]). Its use is illustrated in Part 2, on an example program wich will be used 

throughout the paper. Then we propose and illustrate an extension of LUSTRE to specify 

desirable properties of programs (Part 3). In part 4, we show how the LUSTRE compiler 

may be used to generate an automaton on which the specified properties can be checked. 

In conclusion, we sketch the presentation of a verification tool specifically suited to 

II . 28 



., 

LUSTRE programs: such a tool, which involves incremental automata generation, is 

under development in our laboratory. 

1. THE LANGUAGE LUSTRE 

1.1 Variables, Clocks, Equations, Data operators 

As indicated above, any variable or expression in LUSTRE denotes a sequence of values. 

Moreover, each variable has a clock, and is intended to take the n-th value of its 

sequence at the n-th tick of its clock. A program has a cyclic behaviour, which defines 

its basic clock: a variable which is on the basic clock takes its n-th value at the n-th 

cycle of the program. Other, slower, clocks may be defined by means of boolean 

variables: any boolean variable C may be used as a clock, which is the sequence of 

cycles when C is true. 

For instance, consider a boolean variable C on the basic clock, and a boolean variable C' 

on the clock C. The following table shows the different time scales they define: 

basic time 0 1 2 3 4 5 6 7 
C true false true true false true false true 

time on C 0 1 2 3 4 
C' false true false true true 

time on C' 0 1 2 

Variables are defined by means of equations: if X is a variable and E is an expression, 

the equation "X=E" defines X to be the sequence (xO=eO, xj=ej, ... , xn=en, ... ) where 

(eO, el> ... , en' ... ) is the sequence of values of the expression E. Moreover, the equation 

states that X has the same clock as E. 

Expressions are built up from variables, constants (considered to be infinite constant 

sequences on the basic clock) and operators. Usual operators on values (arithmetic, 

boolean, conditional operators) are extended to pointwisely operate over sequences, 

and are hereafter referred to as data operators. For instance, the expression 

ifX>Y then X-Y else Y-X 

denotes the sequence whose n-th term is the absolute difference of the n-th values of X 

and Y. The operands of a data-operator must be on the same clock, which is also the 

clock of the result. 
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1.2 Sequence Operators 

In addition to the data operators, LUSTRE contains only four non-standard operators, 

called sequence operators, which actually manipulate sequences. 

To keep track of the value of an expression from one cycle to the next, there is a 

memory or delay operator called "pre" (previous). If X=(xO,xI,""xn, ... ) then 

where nil is an undefined value, akin to the value of an uninitialized variable in 

imperative languages. The clock of pre (X) is the clock of X. 

To initialize variables, the -> (followed by) operator is introduced. If X=(xO,x!> ... ,xn, ... ) 

and Y=(Yo,YI> ... ,Yn,"') are two variables (or expressions) of the same type and the same 

clock, then 

i.e. X-> Y is equal to Y except at the first instant. 

The last two operators are used to define expressions with different clocks: 

If E is an expression, B is a boolean expression, and if E and B are on the same clock, 

then "E when B" is an expression on the clock defined by B, and whose sequence of 

values is the sequence of values taken by E when B is true. 

If E is an expression on a clock CK different from the basic clock, then "current(E)" is 

an expression on the same clock as CK, whose value at each cycle of this clock is the 

value taken by E at the last cycle when CK was true. 

The following table shows the effect of these operators. 

B= ( false true false false true true false true . .. ) 
X= ( Xo XI x2 x3 X4 Xs x6 x7 ... ) 

Y=XwhenB= ( XI x4 Xs x7 ... ) 
Z = current(Y) = ( nil XI XI Xl x4 Xs Xs x7 ... ) 

The rules for statically computing the clock of any expression are presented in [3]. 
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1.3. Program structure 

The procedural abstraction in LUSTRE is called the node. A LUSTRE node defines a set 

of output parameters, and possibly a set of local variables, from input parameters, by 

means of a system of equations. Here is an example of node declaration, which define 

the rising edge of its boolean parameter: the output is true whenever the input rises 

from false to true; moreover, at the initial instant, the output is assumed to be false: 

node Edge (b:bool) returns (edge: bool); 

let 

edge = false -> (b and not pre(b»; 

tel. 

Such a node is instanciated in a functional way, and may appear in any expression. For 

instance, one can write the equation: 

fallin/l-edge_oCc = Edge(not c); 

When a node returns several outputs, its instanciations are supposed to be tuples of 

variables. Tuples may appear in equations, and as parameters of some polymorphic 

operators: assuming that node N returns 3 parameters, one can write: 

(x,y,z) = if c then N(a) else N(b); 

Concerning clocks, a node behaves as a data-flow operator: its basic clock is the clock 

of its basic input parameters. The node performs a basic cycle when and only when 

these parameters are available. Other input or output parameters may be on slower 

clocks, but these clocks must be visible from inside and outside the node. 

1.4. Assertions 

Initially, assertions have been introduced in LUSTRE (as in ESTEREL) to specify some 

known properties of the environment. Such properties are used by the compiler to 

optimize the object code,:" for instance, knowing that some input events never occur 

simultaneously may allow some dynamic tests to be dropped out. There are two kinds 

of assertions in LUSTRE: The syntax of the former is 

assert <boolean3xpression>; 
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which specify that the boolean expression is invariantly true. The later states that a set 

of boolean expressions are exclusive, i.e. only one of them may be true at a given 

instant; its syntax is the following: 

assert #<boolean_expression_list> 

Any LUSTRE boolean expression may appear In an assertion. We shall see that 

assertions play an important role in the validation process, on one hand as a way of 

restricting the model, and on the other hand as they form the basis of our specification 

language. 

1.5. Compilation: The automaton generation 

After usual checking of types and clocks, the LUSTRE compiler expand any node call 

in the source program, so as to get a flat program, consisting in a single system of 

equations. Then it performs the synthesis of the control structure, which is outlined 

now. Control synthesis is an important goal in sequential code generation from 

declarative languages, since such languages don't contain any notion of control. We 

first remark that, in our language, what is currently implemented by means of control 

structures, is hidden behind boolean expressions (clocks, test conditions, ... ). The 

control synthesis consists of computing, as far as possible, these boolean expressions at 

compile time. More precisely, any boolean memory (result of a "pre" or "current" 

operator with boolean input) will become a component of the control state of the code. 

So the control structure will be a finite automaton, each state of which corresponds to a 

reachable configuration of boolean memories (moreover, the initial state will be 

distinguished in order to evaluate the "->" operators). The generation process is 

described in [3,9]. We only illustrate it on a very simple example. Let us consider the 

node Edge as a whole program: 

node Edge (b:bool) returns (edge: bool); 

let 

edge = false -> (b and not pre(b)); 

tel. 

It has only one state variable: pre(b) . 

• In the initial state, the output "edge" equals false. According to the value of "b", the 

next state will correspond either to "pre(b)=true" or to "pre(b)=false" . 

• In the state corresponding to "pre(b)=true" , the output "edge" equals "b and false", 

so it is necessarily false. According to the value of "b", the next state will correspond 

either to "pre(b)=true" or to "pre(b)=false". 
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• In the state corresponding to "pre(b)=false", the output "edge" equals "b and true ", 

so it equals the input. Again, the next state will correspond either to "pre(b)=true" or to 

"pre(b)=false", according to the value of "b". 

So, we got the automaton of Fig. 1. In building the automaton, the compiler takes the 

assertions into account, avoiding the construction of states and pathes where the 

assertions are violated. 

edge=false 

edge=false 

Fig. 1: A control automatoQ 

2. AN EXAMPLE PROGRAM 

Let us illustrate the use of LUSTRE on a small example extracted from an actual railway 

regulation system: A track is divided into districts. At the boundary between two 

districts, there are two pedals which overlap each other, as shown in Fig. 2. The device 

must detect the traversal of each axle from on district to the other. It knows the state of 

the pedals, by means of two variables p I and p2 (pi is true whenever there is a wheel 

on the corresponding pedal). It must compute two boolean variables: the output 

"from_lefCto_right" (respectively "from_righCto left") is true when and only when an 
".: 

axle, coming from the left (resp.right) district, enters the right (resp. left) district. There 

can be only one axle in the zone Z, but an axle may turn back within the zone Z, and 

even oscillate on or about the zone Z. 
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Left District Zone Z Right District 

Fie. 2: The axle detector 

Let us write the program which computes "from_lefCto_right". We introduce two 

boolean variables: "lasUn_Ieft" and "exit_right". The former is true whenever the last 

axle which entered the zone Z carne from the left district; the later is true whenever an 

axle leaves the zone Z to the right district. Using these variables, the output 

"from_lefuo_right" can be defined by the equation 

The variable "lasCin_Ieft" becomes true whenever an axle enters the zone Z from the 

left district, and becomes false whenever an axle enters the zone Z from the right 

district. Let us use a node "Switch", of general usage, whose boolean output "state" 

may be given an initial value "val_init", and which may be turned on and off by means 

of two variables "set" and "reset": 

node Switch (val_init, set, reset: bool) returns (state: bool); 

let 

tel. 

state = val_init -> if set and not pre(state) then true 

else ifreset and pre(state) then false 

else pre(state); 

Now, we can define "lascin_Ieft" by means of two new variables "enter_left" and 

"enter_right": 

lasUn_Ieft = Switch(fa,lse, entecleft, entecright); 

Finally, noticing that and axle enters the zone Z from the left (resp. right) district 

whenever pi (resp.p2) has a rising edge when p2 (resp.pl) is false, we get: 

enter_left = Edge(p I) and not p2; 

entecright = Edge(p2) and not pi; 
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and similarly 

exicright = Edge(not p2) and not pI; 

Defining "fromJighCto_left" in a symmetrical way, we get the following node 

implementing the whole axle detector: 

node Detector (p I ,p2: bool) returns (from_lefuo_right, from_righcto_left: bool); 

var las Un_left, last_in_right, entecleft, enter_right, exiUeft, exicright: bool; 

let 

from_lefuo_right = exicright and last_in_Ieft; 

from_righcto_left = exicleft and lasUn_right; 

las Un_left = Switch(false, enter_left, enter_right); 

lasUn_right = Switch(false, enter_right, entecleft); 

enter_left = Edge(pl) and not p2; 

enter_right = Edge(p2) and not pI; 

exiUeft = Edge(not pi) and not p2; 

exicright = Edge(not p2) and not pI; 

tel. 

In addition, the system is assumed to work correctly only when any change in the pedal 

state is perceived separately. This assumption may be expressed in the program as an 

assertion stating that the edges of the pedal variables are exclusive. Moreover, we 

assume that, initially, there is no axle in the zone Z. The corresponding assertions 

follow: 

assert #(Edge(pl), Edge(p2) , Edge(not pI), Edge(not(p2»; 

assert not(pl or p2) .> true; 

Notice that many auxiliary variables have been introduced. It does not have any 

consequence concerning the generated code, since the compiler will select a minimal 

set of memories. However, it will be convenient later, for specifying program 

properties, to name any relevant expression. 

3. SPECIFYING TEMPORAL PROPERTIES IN LUSTRE 

3.1 Translating temporal properties into LUSTRE invariants 

Turning to the validation problem, we consider the expression of desired properties of a 

program. Many formalisms have been proposed for this sake, most of them being 

II .35 



inspired either from temporal logic [5,7] or from process algebras [6,15]. However, in 

order to reduce the user's effort, we are looking for a formalism being as close as 

possible to the programming language. It has been shown elsewhere [8] that LUSTRE 

can be viewed as a subset of linear temporal logic. Here, we investigate the expressive 

power of a specification language consisting of invariant assertions written in LUSTRE 

itself. Of course, only safety properties may be expressed by this way, but we shall 

show that, using memory operators and recursive definitions, the range of such 

properties is quite large. In addition, from our experience, the critical properties of a 

real time system almost always fall into this class: as a matter of fact, nobody cares 

whether an alarm eventually follows a dangerous situation, but rather whether it occurs 

within a given delay! From this remark, other authors [13] have identified some 

temporal constructions which appear particularly useful in expressing real-time 

properties. Examples of such constructions are: 

"always P from Q to R" 

or 

"once P from Q to R" 

respectively stating that, in any path leading from a state satisfying Q to a state 

satisfying R, the property P always holds (resp. the property P holds at least once). As 

an illustration of the expressive power of LUSTRE invariants, we shall try to express 

such properties in the following sense: we shall define boolean expressions which are 

invariantly true on a model if and only if the model satisfies the property. We first need 

a slightly formal development in order to explain what we call a model, and to make 

precise the semantics of the considered properties. 

A model for a LUSTRE program is a tree of stores. A store, noted cr, is a partial 

function from variable identifiers to values. With the root of the tree is associated a 

store cr.l associating with any variable the value nil. It corresponds to a virtual instant 

"-1". The sons of this root correspond to the possible initial states of the variables. 

More generally, any branch in the tree corresponds to a possible execution of the 

program: let cr.l' cro. crl , ... , crn , ... be the sequence of stores encountered along such a 

branch (we call such a sequence a history) and x be a variable on the basic clock, then 

cro(x), crl (x), ... , crn(x),.~. is the sequence of values of x in the corresponding 

execution. In particular, the value of "pre(x)" according to the history cr.I' cro, crl , ... , 

crn is the value of "x" according to the history cr.l, cro, crl , ... , crn.I' The rules for 

building the execution tree of a LUSTRE program are given by the natural semantics of 

[9]. Now, a formula consisting of a LUSTRE boolean expression is true on a vertex of 

the tree, if and only if its value is true when evaluated according to the history 
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associated with the branch leading to the considered vertex, Such a fonnu la is satisfied 

by a LUSTRE program if and only if it is true on every vertex (except the virtual root) of 

the associated tree, 

Now. "always P from Q to R" is satisfied by a tree if and only if for any branch 0'. 1. 0'0. 

0'1'" '. O'n''' ' of the tree. for any integer i such that Q is true on 0'. 1' ao. 0'1 . " ' . O'i . 

either there existsj>i such that R is true on 0'. 1' 0'0' 0'1." ' . O'j . and for any k. i~<j. 

P is true on 0'. 1' 0'0. 0'1."" O'k. 

or for any lei. P is true on a.1• ao. 0'1. " ,.0'., 

Similarly. "once P from Q to R" is satisfied by a tree if and only if for any branch 0'. 1. 

0'0. 0'1 '" ' . O'n . '" of the tree. for any integer i such that Q is true on 0'.1' 0'0. 0'1 . " '. O'i • 

if there exists j>i such that R is true on 0'.1. 0'0. 0'1 ." '. O'j • then there exist k. i~<j. 

such that P is true on 0'.1 . 0'0. al ." '. O'k' 

Let us show how these properties can be translated into invariant LUSTRE properties: 

• We shall translate "always P from Q to R". where P.Q.R are LUSTRE boolean 

variables. into a boolean variable which is true when and only when 

- either P was continuously true since the last time Q was true 

- or R has been true at least once strictly after the last time Q was true 

So we write: 

node Always]rom_To (P.Q.R: bool) returns (X: bool); 

let 

X = Always_Since(P.Q) or Once_After(R.Q); 

tel. 

• The boolean variable corresponding to "once P from Q to R" . is true when and only 

when 

- either R is false 

- or P has been at least once true since the last time Q was true 

We get the following node: 

node Once_from_To (P.Q.R: bool) returns eX: bool); 

let 
, , 

X = not R or Once_Since(P.Q); 

tel. 

Other nodes used in the previous definitions are given without comments: 
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true 

node Always_Since (p.Q: bool) returns (X: bool); 

-- returns true whenever P has been continuously true since the last time Q was 

let 

tel. 

X = if Before_Dr_At(Q) then true 

else if pre(Q) then pre(P) 

else pre(P and X); 

node Once_After (p.Q: bool) returns (X: bool); 

-- returns true whenever P has been at least once true strictly after the last time 

Q was true 

true 

let 

tel. 

X = if Before_Dr_At (Q) then true 

else if pre(Q) then false 

else pre(P or X) ; 

node Once_Since (p.Q: bool) returns (X: bool); 

-- returns true whenever P has been at least once true since the last time Q was 

let 

X = if Before_Dr_At (Q) then true 

else if pre(Q) then pre(P) 

else pre(P or X); 

tel. 
P=9 ~ ~ 99C?Q 

Q=b • ¢bb • ¢ . .. ... 
R=9c?9 • 9H 

•• 9999C? ~ ? >-· . . .. .. .0000. ¢¢¢ ~ · . . . · . .. . . 
• QLAO • 0 • • 0r«0 ~ 

Before_Dr_At(Q) = .: -eo --<>0 --<>--<>0 -<>0 -<>0 -<>-<>-<>-<>-<>-<>-<>-<>-<>~ 
Always_Since(P.Q) = : 

Once_After(R.Q), = • • C>-6 • • 0-6--0--6--6 • • 6 • • ~ -0 : : : : : : : : : : 
Once_Since(R.Q) = .. • , • • • c;>-Q • • , • • ~ • » 

Always_From3o(P.Q.R) = • • • • • • 6-6 • • 6 • • 6 • • ~ 
From_to(P.Q.R) = • : : : : : : : : : : : : 

Once - • • • • • • 0 • • • • • 0 • • » 

Fig. 3; Behayiour of some temporal operators 
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node Before_Or_At (Q: bool) returns (X: bool); 

-- returns true whenever Q has never been true, or is true for the first time 

let 

X = true -> pre(not Q and X); 

tel. 

Fig. 3 illustrates the behaviour of these operators, with a graphical representation where 

black and white circles respectively stand for "true" and "false" 

3.2 Application to the axle detector 

Coming back to the program of section 2, we can flrst express its desired propenies, in 

a quite abstract way: for instance, we write that whenever an axle leaves the zone Z 

from the right side, and the last entering was at the left side, the output 

"from_lefcto_right" is emitted: 

not from_lefcto_right or (exicright and not Once_After(entecright, enter_left)) 

Now, we would like to get an abstraction of the axle detector. We shall simulate the 

behaviour of a train, which receives two commands "left" and "right": when receiving 

the command "left" (resp. "right") an axle straightly traverses the zone Z from right to 

left (resp. from left to right). So, the simulation program computes the pedal state as 

follows: 

"p 1" is set whenever 

- either the command "right" was sent at the previous instant 

- or any command was sent two instants before 

- or the command "left" was sent three instants before 

and conversely for "p2". 

As it is often convenient when dealing with multiple delays, we shall use an initializing 

"previous" operator, in order to avoid problems with "nil": 

node Pre(cond, vaUnit: bool) returns (Pre: bool); 

let 

Pre = vaUnit -> pre(cond); 

tel. 

The simulation program is as follows: 
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node Train(left,right: bool) returns (p l,p2: bool); 

let 

pi = Pre(right or Pre(right or left or Pre(left,false),false),false); 

p2 = Pre(left or Pre(left or right or Pre(right,false),false),false); 

tel. 

Let us put the train and the detector together, assuming that no command is sent when 

an axle is in the zone Z: 

node Z_Zone(1eft,right: bool) returns (to_left,to_right: b001); 

var pl,p2,occupied:bool; 

let 

(p l ,p2) = Train(left,right); 

(to_right,to_left) = Detector(p l,p2); 

occupied = p I or p2; 

assert #(occupied, left, right); 

tel. 

Now, we want to describe the whole system without regards to pedals. If we observe it 

only when the zone Z is idle, it must behave only as a delay on the commands, i.e. 

"to_left" (resp. "to_right") is sent whenever "left" (resp. "right") was true at the last 

time the zone was idle. This property may be written as follows, using "idle" as a 

clock: 

to_left when idle = Pre((left,false) when idle); 

to_right when idle = Pre((right,false) when idle); 

where idle = not occupied 

Comments: 

• Notice the application of the "when" operator to tuples: "Pre((left,false)when idle)" 

stands for "Pre (left when idle, false when idle)" and is therefore equivalent to "(false 

when idle) -> preOeft when idle)" 

• The above property mixes equations, whose invariance must be proved, with a 

LUSTRE definition (deqnition of idle) . 

• This example shows the importance of clocks, as a way of defining observation 

criteria. 
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4. VERIFYING TEMPORAL PROPERTIES 

4.1 Model Checking 

The verification of program properties by model checking consists of building an 

extended representation of possible program behaviours (generally as a state graph), 

and of exhaustively checking the considered properties on this representation. Clearly, 

this approach only works for properties which can be checked on a finite 

representation. Concerning LUSTRE, our first task concerns the construction of such a 

finite abstraction of the infinite tree of program behaviours. Fortunately, this 

abstraction is already performed by the LUSTRE compiler, when generating the control 

automaton of the object code: Formally, the automaton results from a folding of the 

behaviour tree, according to the greatest bisimulation defined as follows: 

• Two stores are considered equivalent if and only if they give the same values to each 

boolean memory (result of a "pre" or "current" operator). Other store equivalences 

could be considered, for instance by replacing "boolean" by "bounded range", in the 

definition above. 

• Two vertices of the tree bisimulate each other iff 

- their associated stores are equivalent, and 

- in response to the same boolean inputs, they lead to vertices which bisimulate 

each other. 

So, existing model checkers may be applied to our control automata. As a matter of 

fact, the use of EMC [4) on automata produced by the ESTEREL compiler has been 

successfully experimented. Let us briefly discuss such a solution for LUSTRE (as a 

conclusion from an experience using XESAR [12)): 

• In addition to the advantage of using existing tools, it provides the power of whole 

branching-time temporal logic ("eventuality" and "possibility" modalities, nesting 

of modal operators). 

• However, the associated specification languages have been designed in connection 

with imperative programming languages: concepts addressed there are actions and 

labels , which make no sense in a LUSTRE program, and the translation of our 

LUSTRE properties in these language is far from being obvious. 

• Moreover, in order to be accepted by these tools, the automaton must be enriched 

of many intermediate states. However, the notion of state is strongly meaningfull in 

LUSTRE: for instance, the "pre" operator refers to the actual preceding state, not to 
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an artificial intermediate state. So, the intermediate states must be abstracted, an 

operation which can be complex . 

• "Last but not least", there is a semantic problem in the evaluation of LUSTRE 

properties on an automaton. Consider, for instance, the property "P => pre(Q)" where P 

and Q are some LUSTRE expressions, and assume P holds in some state s, which is 

reachable from two states s' and s" (cf. Fig. 4.a). If Q holds in s' but not in s", we 

cannot decide of the value of "P => pre(Q)". This problem results from the fact that the 

folding of the initial tree may depend on the considered property. The evaluation of a 

given property may necessitate an expansion of the automaton (cf. Fig. 4.b). A solution 

consists of calling the LUSTRE compiler to perform this extension. 

Q Q 

0----<~ 

=~> 
P=> pre(Q) 

@---.a 
-,Q ...,Q P 

...,(P =>pre(Q)) 

(a) (b) 

Fig. 4 ; Automaton expansion 

4.2 Using the LUSTRE compiler as a model generator 

The proposed technique, for verifying the invariance of a LUSTRE formula F on a 

program P, consists of: 

- augmenting the program P into a program P', computing the formula F; 

- compiling the program p', to get its control automaton; 

- checking, on the automaton, that the variable corresponding to F is never set to 

false. 

Let us illustrate this technique on some examples. 

Proving properties of the axle detector 

We detail the proof of the invariance of the property 

to_left when idle = Pre((left,false) when idle); 
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on the program Z_Zone. This program is first augmented in order to compute a new 

variable "test", which is true whenever the property is true. We have also to introduce 

the variable "idle", which must be an output since it is the clock of "test" (parameters' 

clocks must be visible from outside a node, cf.§1.3). The resulting program is 

node Z_Zone(ieft,right: bool) returns (to_left,to_right,idle,test: bool); 

var pi ,p2,occupied:bool; 

let 

(p 1 ,p2) = Train(ieft,right); 

(to_right,to_left) = Detector(p 1 ,p2); 

occupied = p I or p2; 

assert #(occupied, left, right); 

idle = not occupied; 

test = (to_left when idle = Pre((left,false) when idle)); 

tel. 

...,idle 
~toleft 
~torigh 

-,idle 
~toleft 
~torigh 

I e 
~toleft 
~toright 

test 

idle 
~toleft 
toright 

test 

~idle 
~toleft 
~toright 

Fi~- 5 ; The verification automaton for the axle detector 

...,idle 
~toleft 
~torigh 

-,idle 
~toleft 
~torigh 

Fig. 5 shows the control automaton corresponding to this program. One can easily see 

that the output "te~t" is only defined in states 0, 5 and 8 (when "idle" is true), where it 

is set to true. 

Proving program equivalence 
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An other important application field of the proposed technique, is the proof of 

equivalence between several versions of the same program. Given two programs IT and 

IT', we can prove that they have the same behaviours by the following procedure: 

write a main program, containing IT and IT' in parallel, provided with the same 

inputs; 

compute, as the output of the main program, the result of a comparison of the 

outputs of IT and IT' (Fig. 6); 

check on the resulting automaton that the output is never set to false. 

TI 

TI' 

Fig. 6 ; Comparing two programs 

Of course, using assertions and filtering by clocks, other equiValence criteria may be 

taken into account. 

For instance, we can prove that 

Once_After(P, Q) 

is equivalent to 

Once_Since(P and not Q, Q) 

by writing the following node: 

node TescEquivalence (P,Q: bool) returns (equivalent: bool); 

let 

equivalent = (Once_After(P,Q) = Once_Since(P and not Q, Q)); 

tel. 

4.3 Towards an integrat¢ tool for compiling and verifying LUSTRE programs 

The drawback of the proposed proof technique is that it involves the modification and 

recompilation of the program whenever a new property has to be proved. Moreover, 

some tool is needed for automatic checking of in variance on automata. So, we are 

considering the design of a verification system integrating: 
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• LUSTRE program compilation, with automaton generation at several levels of detail; 

• LUSTRE property incremental compilation, with automaton expansion: it would 

make possible to enrich a program with the computation of new fonnulas, without 

compiling again the program. 

• Property checking on the automaton, which may involve other properties than only 

invariance: Once a fonnula has been computed in each state, questions concerning 

eventuality and possibility could also be considered. 

• Errors explanation, which is a critical issue in program verification: When some 

desired property is not satisfied, the user needs some hints in detennining which is 

erroneous, of the program or the specification, and in locating, as precisely as 

possible, the source of the error. Such a tool is available in the system XESAR [II]. 

CONCLUSION 

There are two traditional approaches to program verification : In the fonner, the 

specification consists of formulas written in some logic (Hoare's logic, temporal 

logic, ... ) and the verification consists in proving that these fonnulas are valid on the 

model represented by the program. In the later approach, the specification and the 

program are both written in an executable fonnalism, so the verification reduces to 

proving program equivalence (for some equivalence criterion). In this paper, we have 

tried to conciliate these two approach, using a logic based programming language, both 

for programming and property specification. Of course, as any language, LUSTRE 

needs some learning and experience, but it should be clear that the use of only one 

language reduces the user's effort, both concerning learning and conceptualization. 

The usefulness of assertions has been shown. Assertions form an incursion of 

specifications into the programs. Their importance will also be illustrated in modular 

proofs. 

Concerning specification, we restricted ourselves to invariant properties. The reasons 

of this restriction are twofold: 

- On one hand, the invariant properties that can be expressed in LUSTRE, using 

memory operators and recursive definition, are quite powerful. We are not 

convinced that more general properties are needed, in practice, for expressing 

critical properties ofreal-time systems. 

- On the other hand, these properties are extremely easy and cheap to check on an 

automaton: you never need to keep the whole automton in store (states may be 
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considered once at a time) not ever to keep track of the transition relation. So, we 

can hope to deal with larger problems than more general tools. 

Turning to the verification method, some comments must be made: All the given 

examples deal with boolean programs. As a matter of fact, in the present state of our 

tools, the only properties we can prove concern the control structure of the program. 

However, they could be extended to deal with bounded integer variables (as done in 

XESAR), the only requirement being that the number of states remain finite (and not too 

large) . Concerning the size of automata which can be processed (the central problem in 

model checking), we have some good reasons in believing that the approach is 

realistic: 

• Experiences with XESAR show that, in its present state, the system can reasonably 

deal with graphs of about I,OOO,()()() states, a size compatible with many practical 

problems. Moreover, as noticed above, we can expect better results if we restrict 

ourselves to invariant properties. 

• The use of assertions allows a kind of modular proof, which can reduce the size of 

the considered automaton: You can separately prove a propeny P of the parameters 

of an internal node n, and then consider n as a pan of the environment of the main 

program (thus avoiding the full expansion of n in the main program), asserting P 

about the input/output of n. Here, assertions and properties play symmetrical roles: 

If P has been proved for n under some assertion A (Fig.7.a), then P may be 

asserted outside n provided A is proved (Fig. 7.b). 

II .. 
> prove P 

" asserting A 

Q 10 be proved 

(a) 

, , 

.. 
"> 
" 

Figure 7 ; Modular proof 

assert P 
and prove 
AandQ 

(b) 

Finally, what about real_time? One can argue that our proofs always rely on the 

assumption of synchrony, and that we prove nothing about the execution time of the 

programs. That's true, indeed, and its is a constant point of view in the synchronous 

approach. It can be justified by remarking that the assumption of synchrony can be 
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verified (a problem which is not adressed in this paper), because the execution time of 

the code produced by our compilers is mesurable . As a matter of fact, the code 

corresponding to a transition of the automaton is linear (no loops, no recursion) . It is 

the responsibility of the user to check that the maximum transition time is shorter than 

the minimum delay separating two distinct external events. 
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DISCUSSION 

Rapporteur: M .J. Elphick 

During this talk, several queries were raised concerning the derivation of 
clocks associated with variables in LUSTRE from the "basic clock" by Professor 
Turski and others. In response, the speaker explained that the LUSTRE system 
was able to perform a statical analysis to determine the clock associated with 
any expression to which the "current" operator could be applied; this was not 
necessarily the basic clock ., but was derived from it. 

Professor Randell asked what real experience had been gained in the use of 
LUSTRE for 'real' system design, and what the different areas of applicability 
of LUSTRE and RTL were? In reply, Professor Halbwachs said that there had 
been some experience in applying this method to control systems for the 
Airbus (but only in play!), also in modelling hardware systems and nuclear 
plant mechanisms. As to a comparison between LUSTRE and RTL, he felt that 
RTL probably had more expressive power, but that LUSTRE had various other 
advantages. Professor Mok felt that there might be problems in scaling up 
LUSTRE designs. 

Dr Holt asked whether branching-time models had been considered; 
Professor Halbwachs replied that as LUSTRE only considered the past history of 
its variables, a branching t ree would only see one past from a given point. 
However, he felt that it could be extended to other models of temporal logic. 
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