
Rapporteur:

=

SYNCHRONOUS PROGRAMMING OF REACTIVE SYSTEMS

N HALBWACHS

A Tully

II

SYNCHRONOUS PROGRAMMING OF REACTIVE SYSTEMS:

AN INTRODUCTION TO ESTEREL

G. Berry
P. Couronn<!
G. Gonthier

Ecole N ationale Superieure des Mines de Paris
(ENSMP)

Place Sophie Lalilte
Sophia·Antipolis

Centre de Mathematiques Appliqu~

Lnstitut :-Iational de Recherche
en lnformatique et Automatique
(INRlA)

06565 Valbonne - France

Route des Lucioles
Sophia.Antipolis
06565 Valbonne - France

Resear<:h Supported b~ the GRECO C3, CNRS

1. Introduction

Harel and Pnueli [26), introduced the name Reactive Systems to designate systems that react to
repetitive inputs from their environment by sending themselves outputs to that environment. Real­
time process controllers, mouse-keyboard interfaces (1 il, video games, commun..ication protocols ,
and all control automata are examples of rea.ctive systems . An important cbara.cter of most reactive
systems is their intrinsic determinism: a reactive system deteraUDes a sequence of output signals
from a sequen ce of input signals in a unique way. This has to be opposed to the inherent non·
determin.ism of other systems, such as operating systems . The importance of determlnism is clear:
determin..istic systems are much easier to specify and to debug than non-deterministic ones,

Several tools are currently used to program or analyze reactive systems. \\'e review them with
respect to several criteria: easiness to write and maintain programs, run-time efficiency, existence
of verification tools, and deterznjrusm.

1. Assembly language programs, generally written to run under some real-time operating system,
Such programs can be efficient but are hard to structure and to maintain . Verification tools
are elementary (monitors, debuggers).

2. A utomota, also called state machines, hand·coded in some 10w·I,,·el or even high· level pro·
gramm.lng language. By nature, automata are \'ery efficient and their transition time does not
depend on their size. However, they are hard to design and to maintain: an apparently minor
change in a specification can entail a major change in the resulting automaton (this is ,,·ell·
known to parser generator users); the risk of hand-coding errors is important, since a single
action such as a. signal emiSSion as to be replicated in many transitions. Very good verification
tools are available: for example the EMC [19J or CESAR [35) systems are practical temporal
logic formulae verification systems, able to work on real· size automata; the ECRINS system
[30, 37) can be used to perform bisimulation proofs a la Milner [31, 32). The deterministic
character of reactive systems is preserved when using determ,jn.istic automata.

Paper published in Progromming of Future Generation Computers. (1<. Fuchi and M. Nivat, editors). pp. 35·55,
Elsevier Science Pub. B.V. (North HoUand), 1988. INRlA Report 647.

11.1

3. Communicating automata. represent a practical intermediate solution. used for example in
tbe specification language SDL (22). Simple enough automata are made into communicating
processes using some communication primitive. The design aDd maintenance can be simpler
than with standard automata. However program verification is much harder since the overall
system becomes Don-deterministic.

4. Petri Nets or Petri Nets based formalisms such as the GRAFCET Ill). These tools are also
used in real appUcations . Compared to automata, they provide their user with a notion of
process concurrency and a crude form of process synchron..ization. Having no hierarducal
structure, Petri Nets are somewhat difficult to understand and to maintain. Some verification
tools exist (34). Petri Nets are asyncbronous and non-deterministic, but GRAFCET nets are
synchronou s and deterministic: all active transitions must be fired "sirnuJtaneously"'.

5. Higb-level parallel programming languages such as ADA [I). ~OD{jLA (39), CSP [2;), OCCAM
128). They are based on notions of process and process communications. One can use them to
write well- structured programs that are comparatively easy to maintain. The necessary run·
time process and communication han<iling can induce a possibl)' important execution overhea.d .
Few verification tools are currently available, because of the complexity of the semantic. of tbe
languages. Almost a.Il para.llel languages are non-deterministic. They usua.lly support some
additions to handle real· time problems, such as watchdogs on some "un..iversal'" time. These
additions are also Don-deterministic and therefore not well· defined semantically,

6. Algebraic Calculi of Processes such as CCS (31), SCCS (32) , ~EIJE(12) , or ACP (3). They
permjt the specification and analysis o(deterministic or non-determin..istic reactive systems.
They lead to nice theories o(process observations and process equivalences . However , they are
still far from being programming tools. Some verification systems are in development (30) .

In rea.ctive systems programm,jng, parallel languages certainly represent the best programming
tools, while automata certainly have the lead for efficiency. But none of the above tools provides
both good programming style and eXe<:ution efficiency. Our purpose is to introduce the new class
of synchronous languages that aim at all these qualities, \\'e center the discussion on the language
ESTEREL(6), which was historica.lly tbe first synchronous language 14). We also discuss the syn­
chronous programming]anguages LCSTRE[18), SIGSALj24j , and the Stat",barts (25) specification
fo rmalism . Similar but less developped synchrony ideas appear in the S~{L imper ati ve language
(15) and in some bardware description languages . They will not be preseDted here.

ESTEREL is an imperative language, Lt.:STRE aDd SIGSAL are data·tlow languages, and the
Statecharts are graphical hierarchical notations for automata. Although different in style, these
syn chronous formalisms share a. common paradigm that as introduced in the early versions of
EST£REL: a program ads as a synchronous history transformer that produ ces a sequence of outputs
synchronously with any sequence of inputs,

The synchrony hypothesis amounts to consider ideal reactive systems that react to external
inputs by instantly updating their internal state and producing outputs . . \ synchronous program
behaves as if its in ternal actions were carried out by an infinitely fast macbine. whose actions take no
time . Two actions are synchronous if and only jf they belong to the same reaction; the sequencing
of input/output events determines the behavior of a synchronous program, not the converse as in
asynchronous languages , The program is inactive betw~n its reactions ; it simply waits. for more
inputs .

The synchrony hypothesis is of course an approximation of the reality. It is similar to the
approximations used in newtonian mecharucs to deal with instantaneous body interactions, in
cherrustry to deal with values such as the pH of a solution, or in standard electricity when one ignores

II.2

the transm.ission speed of electrical currents. Within their application ranges , these hypothesis
greatly simplify the study of physical sys tems: there is of course no need to invoke complex quantum
mechanics equations to deal with billiard balls trajectories.

In our case, the synchrony hypothesis has the foUowing practical conseq uences: it makes
the programming languages deterministic, it simplifies the process interaction mecharusms, and it
permits perfectly rigorous time manipulations. Time can be dealt with without encoutering an
""Heisenberg effect": when mea.suring a delay, the measure itself does not introduce its own delay.
On tbe practical side, this leads to a new programming style that is weU·adapted to reactive systems
programming. On the theoretical side , the semantics of synchronous languages is very clean, in
particular for what concerns time manipulations.

As in physics or chemistry, one has to carefully .,-aJuate the application range of the synchrony
hypothesis. Given a real reutive system, one ha.s to define a "satisfaction point" where a user
perceives the system as synchronous . For example. a vide-o game player certainly wants his game
to react as fast as possible. that is fast enough to consider a.ny response as instantaDE'OUS compared
to its own reactions; a telephone is good if the delays introd uced by packet switcrung are not
perceived by the user . 10 practice, the reaction to an input is viewed as taking time but being
uninterruptibJe: DO new input is taken into account during it. An implementation satisfies the
synchrony hypothesis if the reaction time is always sufficiently fast not to cause input overrun . We
then make the following observations:

(i) As far as behavioral spedncations are concerned, performance considerations must be kept on
a lower level than specification and design considerat ions. Tbe syncbrony hypothesis is dearly
justified as soon as it help6 improving the progra.mming style.

(il) Many reutive systems don't really need execution speed, but rather safety. For controlling a
lift or a subway, the t ime consta.nts are large and performance is comparatively easy to achieve.
The hypothesis is again justified a.s soon as it makes specification and programming simpler
and safer.

(iii) More importantly and also more surprisingly, synchronous languages tend to be e"en more
eflident thaD cODventional parallel ODes: their compilers perform process scheduling and com·
munication at compile time and transform parallel programs into equh'alent sequential finite
automata (the ESTEREL compiler [7J reali.es this transformation for ESTEREL programs). In
most cases, the obtained object code is as effident as carefully hand-written assembly code, and
no state explosion occurs. Moreover. as with hand· written automata, the worst case reactioD
time is measurable, and many \'erification tools can be used for proving program properties.

~otice the close connection between synchronous languages compilers and parser generators: B~F
is a high-level , y of specifying context-free languages; a parser generator such as YACC [29J takes
a BNF specification as input and produces an efficient automaton for analyzing input words. There
are indet>d strong relations bet'9l;een the algorithms used in parser or !'canner generators and the
algorithms used for syncbronous languages.

In the body of the paper, ""e first introduce tbe synchrony hypothesis in more details. We then
present the ESTEREL primitives and their naive semantics. ,",'e give some examples to illustrate the
ESTEREL programrWng style. 'r\'e iatroduce the notion of causal correctness, which is analogous to
the notion of deadlock· freeness for asynchronous programs, but is statically cbeckable. We show
how to tran sform an ESTEREL program into an automaton, using the mathematical semantics of
the language and a variant of Brzozowsld's algorithm. [16J . We discuss the quality of the obtained
compiled code. We finally give an overview of other syncbronous languages and explain how they
view tbe synchrony hypothesis.

II .3

The reader will find more details on ESTEREL in (6) . Detailed examples of ESTEREL reactive
system programming are presented in [8,9).

2. The Multifo rm Discrete Time Model

2 .1. Signals and .en.ors

An ESTEREL program communkates with its environment via signals and sensors. Signals are
used both as inputs and outputs, whlle sensors are used only as inputs. Signals can convey values ;
sensors always do.

For example a tcalc controller ca.n receive a signal every millisecond, a signal every wheel
revolutioD, track signals conveying positional in formations , and signals coming from the operator's
keyboa.rd; it can use sensors to measure the external temperature; it can emit pOVo'er commands to
the eogines and brakes. A suhmoduJe of trus controller may receive and emit addHionaJ software
signals to commurucate and synchronize with other suhmoduJes.

As in most parallel languages, all the signals and sensors are treated as messages, regardless of
tbeir bardware or software origin . Tbey are identified by names Uke S, SI , etc. The notation S(v)
expresses that s cooveys the value v.

2.2. Broadcasting as the communication primitive

Asynchronous languages use several kinds of process communication mechanjsms: simple
rendez-vous in Csp or OCCAM, queued rendez-vous in ADA, and asynchronous queues in data­
flow languages. All these conceptual mechanisms are close to implementation mechanisms, and
communication is limited to be one-to-one.

On the contrary, in synchronous languages, signals and are assumed to he broa.dcast among
processes·. One can trunk of programs as using radio waves as a communication medium , each
signal being represented by a frequency.

Two kinds of informations are broadcast on the ",·aves: ,·a/ues that are permanent, and signal
tops tbat are intermittent. A sensor ba.s a value, but no signal top . A pure signal ba.s a signal top.
but no value. A valued signal has both, and a value change is always synchronous with a signal
top (bence tbe signal top is used to broadca.st and detect value cbanges; tbere is no way to detect
value cbanges for sensors) .

In ESTEREL, signal and sensor \-aJues are a\-ailabJe in expressions, (with the IoI,?S" primitive, see
§3.2.), wbile signal tops act as control information to be bandIed by tbe ESTEREL control structures
(the pr .. ent a.nd watchiD, statements below). A sensor is simply a degenerate signal for which no
control information is a\-a.ilabJe. From now on, we shall therefore include sensors in signaJs .

As we shall see in the next Se<:tiODS, broadcasting is exceUent for modular programming and
is a ba.si6 of the ESTEREL programming style. In asynchronous. Janguages , broadcasting is usuaUy
not available: it must be done at run -t ime and is known to be expensive . Because of the synchrony
hypothesis, we sball be able to perform broadca.sting at compile time and to produce code that
simply accesses a sbared memory. This is the main ta.sk of the ESTEREL compiler.

2 .3. The "absolute" time

In addition to external signals, most parallel languages introduce particular mechanisms to
handle an impUcitly broadca.st absolute time. This time ha.s a specific name (say the SECOIID) and

• The choice of broadcasting as the communication primitive is explicit in ESTEREL, and implicit
in LUSTRE, SIGNAL, and tbe Stalecharts.

II.4

is manipul.ted by specific instructions (say delays and watchdogs). I.n asynchronous languages,
the use of an absolute time is necessary to establis h relations betwe-en the internal computation
time of a program and the occurrence of external signals . In synchronous languages this problem
disappears together with the notion of comput.tion time. The 5tCorn bas no particular role and
can be treated as any other input signal, as it is automatically broadca.st .

A small example shows the superiority of sy nchronous languages over a.synchronous ones when
dealing with time. Assume that the basic universal time unit is JUUISECOM'D. Then in any "'real·
time" language one can derive SECO!lt) by writing a statement like:

nor1 1000 "IUI5tCOli!) do
.ai t S ECOID

However, such a statement behaves very differently in asynchronous and synchronous language:

• In asynchronous languages, SECOWD ads as a normal signal and is Dot broadcast, unlike the
basic MILLISECOND signal ; moreover, because of asynchrony, SEcon is Dever synchronous with
an occurrence of MILLISECO)(l). The "duration ft of a SECOND can not be defined .

• I.n synchronous langu.ges, 5ECOll1) is broadcast every 1000 RIlllstCOIfD, is simultaneous with
"IUI5ECORO, and a 5Ecorn lasts exactly 1000 "IUI5tCOIl1).

2.4. Time is multiform

ESTEREL can treat the physical time as • standard signal. Conversely, it can also treat any
signa.} as an independent "time unit ft

I so that the time marupuJation prizrutives can be uniformly
used for all signals. In ESTEREL, one can write statements such as

lnit 2 M£TEP.;
40

<tuk>
vatch i n& 100 VHtEL_REVOLOTIOI

Thi s notion of multiform time will be deta..iJed in section 4. It is one of the strengths of the ESTEREL
programming style.

2 .!§. Simultaneity, events, and compJete events

In synchronous languages, output is synchronous to input: we have to a..x.iomatize a primitive
Dotion of simu ltaneity. \Ve call eveDt the occurrence of an arbitrary number of simultaneous signals.
An event where a. signal 51 appears together with a signal 52 that carries a value t' will be denoted
by 51 52(V). We denote events by E, Et ,

The synchronous product E :;:: El • £2 o f two events El and £2 is tbe event resulting from
their simultaneous occurrence. If the events involve only distinct signals , there is no problem in
combining tbem: if E, = 51 52(v,) .nd E, = 53 (V3), then E = 51 52 (V,) 53 (V3) ' I.n ESTEREL,
we also allow to combine events that conta.in the same signal 5 witb dHferent values (such events
will be produced by executing simultaneously several .o.it statements). We call this pb enomenon
a collision. Assume that E1 and E, both conta,jn an occurrence of 5, with respective values Vt and
v, . One has to define tbe bro.dcast value v of 5 in E = E,. E, . Follo..-ing ~.fjJner [J2] we associate
an associative commutative operation .s with the signal s, and we set v = VI .5 v,. Therefore one
has

II.5

The product of two events is then defined componentwise on signals . The choice of the composition
opera.tion is left to the programmer. Here ate some examples :

• In Ethernet-Uke local networks, signal broadcasting is physically reaUzed on a cable. A special
value "'I represents the collision of two messages. One sets Vt • Vl = lUI for all VI, V2.

• In a request handling mechanism, several processes caD request the same resource simultane·
ously, say by broadcasting their name. A natural choice is to take as result the set of the
Dames of the processes that simultaneouJsy require the resource.

• In the digital watch programmed in [9]. a timekeeper, a stopwatch, and an alarm can operate
a beeper . The timekeeper beeps once a second, the stopwatch beeps twice a second, and the
alarm beeps rour times a second . If some of the un;ts beep together , the resulting number
of beeps per second is obtained by adding the individual numbers . Hence seven beeps per
second occur wben the three units beep together. We simply define a BEEP signal that carries
an integer representing the required number of beeps per second and choose integer addition
as the. operation.

The events defined so fa.r only contain information about emitted signals. Complete events also
contain the remain.ing informations about non-emitted signals and sensors; Assume tbat a signal Sl
is emitted with 'v-a.]ue Vb while a signal S2 is not emhted but bas currently vaJue v, and a sensor S3

has currently value v,; this corresponds to a complete event written E = SI(vlJ ~S2(V,) ~S3(V,).

2.6. H~tori.,.

Having defined the notion of simultaneity. we are left with the notion of succession of events.
which is handled by defirung histories. An bistory H = EI , E" .. . , E., .. . is a sequence of complete
events that is required to be consistent in the following sense: for any ,-.Jued signal s , if ~s(v)
appears in E" and jf s appears negatively in £,,+11 then the S-component of E,,+1 is also ...,s{v) ;
this ensures that vaJues only change synchronously with signal tops.

Remember finally that our reactive systems bave infinitely fast reactions : they react only when
receiving input signals, and therefore nothjng happens "bet'V.een" input events. The system has no
"internal clock".

3 . The ESTEREL program ming primitives

We don't give here a precise definition of ESTEREL (see [6,i]) , but we introduce enough of the
language to be able to treat illustrative examples.

The basic programming unit is the module; a module contalns a declaration part and a state­
ment.

ESTEREL is not a general-purpose programming languages. The types , constants, functions.
and procedures are just deda..red as abstract names in the declaration part ; they are supposed to be
implemented in some bost language, say C or ADA (tbe ESTEREL compilers can produce object codes
for different host languages). Therefore an application is programmed in two parts: the ESTEREL
part that deals with signals, and the auxiliary part that deals .,ith standard computations. The
fun ctions and procedures of tbe aux.iliary part have no access to signals.

3.1. Declaration.

In the declaration part, one declares the types , constants, functions, and procedures used by
the module (and defined in the host language) ; one then declares the signals and sensors that define
the module's interrace. Here is a possible declaration part of a TIXER module:

II .6

..

modale TUfD. :
typo lI"E;
con,tLDt I.ITljL~TIKE : TIKE:
proceduro IWCREJlElI1. Tl"£ (Tl"E) () ;
inpat SEeOJf1) ,

RESET .CO""Ul);
o"'pot lI"FJl.VlLOl: (TI"E) ,

BEtP (combine illu,tr _itll. PLOS);

The output signal Tl"FJl. ViLOl: h ... type THE, and DO collisions are allowed for it; this is the default.
\Ve allow collisions to occur ror the integer output signal BEEP and we use the addhion (unction
PLUS to compute the combiDed ,oJue; tlUs is declared using the <oobi .. keyword.

The declaration of a procedure such as INCR£lIElIT. TI"E involves two type lists: the first list
types arguments passed by reference, the second list types arguments passed by value (it is empty
here).

3.2 . Expressions

The expressions are classically built (rom variables, constants, and function ca.lls. A special
expression "~S" gives access to the current value of a signal or sensor S. Its type is the type of the
signal or sensor . (A similar expression "??S" gives a,ccess to the current value of a valued exception ,
see §3.4.)

3 .3 . Statements

There are two kinds of statements: primitive statements and derived statements that are
defined in term of primitive statements. The mathematical semantics is defined onl)· for primitive
statements . The derived statemen ts act as macros and can be expanded into primjtjve ones. The
synchrony hypothesis is necessary to ensure the correctness of the expansions, in other words to
ensure that the derived instructions do exactly what we intend them to do.

The prim.itive statements are themselves divided into 1"'·0 groups: classical basic imperative
statements and temporal statements that deal with signals.

3 .3 .1. Basic imperative statements

Here is the list of the basic imperative statements:

nothin,

halt

<yu> : 11 <exp>

call <i4> «Taxli,t»«ax,li,t»

<,tat> ; <.tat>

it <tXp> thtn <.tat> .1 •• <,tat> tnd

loop <.h.t> tn4

<&ta.t> r I <ltat>

trap <id> in <,tat> tad

nit <i4>

vax <v&I-dtcl.> in <,tat> tn4

'ign&l <.igtlal~dtch> in <.ta.t> tnd

dummy statement

halting statement

assignment statement

external procedure call

sequence

conditional

infinite loop

parallel statEment

trap definition

ezit from trap

local variable dEclaration

local signal declaration

There are no shared variables: if a variable is updated in one branch of a parallel statement, it
cannot be read or written in the other branches .

II. 7

One has to remember that the execution machine is conceptually infinitoly (ast. Therefore
tlothin& does Dotrung in no time, assignments and externaJ procedure calls are instantan~Us, the
second statement of a sequence is started exactly when the first statement terrn.inates, and the
branches of a parallel statement start simultaneously (a parallel terminates synchronously with the
last termination of its branches). Hence when a parallel statement is started, its branches work in
the same signal environment.

The trAp-nit mechanism is a classical escape mechanism: a tr&p statement defines a block
that is instantly exited when a corresponding uit statement is executed·. This mecharusm is the
most po .. ·erful control mechanism in ESTEREL. It extends to a genera! exception handling facility,
see 17) and \3.4. below.

Since the execution macrune acts only upon reception of input events, any statement statts or
terminates synchronously with some input event. ","'ben discussing the behavior of a statement, we
shall call curreDt event the event that statts the statement.

Although st atements are executed simultaneously, they are executed jlJ tbe rigbt order. Hence a
sequence

1:-0;
1 :-1+1

yields instantly I-I. Only finitely many statements can be executed simultaneously. One imposes
a staically checked finiteness constraint to forbid loops like

1:-0;
loop 1 ;-1+1 u,d

that have of course DO semantics in our instantaneous uw erse.

3 .3 .2. Temporal statements and signal handling

All statements described so faJ "'tal:e no time", besides halt that never terminates . \\'e now
describe the temporal statements that handle signals and can take time .

The sign als can be ei ther em.jtte<i by the program's environment or by the program itself. To
em.lt a signal S with value that of an expression <up> , one writes

.-.it SC<up»

If S is a pure signal, the expression is of course ontitted. An emission is instantaneous. U several
emJssions occur simultaneously, the ,,·alues are combined as described in se<:tion 2.5.

For signal re<:eption, there are two printitive statements. The first ODe tests for the presence
of a signal in the current e ent:

pre •• Dt S tbeD <.tat1> .1,. <,tat2> .Dd

The semantics is dear: if S is present in the current event, then <Hat 1> is instantly started.
Otherwise <l\at2> is instantly started.

The second statemen t is the most important ESTEREL const ruct ; it is called tbe watchdog or
time guard; it has the form

do
<ltat>

'latching <oce>

• If severa] blocks are simultaneously exited, the effect is to instantly exit the outermost one

II.8

where <Jtat> is any statement and where <occ) is an occurrence of a signal. An occurrence is either
a signal name (say SECOJID) or a signal name preceded by • count factor (say 3 METElI) .

A ntchin, statement defines a time Limit for the execution of its body. The time Limit is given
by the occurrence <occ> . If <occ> has tbe form 5, the time Limit is tbe first event in the strict future
of the current event to contrun an occurrence of the signal S; similarly, for an occurrence n S, the
time limit is the n·tb event in the strict future to contains an 5.

The body of the utehin& statement is started synchronously with the vAtchin& statement; it is
executed up to tbe time Urnit excluded:

• If tbe body terminates strictiy before the limit, the 'tj\'hole utchin& statement termin ates
synchronously;

• If the body is not terminated when the time limit occurs, the body is instantly kHled without
being executed at that time and the vatcllin& statement instantly terrrunates.

~otice that tbe nesting of .. tchin, statements estabUshes natural preemption relat ions between
the corresponding signals. Consider tbe foUowing example:

do
do

<,tat 1>
vatchin& 51;
<Jtu2>

ntehin& S2

By defin.ition of the semantics, if S1 and S2 occur simultaneously, then the outermost vatehin&
statement is teIIrunated, aod <,ht2> is Dot execu ted . Hence S2 pre€mpts a simultaneous S1.

3.4. Derived statement!

Many useful temporal statements can be derived from primitive ones. For example one writes

anit <occ>

instead of

do hal t vatehin& <oce>

One writes

do <,t&t_ment> upto <oec>

iDstead of
do

<ttat eauII. \) :
hut

v&tcllin& <occ>

The upto statement dHfers from the vatehin& statement by the fact that it term.inates only on
<0<:<:), not if its body terminates (Conversely, one could define utehin& frOID opto; in [51, upto was
taken as a primitive).

It is often useful to add a timeout clause to a watchdog; tills clause is execu ted if the time lirrut
is reacbed before termination of tbe body:

do
<.taU>

vat chiD& <occ>
timeout <Jtat2> .n4

II·9

abbreviates

trap T 1A
do

•• d

<Hat 1>;
uit T

.atehin& <oee>;
<.tat2>

If <Hat> terminates strictly before <oee>, one instantly exits the enclosing tra.p, thus skipping the
timeout clause.

Temporal loops are useful derived sta.tements. For example one writes

loop
<tta.t>

UGh 3 METD.

instead of

loop
do

<Hat>
upt. 3 METER

•• d

and one writes

eTery & SECOND do
<Hat)

•• d

to abbreviate

avait & SECOND;
loop

<.tat>
ncb S SECOJit)

In a loop
of <oee>; in an

ucb. statement, the body starts immed3ately a.nd is restarted on every occurrence
every statement the body starts only OD tbe first occurrence of <oe,,>.

Two other derived instructions are particuJarly useful. The first one is the sjgnal selection or
multiple a,,·ait. Tbe syntax is

a,aH
ea. •• <oee1> do <.tat1>
ea •• <oe<.2> 40 <,tat2>

cas. <oecn) do <.tatn>
•• d

Cnlike similar statements in asynchronous languages, our selection is determinjstic. The first oc·
currence satisfied determ..ines the statement to execute; if several occurrences are satisfied simul·
taneouslYI only the statement cor~esponding to the first such occurrence in the Ust is executed
(therefore the order in tbe Ust estabUshes a priority relation bet n occurrences). The expansion
is not given here, see [7J.

The last important derived statement is the exception handlIng statement , that generaliz.es
the trap statement. Here is an example:

II. 10

tn,p !L.lJUI, FOUlrD(int ."d i.

nit ILIPJI

" nit r01lllD (V IL t71:+0

bu.dlt ILIU do
hUldlt rom do I:-!!FOtrlfD+6; ...
•• d

An exception acts both a.s a. classical trap and a.s a. signal that can carry vaJues . If the body executes
an tlit, it is instantly terminated and tbe corresponding bandler is instaotly started . II the body
executes severaJ exits simultaneously, then the corresponding handlers are sta.rted in parallel. The
wbole construct terminates wben all tbe started handlers bave terminated. In a handler, the special
expression "?!s" ha.s value that of the exit.

\\o'hen trap blocks are nested, the outermost ones preempt the innermost ones; for example, in

trap T1 in
trap T2 in

nit T1
I I

nit 12
handlt 11 do <in.t1>
ud;
<in.t2>

hUldlt T2 do <in.t3>
.. d

the exceptions 11 and T2 aTe simultaneously raised, Then T2 preempts T1 : <in.t3> is executed.
while <iutl> and <iut2> are not.

4. The ESTEREL programming sty le

We briefly illustrate tbe main aspects o(tbe ESTEREL programming style : tbe use o(multiple
time un..its, the use of broadcasting, a.nd the use of signaJ simultaneity. A more extensive discussion
can be (ound in [8,9J.

4 .1. Using signals as time unit.

We already mentioned tbat time is multiform in ESTEREL: aoy signal is viewed as defining
a "time unit". A good illustratiqn of the induced programmjng style appears in the reflex game
program presented in [8J. Let us !irst realize tbe (onowing specification: "Wait (or a b.it on a REiDT
button within a. time limit of 10 SECOlfDj in case of timeout, emit an .I:J.ll: while waiting , any hit
on tbe STOP button sbould ring a BELL":

do
do

'Ttry STOP do fait RIle_BELL .nd
upto REJ..DT

.&tchin& 10 SECOKD
t im.out ,a.i t lL1M tDd

(Here upto RE.l.DT is equivalent to ,atchh& RI!DTj we prefer to use upto whenever we are not
interested in the termination o(tbe body). Let us now realizes tbe (onowing specification: "Wait
for 10 SECOND; if STOP is b.it during tbat time, terminate and emit an ILIU; while waiting, any hit
on REiDT should ring tbe BELL":

II .11

. 1

do
do

'T,rl READ! do .ait RIIG.ltLL
upto 10 SECOJll)

utchill., STOP
t i:uout .ai t lLJRJI .nd

In trus example, the second specification is dual to the first one; it can be read as IoI\VaH (or
10 steon with a time lirwt of SlOP ; in case of timeout , errUt an aJa..rm ; while waiting .. ," .

This shows how useful it is to use watchdogs for arbitrary signals and to nest watchdogs on
different signals. We go (urther in the same direction by programming the (oUowing specification,
to be used as a training program (or a mile runner: "Run two laps in the (oUowing way: run slowly
100 meters, then , during 20 seconds, jump high and breath d..,ply upon every step , then finish the
lap by running as (ast as possible; end the training session by taking a shower"

do
loop

do RUJ_SLOVLT upto 100 KETtA;
do

nnl STEP do
JUlIP_HIGB

II

upto 20 SECOIft);
f1JU._SPEED

ueh LAP
upto 2 UP;
THE_A_SBOIiEA

The identifiers JUlIP_HIGR , BREHlIE.DEEPL! , f1JU..SPEED, and TUE.LSBO\/!J\ refer to submodules that
can themsel\'es sYDchroruze on beart beats . Let us make the follo~,;jDg remarks:

• All 'Opto constructs control statements that wouJd otherwise never terminate.

• The runner jumps only if a lap is longer tban 100 meters . Otherwise tbe corresponrung state­
ment is never executed. si nce it is killed by tbe enclosing loop... tach L!'.

• Similarly, tbe runner runs (uU speed only i(tbe lap is not finisbed after "100 meters plus 20
seconds" jumping.

• The overall program lasts exactly two laps plus tbe duration o(tbe sbower.

Sucb a simple program is not easy to write in classical languages (we lea '", thi, to the reader).

4 .2. The use of broadcasting

Broadcas ting simplifies process communication and improves moduJarity: wben it emits a
signal . a process doesn 't need to know wbo is usterung to tbat signal: conversely, when a process
receives a signal , it doesn't need to know tbe ern.itter(s) .

We illustrate this in tbe ,,·rist·.catcb exam ple described in detail in (9). A wristwatcb is an
exceUe nt exam ple of reactive systems; it is comparatively small, but ba.s many features found in
otber systems: folding numerous commands into few buttons by using command modes, showing
numerous data in few dispJays using display modes, establishing communkations and instantaneous
dialogues betw..,n submodules. Tbe wristwatcb programmed in (9) bas five submodules: a wnCH
that acts as a regular tirnek..,per, a sTopvncH, an ALAR!! , a BUTTOI.IlfTEAPRETEA that interprets
wristwatcb buttons as commands cUrected to the other modules according to tbe current command

II.12

mode, and a DISPULH!HDLEJI. that handles the various displays . Broadcasting makes life easier in
several places:

• The external signal SECOHD is automatically broadcast to all the modules that need it.

• Hitting a particular button in a particular mode provokes the toggling from 24H to l2H
AM /P~! time display mode. This concerns the watch and the alarm. The button interpreter
broadcasts a message TOGGLE_24H_MODE_CO"M.lJIl), without worrying about wbo is expecting this
message. Adding a second alarm would not modify the corresponding code.

• Tbe timekeeper broadcasts a WATCH_TIME signal whenever its internal time is modified. This
signal is used by both the alarm and display handler . Adding a second alarm can be done
witbout any modification of the WATCH and !URI! modules .

4 .3. Sim ultaneity and instantaneous dialogue.

The synchrony hypothesis allows us to estabUsh a new form of process communication, the
instantaneous dialogue.

A typical example appears in tbe wristwatch code [9J, more precisely in the body of the
stopwatch; it will be abstracted bere. An instantaneous dialogue appears whenever the behavior of
a. process P depends on some property of the internal state of another process P' . For simplification.
assume that pi is a fljp·flop on some signal fLIP.FLOP.CO)()(jJft) and that P must perform <.tatl>
jf pi in in the fljp state and <ftat:2> otherwise. Then one introduces two signals lRE.100.FlIP and
TES_L.IX.FLIP and one writes P' as follows:

loop
do

II

loop
_mit lES.I_iX.FLIP

tach UtE. YOO.TLIP

<tlip cod.>
upto FLIP.,LOP.COKXiKDi
do

<flop eod.>
upto FLIP_FLOP_CO"X!.o

•• d

:-.:0' the intended behavior of P is ensured by the fo Uowing code:
.ait iRE.lOV.FLIP;
pr ... u 'YES.I.iJl.rtIP thea

(HU1>
el ••

<tta.t2>
.. d

The signal HE_TOO_FLIP emitted by P provokes an instantaneous reply YES_L1X.I1.IP from P' if and
only if in flip mode.

Thjs method is easy to extend since P only cares for a reply to its question and doesn't need
to know mucb about the structure of P' (this is not the case for the method used in the Statecharts
[25J to solve tbe same problem: thhe P must refer to tbe exact internal name of the state of P').

5. Causal correctness of ESTEREL program.

Tbe synchrony hypothesis can generate temporal paradoxes, which are analogous to short­
circuits or osdllations in electronics and to deadlocks in asynchronous parallel programs . Here is a
first type of paradox:

II. 13

. /

ligua! S h.

'Dd

pr ... nt S then
Dothinl

.1 ..
• ait 5

'Dd

The local signal S should be emitted if and only if not present, which is clearly a nonsense. This
programs behaves more or less like a "not" gate with output plugged on input.

The second example is a.nalogous to a. short-circuit, or more precisely to a positive fe-edback
effect. Consider the purely instantaneous program:

.igu.l S (,ombi~t integtr vith PLOS) iD
,ttit S(O);
u .. it 50X.1)

'Dd

the signal S can have simultaneous emitters, the values being added <_ section 2.5}. Since the
reception a.nd ezn.jssion of S are simultaneous, every reception of n should provoke the immediate
eIJ'Ussion of n + 1: this is clearly a nonsense. The short-circu..it is initiated by emitting O .

In both example, the statement had no possible behavior. Here is a. "non-detenwrustic" case
where infinitely many behaviors are possible:

.igual SCinttgn) in
.al t S(!S)

'Dd

Any integer value can be considered as the value of s.

Generaily speaking, temporal paradoxes appear as soon as the input of a program depends
on its output. They are staticaily detected by tbe ESTEREL compilers. This is an advantage over
asynchronous languages wbere no deadlock detection is possible at compile· time' . See [6, 23] for
details.

6. Compiling an ESTEREL program into a finite automaton

6.1. ~.fathematical semantics and simulation

As a programming language, ESTEREL is mathematically weU-defined. Its semantics is gi\'en
by a set of rewrite rules a la Plotkin [33]. The rules determine the behavior of a program given
any input event. This behavior bas to be defined in a circuJar way because of instantaneous signal
broadcasting: the output of a. program must be combined with its input in order to determine the
event in whlch the program works, wh..ich in turn determines the output. \\'e give no more detail
here, see [5,21,23].

\\'e first show how to use the mathematicaJ semantics to buiJd a simula.tor of the language. To
simplify the discussion, we treat the case of pure signal programs, that is of programs that contain
no vaJued signals or variables; we indicate bow to extend the results to the general case.

For any causally correct progr'a.m P and input event Et, the semantic rules uniquely determine
the output event E' and a new ESTEREL program P' cailed Ibe deril·alive or P by E. This derivative

, The ESTEREL v2 compilers sometimes reject programs that do not contain paradoxes. This
problem disappears in the ESTEREL v3 compiler.

t complete events must be used in place of events when dealing with general programs; complete
events are obviously useless for pure signal programs.

II .14

represents w. P after £''' : if P produces the ou tput history E', £{, £2" . . , E~, . . . when applied to the
input hJstory E , £10 E, .. . " E "" then P' produces the output history E;, E2 .. ", E~I' " when
appIJed to the input history £1, £" E,. . .. \Ve write

p.£. P' = ap
E aE

This is enough for building an EST£REL simulator: given an input b..istory. one constructs the outpu t
events and the new derivatives step by step. This technique is used in the ESTEREL v2 system (t he
hard part of the system being of course the computation of the derivative. see [5,21,23)).

6 .2. Compiling an ESTEREL program into a Bnite automalon

Since any pure signal program has a finite number of input signals, the Dumber of its possible
input events is finite and the number of its deri"atives by input events is also finite. Hence we
can formally compute all the derivatives of P by all possible input events. For compiling programs
into automata, the idea is to iterate trus process and to explore completely the space state of the
program. For trus, let us extend the notion of derivative to arbitrary rustories. Given a finite
rustory H = Ell El, E,.. we set

ap
an

= _a(-,-8_E,~,~=,-.~E-,-•:_ ,-,-)
aE.

and . if E denotes the empty h..istory, ~'e set

ap _ p
at -

Then we are able to pro\'e the following result, whkh is analogous to Brzozowski's result on deriva·
tives of regular expressions [16):

THEOREM : Any EST EREL program bas only a finite number of den\'ath'es :
{M7 I n an history} is finite.

tbe set

Hence we can construct the fin..ite graph of aJJ possibles transitions of P and of its deri\'atives .
This graph is nothing but a finite automaton whose behavior is identical to that of P . Once the
graph is constructed , we can of course remove the deri\'ati\'es associated '~,: ith the vertices. replace
them by state numbers. and implement the obtained automaton in any classical programming
language (the ESTEREL v2 compilers presently produces C code).

We can apply a similar process to general programs that handle valued signals and variables . At
compile-time, the memory actions to execute are simply kept formal wben computing a transition;
because of conditionals, a transi.tion is DOW a tree whose nodes are elementary memory actions
(assignments, procedure calls , tests). AI run time, the resulting automaton handles a memory by
executing these elementary actions.

6.3. Quality oC the compiled code

The compiling technique described above calls for several remarks concerning the efficiency
of the compiling process, the size of the resulling automalon, the efficiency of the code produced

II . 15

for each transition , the validity of the synchrony hypothesis, and various problems about separate
compilation and code distribution.

6 .3 .1. Efficiency of the compiling process

The presented compiling process is ba.sed on the formal computation of derivatives. As imple.
mented in the ESTEREL v2 compilers, this process is fairly expensive in time and space since all
the derivatives must be explicitely computed and kept in memory for comparisons; it is however
practical: compiling the complete wristwatch described in [9J requires 2mn on a VAX 780, using 2
mega· bytes of memory (t he system is written in I.e_Lisp [20]).

In the ESTEREL v3 system that we are presently implementing, new algorithms avoid the
explicit computation of derivatives . See [IOJ for a description of similar algorithms on regular
expressions. The gain is important both in time and spa". (say a factor of 10 for both).

6 .3.2. Size of the resulting automaton

The size of the resulting automaton determines the space occupied by the generated code. In
asynchronous forma1jsms , it is well knowD that a complete exploration of the state space results in a
rapid blow-up, {or internal transitions of the system generate states . In synchronous languages, the
situation is dHferenl: a singJe state transition caD correspond to a complex behavior of a program,
where many conceptually simuJtaneous internal actions take place. A stale is really an input-output
state, and DO state is generated only by internal actions. However blow·up ca.n still occur for two
reasons:

• For any state, ODe bas to compute the transitions corresponding to all possible input events.
But n input signals generate 2ft d.istinct input events. since '9'e have to handle the possible
sim ultaneity of input sign als . EST£ REL introduces a notion of input signal relation in order to
break down to a more reasonable size. There are two kinds of relations:

to Exc/us jon relations, wruch teU that signals are exclusive: If ~'e write S1'S2.S3, we require
51,52 , and 53 to be pairwise incompati ble. Input events such as Sl S2 are then forbidden.
Incompatibility relations suppose a serialization of the corresponrung input signals by the
underlying operating system , wb..ich is not a restriction in most cases.

e> Synchrony relatjons, wh..icb on the con trary force input signals to be synchronous . If
a watch recei" es signals for both the ,,,,ond and the hundredth of s",ond, it is Dat·
ural to require the second to be synchronous with some hundredth. One then writes
SECOllD -> JroliDflEDTB.

In practice it is ~'ise to declare as many relations as possible for input signals. For example, if
all input signals are incompatible, the number of input events is n instead of 2" .

• The number of actual input·output states can still be enormous: As for regular expressions,
it is not hard to write programs causing exponential blowups . However practical programs
tend to be really tractable. The wristwatch of [9J has no more than 41 states, and many other
significant examples yield automata that have between 10 and 100 states. As with any other
system, it is essential to understand what to put in the program's control and what to put in
data. In a lift with 32 independent call buttons, the 231 states are more efficieDtly stored in
the 32 bits of a single memory "'ord than in the 231 states of an automaton!

It seems that the derivative algorithms tend, to construct directly minimal automata, at least in
practical cases (it is easy to construct ad· hoc counter·examples); for this reason, the ESTE REL
systems don't embody a minimization algorithm on the compiled automata. This impor tant phe.
nomenon is not yet well-understood.

II. 16

Let us finally mention that 9o,'e use a compact representation of automata. using b>1e code
sequences in order to re-duce the generated code size. for example the "'ristwatch's automaton
occupies 2.500 code bytes.

As a conclusion, we think that the presented compiling technique is of practical use as J.OOn as
the input relations are care(uUy dedared.

6 .3 .3. Efficiency of the transition code

The efficiency o(the transition code determiDes the spe<><! at whicb the generated code can
react to input signals. This is 9.·here the results a.re tbe most spectacular. The transilioc code
is purely sequential ; it almost onl)' cont,ljDs actions that ate necessary at eXKution time (stich as
assignments or emjssions of output signals) . There is no overhead for process handling and process
comrnunkation. Pure communications generate no codt> at all: this is clearly the best 9.'ay of being
instantaneous. Value broadcasting generates a minimal number of assignments to global variables .
For short, the process commun.ication is done completely at compile tjLDe and only inevitable actions
are deferred to tun-time.

Although not instantaneous, the transition code is therefore mjnjmal and as fast as it can
be. ~loTeover, its speed is measurable given any particula.r processor: Hence the validity of the
syncbroDY bypotbesis can be precisely cbecked (or any precise application.

6 .3 .4. Separate compilation and code distribution

The compiled code automaton (orm bas t..,o drawback&:

• Being se-quential, the code must be run on a single processor: no distribution is possible .
"'hen distribution is needed, ODe can however still use ESTER£L for "'riling the- individually
synchronous parts of the system and link tbese- synchronous parts using procedure ealls or
asynchronous commun.ication primjtjves (provided that the- concerned submodules bive no
iDfinititeJy (ast dialogues) . This s""ms to be a reasonable tradeoff in practice: ESTERrL is good
(or synchronous applications, not for asynchronous ones. As an exa.mple, 9.·e present in [9J a.n
implementation of our ,-"ristwalch with five communicating autoroa.t&. The ESTEREL \'3 system
will provide its user 9.'ith automatic tools for automata connection and code distribution .

• Separate compilation o(module. is uDeasy, altbough possible (see [36)). More precisely, it
is not easy to use tbe compiled .utomaton form o(a module " 'ben this module is used as
a submodule. Some (orm o(separate compilation exists in ESTERrL v3. but it concerns an
interme<Uate code that is clos.er to the source code tha.n to the automaton. ~otice ho ·e"er
tbattbe efficient compiling algorithms a.re global. as are tbe efficient algoritbms that tr.ns(orm
regula.r expressions iDtO automat. [10J . Separate compilation ... ould not necessarily lead to.
gain in time efficiency.

6 .3.5. Proving properties of programs

Tbe translation of ESTERE'L programs to automata bas a major .d''antage: it permits to
perform automatic proofs of properties o(tbe resulting automata. There We import the work done
by other researcbers. We have interfaced tb. ESTEREL systems witb tbe E~IC system [19J that
allows its user to pro\'e or disprove temporaJ logic formulae; ~'e are also performing experiments
witb tbe ECRINS system developed in our group [30J; this system i. based on algebraic calculi of
processes a la Milner [32, 12,37, 38J.

II .17

=

1. Brief overview of other synchronous languages

7.1. LUSTRE and SIGNAL

ESTEREL is an imperative language in whkh the temporal statements deal with events. On
tbe contrary, L USTRE [181 and SIGNAL [241 are syncbronous data·Ro .. · languages that deal directly
with histories. We describe LUSTRE; SIGNAL is conceptually similar.

A LUSTRE variable X denotes a sequence o(values o(a given type. The indites o(the sequence
represent an "universal time". All variables are synchronous in the foUowing sense : the n-th
components In and Tn of two sequences are assumed to be simultaneously avajlable . An equation

Z • I+Y

defines a sequence Z such that Zn ~ In + Tn for all n. Therefore tbe primhjve operations take DO
time as in ESTEREL.

A program is a set o(equations sucb tbat eacb ,·ariable has exactly one defining equation. Any
variable can appear in the right-hand side of any equation, as in

Z • I+Y
T • hZ

Here X appears in tbe definitions o(Z and T; this is a (orm of broadcasting. There are short·circuits
and oscillations, as in

I • bot 1
T • Z+l
Z • Y+1

The main temporal operators are pu(l) tha.t defines the sequence Dll. X o. Xl X n • where lIil
is an undefined value, and X->T tbat defines the sequence Xo, Y" ... , Yn. The (onowing program
counts tbe Dumber of times a boolean \.a.riable 1 changes value:

COUNT. 0 -> it I=pr.(X) then pre(COUWT) el •• pre(COUVT)+l ti

There are also primitives to deal with multiple time unhs. A clock is a boolean variable ; intuitively
the corresponding signal is present ~'hen the clock is true . if a variable I is conceptually synchronous
with a clod: C, an operator "I whn C,. brings I back to the un..iversaJ time . Finally a. cu..rrnt

operator provides a.n asynchronous access to a variable's value (as our .. ~,. operator. that was
absent in the early versions of ESTEREL and introduced a.fter the Ll'STR£ cuxrell\ operator). \Ve
gjve DO more detail here.

Lt:STRE is a (unctional language that satisfies the substitution property : In the right. hand
side of any equation. any variable may be replaced by its defin..ition. The ordering of equations is
not sign..i ficant.

SIG='AL differs mainJy by its clock calculus that permits to leave the clocking o(variables
implicit ; its syntax is simiJar to notations commonly used in signaJ processing.

Altogether, ESTEREL, LUSTR.E, and SIG):AL are very close in spirit. The main difference is
the induced programming style: L USTR E and SIG~AL are easier (or applications that have a simple
control structure, such as signal processing: a program can then be very close to the original set of
mathematical equations that specify a problem; on the contrary, ESTEREL is more suited to appli.
cations having many control states, such as the wristwatch mentioned above: when a single button
can have different meanjngs according to the command mode, the ESTEREL imperative primitives
help associating pieces of program text with the different modes, while Lt:STRE and SIGNAL (orces

II.18

. ,

to handle expucit state variables. The techniques used in the ESTERn and LVSTRE compilers are
very similar, and the output code formats are unified to make the lar.guages compatible.

7.2. The Statecharts

The 5tatecharts [25J are graphical hierarchical notations for automata. The main idea is to
introduce an and /or decomposition of states that allows to zoom sta~es in and out, considering a
state to be a single object at one level and connected parallel automa!a one level below. :\fanyof
the difficulties that we mentioned for classical automata then disappear .

Arro\\'s are labeled with signals and may go from any state to any other state. including struc­
lured states. This reillzes a function similar to that of upto in ESTtREL: if the signal labeling an
arrow is present. the source st.ate is immediately exHed, no matter ';\"h.icb is the present configura­
tion within it. An additional "enler by historyft mechanism perrnits to re·enter a state at the point
where it was left. or in some initiaJ position. Signals are broadcast. In!:!antaneous actions can take
place at states. There are explicit primitives for delays and time outs ~ .. ith respect to the universal
time .

The basic synchrony principle is therefore the same in the Statecl::arts and in ESTEREL. How­
ever, the styles are orthogonal: when using the Statecharts , one describes what the user should see
{typically running modes}, while in ESTEREL one programs a system from basic bricks (typically
reusable moduJes) . The interested reader can compare the v,:atch spe<ified using the Statecharts
[25J to the watch programmed in ESTEREL(9) .

The Statecbarts fo rm a specification system rather than a prog;amming system. However
executable automata production should be feasible (provi ded a complete definition and study of
the sema ntics) .

7.3. SML

S\IL[15] is an imperative parallel language designed for building circuits . It is not completell'
synchronous, but bas many points in common with the synchronous languages described so far.
SML is based one one un.iversaJ clock that represents a chip's clock. Signals are represented by
(shared) boolean variables . as in LtSTRE, As in ESTEREL , control takes no time. However memory
actions such as assignments take one unH of time. Several actions ca.n be grouped under a compress
statement. Then all the actions are realized in one unit of time , There is DO more possibiUty of
instantaneous communkation: if a \-ariable is read and written at the same ins tant , the vaJue read
is the \'alue before assignment. This is certa.jnly a loss of power at the programmer's le vel. But
short-circuits and oscillations disappear (de adlocks can still be detected using tbe E~!C system
that is interfaced on SML).

As in ESTEREL, tbe- SML compiler transforms a program into a finite automaton by an ex­
haustive exploration of its state space. Here internal operations can generate states.

8. Conclusion

\\'e have presented new programming concepts appUcable to reactive systems: synchrony (in ­
stantaneous actior.s and control Row), signaJ broad casting, and the use of muJtiple time units .
SeveraJ languages implement these concepts in various forms. \\'e have presented our own language
ESTEREL. We have briefly described other synchronous languages: LVSTRE (SIGNAL being close
to LUSTRE could have boen presented too), the Statecharts, and S\IL. Each of these languages
induces its own programming style. It is yet uneasy to compare the languages and their induced
styles, since too few common examples have been completely treated. \\'e can however draw three
conclusions from our own experience:

II.19

l. Synchrony is a good idea for programming; it IS In fact simpler and more po~'edul than
asynchrony when deaUng with reactive systems. The deterministic character of programs makes
their realization and debugging simpler , Instantaneous dialogues permit modular paraliel
object programm.jng at no cost, since they don't produce code.

2. The translation of synchronous programs to automata by exhaustive exploration of the state
space is a practical compiling process, The quality of the object code is excellent , ~Iany

striking optimizations are realized automatically during the compiUng process ; in particular
the inter· process communication is completely done at compiJe tjme and generates basically
no code. Progress is currently being made to make the compilers themselves faster, to bring
them at the same level than scanner or parser generators.

3, Interesting proofs can be performed on the resulting automata, using systems such as EMC [19),
CESAR [35) , or ECRI!'IS[30,38) , This is another ad,'antage of the t ranslation to determinist ic
automata..

To our beUef, there are now two main direct ions to investigate:

1. On the practical side, many more realistic programs must be written in the different syn·
chronous Janguages. This is of course necessary to gajn more experience and to understand
what are the qualities and drawbacks of the languages,

2, On the theoretical side, the theory of synchrony has to be studied independently of the pre·
sented languages, The languages could then be compared on firmer grounds, and the theories
of program corr..:tness and program equi\'alences could be de\'elopped further, The present
theories of communicating systems are yet too weak to deal with synchronous languages: the
most ad\'anced models such as SCCS [32) or MEIJE[12) cannot express things like "two actions
are performed simultaneously but in the right order" , Boudol , Castellani, and Gonthier [13 .
14 , 23) recent ly introduced prornizing algebras of instantaneous actions that need to be studied
further.

II. 20

REFERENCES

[I) ADA, The Programming Language A DA Reference .\fanual, Springer· Verlag, L:'ICS 155 (lg83 1.

[2] A. AR~OLD, Construction et anaJyse des systemes de transitions: Je systeme lvfEe. Actes du
coUoque C3 d'Angouleme, C~RS (lg85).

[3) J .A . BERGSTRA, J . W . KLOP, Process Algebra for Communication and .\-futual Exclusion.
Report CS·RS40g, Centrum voor Viskunde in Informatica, Amsterdam (lg84).

[4) G. BERRY, S. MOISAN, J·P . RIGAULT, ESTEREL : Towards a Synchronous and Semanlically
Sound High . Level Language for Real· Time Applications, Proc . IEEE Real· Time Systems
Symposium, JEEE Catalog 83C H1941·4 ,pp . 30· 40 (1983) .

[5) G. BERRY, L. C OSSE RAT , The S.vncbronous Programming Lang uage ESTEREL and its Malh·
ematical Semantics, "Seminar OD Concurrency", Springer. Verlag L:'<CS 197 (1984) .

[6) G . BERRY, G. GOSTBIER, The Esterel Synchronous Programming Language: Design, Seman·
tics , Implem ent ation, Research Report 842, I:-;Rl~ (1 987) .

[7) G . BERRY, F. BOVSSINOT , P . COt'RONNE, G . GONTHIER. ESTEREL v2.2 System ,Ifanua/s .
CoUection of Tech nical Reports , Ecole des Mines, Sophia·ADlipolis (1986).

[8) G . BERRY , F . BOVSSINOT, P . COCRONNE, G. GONTRIER, J·P . ?--.lAR~ORAT, ESTEREL v2.2
Programming Examples. CoUection of Technical Reports, Ecole des ~!ines, Sophia. Antipolis
(1986).

[9) G . BERRY, Programming a Digital Watch in ESTEREL ,'2.2, Technical Report , Ecole des
Mines , Sophia.Antipolis (1986) .

[10) G . BERRY , R . SETHI, From R eg ular Expressions to Deterministic Automata, to a ppear in
Theoretical Computer Science (1 987).

[11) M . BLAN CRA RD , Comprendre , Maitris.r el Appliquer Ie Grafcet. Cepadues Editions (lg 79).

(12) G . Bou DOL, Sotes on Algebraic Calculi of Processes, I:\RIA Repo rt 395 (lg85).

[J3) G. BOll DOL, Communication is an Abstraction, Actes du CoUoque C3 d'Angouleme . CNRS
- to appear as I:\Rl<\ Report (1987).

[14) G . BO UDOL, I. CASTELLANI. On the Seman,ics OfCoDcurrency: Partial Orders and Tra nsition
Systems, Proc. CoU. on Trees in Algebra in Programming (CAAP), P isa, Italy (lg87).

[15) M .C . BROWSE, E .M. CLARKE , SML -.4 High L"'el Language for tbe Design and \'erification
of Finite State ,\-facbines, Carnegie·MeUon t:niversity Report C~I1..'·CS·85·179 (1985).

[16) J . A. BRZOZOWSKI, Verivali-'es of Regular Expressions , JACM. vol. II. no. 4 (lg64).

[17) L. CARDELLI, R . PIKE, SQt:EAK, A Language for Communicating with .Ifice, AT&T BeU
Laboratories Report, SeU Laboratories, Murray HiU, :\ew Jersey 07974 (lg85) .

[18) P . CASPI, D. P ILA UD, N. HALBWACBS, J . PLAICE. LUSTRE, a Declarative Lang ua&e (or
Real- Time Programming, Proc Conf. on Principles of Programming Languages. ~1unkh,
(1987). .,

(19) E.M. CLARKE, E.A . EMERSON, A .P. SISTlA, Automatic \ 'erification of Fin i te State Con·
current Syslems Using Temporal Logic Specifications: A Pract ical Approach , Department of
Computer Science Report , Carnegie·MeUon l ' niversity (1983).

[20) J. CBAILLOUX , LeLisp vI5.2: Le Manuel de Reference, I!'RIA Technical Report (lg86).

11.21

[21} L. COSSERAT, Semantique OperationnelJe du Langage Synchrone ESTEREL, These de Doc·
teur Ingerueur, Universite de ~ice (1985).

[22} G.J. DICKSON, P.E. DE CR'uAL, Status o(CCITT Description Techniques and Applica!ion
to Protocol Specification, Proc . IEEE, vol. 71, no. 12 ,pp. 1346·1355 (1983).

(23) G GONTHIER , Semantiques et modeles d 'execution des langages reacti(s syncbrones; Applica·
tion a ESTEREL, These d'lnrormatique (1988).

(24) P. LE GUERNIC, A. BENVENISTE, P. BOURNAL, T. GAUTHIER, SIGNAL: A Data Flow
Oriented Language For Signal Processing, IRISA Report 246, IRISA , Rennes, France (1985).

[2S} D . HAREL, Statecharts : A visual Approach to Complex Systems , Weizmann Institute or
Science, Rehovot, Israel (1984).

[26} D . HAREL, A. PNUELI, On the Development o(Reactive Systems, Weizmann Institute or
Science, Rehovot, Israel (1985).

[27} C.A.R. HOARE, Communicating Sequential Processes, Comm. ACM vol. 21 no. 8 ,pp .
666·678 (1978) .

[28} ISMOS LTD ., The Occam Programming MaDual, Prentice· Hall International (1984) .

[29} S. C. JOHNSON, YACC: Yet Anotber Compiler Compiler, BeU Laboratories, :'!urray Hill,
New·Jersey 07974 (1978).

[30} E. MADELAINE, D . VERGAMINI , ECRl.VS v}·5, MaDuel d'UtilisatioD, to appear as P.'IRIA
report (1986).

[31} R. MILNER , A Calculus o(CommuDicating Systems, Springer. Verlag Lecture ~otes in Com·
pu ter Science 92 (1980).

(32) R. MILS ER, Calculi (or SyncbroD.v and AsyncbroDY, Theoretical Computer Science , vol. 25,
no. 3 ,pp. 267·310 (1983).

[33) G .D. PLOTKIN, A Structural Approacb to Operational Semantics , Lectures :;otes, Aarhus
L'niversity (1981).

[34} B . PRADIN, Un Outil Graphique Interacti(pour la Verification des Systemes a Evolutions
Paralleles Decrits par Reseaux de Petri , These de Docteur·Lng.nieur, Uruversit. Paul Sabatier,
Toulouse, France (1979).

[3S} J · P. QCEILLE, J . SIFAKIS, Specification aDd \ 'erificatioD o(CODcurreDt Systems iD CESAR,
Proc. International Symposium on Programming, Springer· Verlag L~CS 137 (198.).

[36} J·M. TANZI, Traduction Structurelle des Programmes ESTEREL en Automates, These de
Troisieme Cycle, Universite de Nice (1985).

(37) D. VERGA MINI, Verification by .\feans o(Observational EquivaleDce OD Automata, I)lRL"
report 501 (1986).

[38} D . VERGAMINI , Verifica tioD du Protocole de Stenning, To appear as an r:;RL\ report (1987).

[39} 1\. WIRTH, Programming in Modula·2, Springer. Verlag (198.).

II . 22

=

DISCUSSION

Rapporteur: Alan Tully

Professor Whitfield asked why reactive systems were considered to be more
deterministic. Dr Halbwach replied saying that such systems react to a signal
according to their own internal state and are deterministic in function and
time, whereas the behaviour of interactive systems depends on loading.

A speaker questioned Dr Halbwach's assumption that computation may be
considered instantaneous. Dr Halbwach said that although it was only an ideal
he was trying to achieve, by adopting certain compilation strategies, execution
time could be considered negligible when compared to the reaction time of
the environment.

Professor Turski asked Dr Halbwach's for clarification on his meaning of "at
the same time". Dr Halbwach said that two events could be considered to
occur at the same time if they occurred in the same time frame as perceived by
the system. Further that simultaneous events were just different branches of a
partial ordering, so although they may not occur at the same instant, the
system behaves as if they were .

Dr Halbwach was asked if the choice between two simultaneous events was
arbitrary, he replied that the choice was deterministic.

The comment was made that although ESTEREL was an attractive language for
system specification, it's zero delay assumption was unrealistic when applied
to distributed systems. Dr Halbwach put forward the view that distributed
systems were not really necessary so ESTEREL wasn't designed to program such
systems!

Professor Randell then asked if, in connection with it's application to aircraft
systems, ESTEREL was executed on isolated centralized computers . Dr
Halbwach answered yes, stating that ESTEREL was primarily used in the
implementation of man/machine interfaces to individual computers.

II . 23

II . 24

