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1. Introduction

Harel and Pnueli [26], introduced the name Reactive Systems to designate systems that react to
repetitive inputs from their environment by sending themselves outputs to that environment. Real-
time process controllers, mouse-keyboard interfaces [17], video games, communication protocols,
and all control automata are examples of reactive systems. An important character of most reactive
systems is their intrinsic determinism: a reactive system determines a sequence of output signals
from a sequence of input signals in a unique way. This has to be opposed to the inherent non-
determinism of other systems, such as operating systems. The importance of determinism is clear:
deterministic systems are much easier to specify and to debug than non-deterministic ones.

Several tools are currently used to program or analyze reactive systems. We review them with
respect to several criteria: easiness to write and maintain programs, run-time efficiency, existence
of verification tools, and determinism.

1. Assembly language programs, generally written to run under some real-time operating system.
Such programs can be efficient but are hard to structure and to maintain. Verification tools
are elementary (monitors, debuggers).

2. Automata, also called state machines, hand-coded in some low-level or even high-level pro-
gramming language. By nature, automata are very efficient and their transition time does not
depend on their size. However, they are hard to design and to maintain: an apparently minor
change in a specification can entail a major change in the resulting automaton (this is well-
known to parser generator users); the risk of hand-coding errors is important, since a single
action such as a signal emission as to be replicated in many transitions. Very good verification
tools are available: for example the EMC [19] or CESAR [35) systems are practical temporal
logic formulae verification systems, able to work on real-size automata; the ECRINS system
[30, 37) can be used to perform bisimulation proofs & la Milner [31, 32]. The deterministic
character of reactive systems is preserved when using deterministic automata.

Paper published in  Programming of Future Generation Computers , (K. Fuchi and M. Nivat, editors), pp. 35-55,
Elsevier Science Pub. B.V. (North Holland), 1988. INRIA Report 647.
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3. Communicating automata represent a practical intermediate solution, used for example in
the specification language SDL [22). Simple enough automata are made into communicating
processes using some communication primitive. The design and maintenance can be simpler
than with standard automata. However program verification is much harder since the overall
system becomes non-deterministic.

4. Petri Nets or Petri Nets based formalisms such as the GRAFCET [11). These tools are also
used in real applications. Compared to automata, they provide their user with a notion of
process concurrency and a crude form of process synchronization. Having no hierarchical
structure, Petri Nets are somewhat difficult to understand and to maintain. Some verification
tools exist [34]. Petri Nets are asynchronous and non-deterministic, but GRAFCET nets are
synchronous and deterministic: all active transitions must be fired “simultaneously”.

5. High-level parallel programming languages such as ADA [1], MODULA [39], CSP [27], OCCAM
(28]. They are based on notions of process and process communications. One can use them to
write well-structured programs that are comparatively easy to maintain. The necessary run-
time process and communication handling can induce a possibly important execution overhead.
Few verification tools are currently available, because of the complexity of the semantics of the
languages. Almost all parallel languages are non-deterministic. They usually support some
additions to handle real-time problems, such as watchdogs on some “universal” time. These
additions are also non-deterministic and therefore not well-defined semantically.

6. Algebraic Calculi of Processes such as CCS [31), SCCS [32], MEIE[12), or ACP [3]. They
permit the specification and analysis of deterministic or non-deterministic reactive systems.
They lead to nice theories of process observations and process equivalences. However, they are
still far from being programming tools. Some verification systems are in development [30].

In reactive systems programming, parallel languages certainly represent the best programming
tools, while automata certainly have the lead for efficiency. But none of the above tools provides
both good programming style and execution efficiency. Our purpose is to introduce the new class
of synchronous languages that aim at all these qualities. e center the discussion on the Janguage
ESTEREL{6), which was historically the first synchronous language [4]. We also discuss the syn-
chronous programming languages LUSTRE[18], SIGNAL[24], and the Statecharts [25) specification
formalism. Similar but less developped synchrony ideas appear in the SML imperative language
[15) and in some hardware description languages. They will not be presented here.

ESTEREL is an imperative language, LUSTRE and SIGNAL are data-flow languages, and the
Statecharts are graphical hierarchical notations for automata. Although different in style, these
synchronous formalisms share a common paradigm that was introduced in the early versions of
ESTEREL: a program acts as a synchronous history transformer that produces a sequence of outputs

synchronously with any sequence of inputs.

The synchrony hypothesis amounts to consider jdeal reactive systems that react to external
inputs by instantly updating their internal state and producing outputs. A synchronous program
behaves as if its internal actions were carried out by an infinitely fast machine. whose actions take no
time. Two actions are synchronous if and only if they belong to the same reaction; the sequencing
of input/output events determines the bebavior of a synchronous program, not the converse as in
asynchronous languages. The program is inactive between its reactions; it simply waits for more
inputs,

The synchrony hypothesis is of course an approximation of the reality. It is similar to the
approximations used in newtonian mechanics to deal with instantaneous body interactions, in
chemistry to deal with values such as the pH of a solution, or in standard electricity when one ignores
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the transmission speed of electrical currents. Within their application ranges, these hypothesis
greatly simplify the study of physical systems: there is of course no need to invoke complex quantum
mechanics equations to deal with billiard balls trajectories.

In our case, the synchrony hypothesis has the following practical consequences: it makes
the programming languages deterministic, it simplifies the process interaction mechanisms, and it
permits perfectly rigorous time manipulations. Time can be dealt with without encoutering an
“Heisenberg effect”: when measuring a delay, the measure itself does not introduce its own delay.
On the practical side, this leads to a new programming style that is well-adapted to reactive systems
programming. On the theoretical side, the semantics of synchronous languages is very clean, in
particular for what concerns time manipulations.

As in physics or chemistry, one has to carefully evaluate the application range of the synchrony
hypothesis. Given a real reactive system, one has to define a “satisfaction point™ where a user
perceives the system as synchronous. For example, a video game player certainly wants his game
to react as fast as possible, that is fast enough to consider any response as instantaneous compared
to its own reactions; a telephone is good if the delays introduced by packet switching are not
perceived by the user. In practice, the reaction to an input is viewed as taking time but being
uninterruptible: no new input is taken into account during it. An implementation satisfies the
synchrony hypothesis if the reaction time is always sufficiently fast not to cause input overrun. We
then make the following observations:

(i) As far as behavioral specifications are concerned, performance considerations must be kept on
a lower level than specification and design considerations. The synchrony hypothesis is clearly

justified as soon as it belps improving the programming style.

(ii) Many reactive systems don't really need execution speed, but rather safety. For controlling a
lift or a subway, the time constants are large and performance is comparatively easy to achieve.
The hypothesis is again justified as soon as it makes specification and programming simpler

and safer.

(ili) More importantly and also more surprisingly, synchronous languages tend to be even more
efficient than conventional parallel ones: their compilers perform process scheduling and com-
munication at compile time and transform parallel programs into equivalent sequential finite
automata (the ESTEREL compiler (7] realizes this transformation for ESTEREL programs). In
most cases, the obtained object code is as efficient as carefully hand-written assembly code, and
no state explosion occurs. Moreover, as with hand-written automata, the worst case reaction
time is measurable, and many verification tools can be used for proving program properties.

Notice the close connection between synchronous languages compilers and parser generators: BNF
is a high-level way of specifying context-free languages; a parser generator such as YACC [29] takes
a BNF specification as input and produces an efficient automaton for analyzing input words. There
are indeed strong relations between the algorithms used in parser or scanner generators and the
algorithms used for synchronous languages.

In the body of the paper, we first introduce the synchrony hypothesis in more details. We then
present the ESTEREL primitives and their naive semantics. We give some examples to illustrate the
ESTEREL programming style. We introduce the notion of causal correctness, which is analogous to
the notion of deadlock-freeness for asynchronous programs, but is statically checkable. We show
how to transform an ESTEREL program into an automaton, using the mathematical semantics of
the language and a variant of Brzozowski’s algorithm. [16]. We discuss the quality of the obtained
compiled code. We finally give an overview of other synchronous languages and explain how they
view the synchrony hypothesis.
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The reader will find more details on ESTEREL in [6]. Detailed examples of ESTEREL reactive
system programming are presented in [8,9].

2. The Multiform Discrete Time Model

2.1. Signals and sensors

An ESTEREL program communicates with its environment via signals and sensors. Signals are
used both as inputs and outputs, while sensors are used only as inputs. Signals can convey values;
sensors always do.

For example a train controller can receive a signal every millisecond, a signal every wheel
revolution, track signals conveying positional informations, and signals coming from the operator's
keyboard; it can use sensors to measure the external temperature; it can emit power commands to
the engines and brakes. A submodule of this controller may receive and emit additional software
signals to communicate and synchronize with other submodules.

As in most parallel languages, all the signals and sensors are treated as messages, regardless of
their hardware or software origin. They are identified by names like s, s1, etc. The notation $(v)

expresses that S conveys the value v.
2.2. Broadcasting as the communication primitive

Asynchronous languages use several kinds of process communication mechanisms: simple
rendez-vous in CSP or OCCAM, queued rendez-vous in ADA, and asynchronous queues in data-
flow languages. All these conceptual mechanisms are close to implementation mechanisms, and
communication is limited to be one-to-one.

On the contrary, in synchronous languages, signals and are assumed to be broadcast among
processes *. One can think of programs as using radio waves as a communication medium, each

signal being represented by a frequency.

Two kinds of informations are broadcast on the waves: values that are permanent, and signal
tops that are intermittent. A sensor has a value, but no signal top. A pure signal has a signal top.
but no value. A valued signal has both, and a value change is always synchronous with a signal
top (hence the signal top is used to broadcast and detect value changes; there is no way to detect
value changes for sensors).

In ESTEREL, signal and sensor values are available in expressions, (with the “?s™ primitive, see
§3.2.), while signal tops act as control information to be handled by the ESTEREL control structures
(the present and vatching statements below). A sensor is simply a degenerate signal for which no
control information is available. From now on, we shall therefore include sensors in signals.

As we shall see in the next sections, broadcasting is excellent for modular programming and
is a basis of the ESTEREL programming style. In asynchronous languages, broadcasting is usually
not available: it must be done at run-time and is known to be expensive. Because of the synchrony
hypothesis, we shall be able to perform broadcasting at compile time and to produce code that
simply accesses a shared memory. This is the main task of the ESTEREL compiler.

2.3. The “absolute” time

In addition to external signals, most parallel languages introduce particular mechanisms to
handle an implicitly broadcast absolute time. This time has a specific name (say the SECOND) and

* The choice of broadcasting as the communication primitive is explicit in ESTEREL, and implicit
in LUSTRE, SIGNAL, and the Statecharts.

I1.4



is manipulated by specific instructions (say delays and watchdogs). In asynchronous languages,
the use of an absolute time is necessary to establish relations between the internal computation
time of a program and the occurrence of external signals. In synchronous languages this problem
disappears together with the notion of computation time. The SECOND has no particular role and
can be treated as any other input signal, as it is automatically broadcast.

A small example shows the superiority of synchronous languages over asynchronous ones when
dealing with time. Assume that the basic universal time unit is MILLISECOND. Then in any “real-
time” language one can derive SECOND by writing a statement like:

every 1000 MILLISECOND deo

emit SECOND
end

However, such a statement behaves very differently in asynchronous and synchronous language:

¢ In asynchronous languages, SECOND acts as a normal signal and is not broadcast, unlike the
basic NILLISECOND signal; moreover, because of asynchrony, SECOND is never synchronous with
an occurrence of ¥ILLISECOND. The “duration” of a SECOND can not be defined.

e In synchronous languages, SECOND is broadcast every 1000 WILLISECOND, is simultaneous with
MILLISECOND, and a SECOND lasts exactly 1000 NILLISECOND.

2.4. Time is multiform

ESTEREL can treat the physical time as a standard signal. Conversely, it can also treat any
signal as an independent “time unit”, so that the time manipulation primitives can be uniformly
used for all signals. In ESTEREL, one can write statements such as

avait 2 METER;

do

<task>
vatching 100 WVHEEL_REVOLUTION

This notion of multiform time will be detailed in section 4. Tt is one of the strengths of the ESTEREL
programming style.

2.5. Simultaneity, events, and complete events

In synchronous languages, output is synchronous to input: we have to axjomatize a primitive
notjon of simultaneity. We call event the occurrence of an arbitrary number of simultaneous signals.
An event where a signal $1 appears together with a signal s2 that carries a value v will be denoted

by s1 s2(v). We denote events by E, Ey, ...

The synchronous product E = E; » E; of two events £, and E; is the event resulting from
their simultaneous occurrence. If the events involve only distinct signals, there is no problem in
combining them: if Ey = s1 $2(v;) and E; = 53(v3), then E = s1 s2(v;) s3(v3). In ESTEREL,
we also allow to combine events that contain the same signal § with different values (such events
will be produced by executing simultaneously several emit statements). We call this phenomenon
a collision. Assume that Ey and E3 both contain an occurrence of s, with respective values vy and
vz. One has to define the broadcast value vof s in £ = E, s E; . Following Milner [32] we associate
an associative commutative operation s with the signal s, and we set v = v; *5 v;. Therefore one

has

S(v1) #5 5(v7) = S(vy #5 v3)
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The product of two events is then defined componentwise on signals. The choice of the composition
operation is left to the programmer. Here are some examples:

o In Ethernet-like local networks, signal broadcasting is physically realized on a cable. A special
value NAK represents the collision of two messages. One sets vy * vy = NiK for all vy, v,.

e In a request handling mechanism, several processes can request the same resource simultane-
ously, say by broadcasting their name. A natural choice is to take as result the set of the
names of the processes that simultaneoulsy require the resource.

o In the digital watch programmed in (9], a timekeeper, a stopwatch, and an alarm can operate
a beeper. The timekeeper beeps once a second, the stopwatch beeps twice a second, and the
alarm beeps four times a second. If some of the units beep together, the resulting number
of beeps per second is obtained by adding the individual numbers. Hence seven beeps per
second occur when the three units beep together. We simply define a BEEP signal that carries
an integer representing the required number of beeps per second and choose integer addition
as the # operation.
The events defined so far only contain information about emitted signals. Complete events also
contain the remaining informations about non-emitted signals and sensors; Assume that a signal 51
is emitted with value vy, while a signal 52 is not emitted but has currently value v; and a sensor $3
has currently value vy; this corresponds to a complete event written £ = $1(vy) =52(v;) =53(v3).

2.8. Histories

Having defined the notion of simultaneity, we are left with the notion of succession of events,
which is bandled by defining histories. An history H = Ev,Eyyo...,Eyp,...is2 sequence of complete
events that is required to be consistent in the following sense: for any valued signal s, if ~s(v)
appears in E, and if s appears negatively in E,..H, then the s-component of Enyy is also =s(v);
this ensures that values only change synchronously with signal tops.

Remember finally that our reactive systems have infinitely fast reactions: they react only when
receiving input signals, and therefore nothing happens “between” input events. The svstem has no
“internal clock”.

3. The ESTEREL programming primitives

We don't give here a precise definition of ESTEREL (see [6,7]), but we introduce enough of the
language to be able to treat illustrative examples.

The basic programming unit is the module; a module contains a declaration part and a state-
ment.

ESTEREL is not a general-purpose programming languages. The types, constants, functions,
and procedures are just declared as abstract names in the declaration part; they are supposed to be
implemented in some host language, say ¢ or ADA (the ESTEREL compilers can produce ob ject codes
for different host languages). Therefore an application is programmed in two parts: the ESTEREL
part that deals with signals, and the auxiliary part that deals with standard computations. The
functions and procedures of the auxiliary part have no access to signals.

3.1. Declarations

In the declaration part, one declares the types, constants, functions, and procedures used by
the module (and defined in the host language); one then declares the signals and sensors that define
the module's interface. Here is a possible declaration part of a TIXER module:
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module TIMER :
type TINE;
constant INITIAL_TINE : TINE;
procedure INCRENENT_TIME (TINE) ();
input SECOND,
RESET_COMNAND;
output TIMER_VALUE (TINE),
BEEP (combine integer with PLUS);
The output signal TINER_VALUE has type TIXE, and no collisions are allowed for it; this is the default.
We allow collisions to occur for the integer output signal BEEP and we use the addition function

PLUS to compute the combined value; this is declared using the combine keyword.

The declaration of a procedure such as INCREMENT.TINE involves two type lists: the first list
types arguments passed by reference, the second list types arguments passed by value (it is empty
here),

3.2. Expressions

The expressions are classically built from variables, constants, and function calls. A special
expression “?s” gives access to the current value of a signal or sensor §. Its type is the type of the
signal or sensor. (A similar expression “?7s" gives access to the current value of a valued exception,

see §3.4.)
3.3. Statements

There are two kinds of statements: primitive statements and derived statements that are
defined in term of primitive statements. The mathematical semantics is defined only for primitive
statements. The derived statements act as macros and can be expanded into primitive ones. The
synchrony hypothesis is necessary to ensure the correctness of the expansions, in other words to

ensure that the derived instructions do exactly what we intend them to do.

The primitive statements are themselves divided into two groups: classical basic imperative
statements and temporal statements that deal with signals.

3.3.1. Basic imperative statements

Here is the list of the basic imperative statements:

nothing dummy statement
halt halting statement
<var> iz <exp> assignment statement
call <id> (<varlist>)(<arglist>) ezternal procedure call
<stat> ; <stat> sequence

if <oxp> then <stat> else <stat> end conditional

loop <stat> end infinite loop

<stat> || <stat> parallel statement
trap <id> in <stat> end trap definition

exit <id> : erit from lrap

var <var-decls> in <stat> end local variable declaration
signal <signal-decls> in <stat> end local signal declaration

There are no shared variables: if a variable is updated in one branch of a parallel statement, it
cannot be read or written in the other branches.
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One has to remember that the execution machine is conceptually infinitely fast. Therefore
nothing does nothing in no time, assignments and external procedure calls are instantaneous, the
second statement of a sequence is started exactly when the first statement terminates, and the
branches of a paralle] statement start simultaneously (a parallel terminates synchronously with the
last termination of its branches). Hence when a paralle]l statement is started, its branches work in

the same signal environment.

The trap-exit mechanism is a classical escape mechanism: a trap statement defines a block
that is instantly exited when a corresponding exit statement is executed®. This mechanism is the
most powerful control mechanism in ESTEREL. It extends to a general exception handling facility,
see (7] and §3.4. below.

Since the execution machine acts only upon reception of input events, any statement starts or
terminates synchronously with some input event. When discussing the behavior of a statement, we
shall call current event the event that starts the statement.

Although statements are executed simultaneously, they are executed in the right order. Hence a
sequence

I:=0;
I:3X+1

yields instantly Is1, Only finitely many statements can be executed simultaneously. One imposes
a stajcally checked finiteness constraint to forbid loops like

1:30;
loop 1:=X+1 end

that have of course no semantics in our instantaneous universe.
3.3.2. Temporal statements and signal handling

All statements described so far “take no time", besides halt that never terminates. We now
describe the temporal statements that handle signals and can take time.

The signals can be either emitted by the program’s environment or by the program itself. To
emit a signal s with value that of an expression <exp>, one writes

emit S(<exp>)
If s is a pure signal, the expression is of course omitted. An emission is instantaneous. If several
emissions occur simultaneously, the values are combined as described in section 2.5.

For signal reception, there are two primitive statements. The first one tests for the presence
of a signal in the current event:

present S then <statl> else <stat2> end
The semantics is clear: if S is present in the current event, then <stati> is instantly started.
Otherwise <stat2> is instantly started.

The second statement is the most important ESTEREL construct; it is called the watchdog or
time guard; it has the form

do
<stat>
vatching <occ>

* If several blocks are simultaneously exited, the effect is to instantly exit the outermost one

I1.8



where <stat> is any statement and where <occ> is an occurrence of a signal. An occurrence is either
a signal name (say SECOND) or a signal name preceded by a count factor (say 3 METER).

A vatching statement defines a time limit for the execution of its body. The time limit is given
by the occurrence <oce>. If <oce> has the form §, the time limit is the first event in the strict future
of the current event to contain an occurrence of the signal s; similarly, for an occurrence n s, the
time limit is the n-th event in the strict future to contains an §.

The body of the vatching statement is started synchronously with the vatching statement; it is
executed up to the time limit excluded:
o If the body terminates strictly before the limit, the whole vatching statement terminates
synchronously;
e If the body is not terminated when the time limit occurs, the body is instantly killed without
being executed at that time and the vatching statement instantly terminates.

Notice that the nesting of vatching statements establishes natural preemption relations between
the corresponding signals. Consider the following example:

do
do
<stati>
vatching Si;
<stat2>
vatching S2

By definition of the semantics, if S1 and s2 occur simultaneously, then the outermost vatching
statement is terminated, and <stat2> is not executed. Hence 32 preempts a simultaneous S1.

3.4. Derived statements
Many useful temporal statements can be derived from primitive ones. For example one writes

avait <oce>
instead of

do bhalt vatching <occ>
One writes

do <statement> upto <occd

instead of
do
<statoment>;
halt
vatching <oce>
The upto statement differs from the vatching statement by the fact that it terminates only on
<oced, not if its body terminates (Conversely, one could define vatching from upto; in [5], upto was
taken as a primitive).
It is often useful to add a timeout clause to a watchdog; this clause is executed if the time limit
is reached before termination of the body:
do
<statil>

vatching <oce>
timeout <stat2> end
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abbreviates

trap T ia
de
<statid>;
exit T
vatching <oceX;
<stat2>
end

If <stat> terminates strictly before <oce>, one instantly exits the enclosing trap, thus skipping the
timeout clause.

Temporal loops are useful derived statements. For example one writes

loop
<stat>
each 3 METER
instead of
loop
do
<stat>
upte 3 METER
end

and one writes

every & SECOND do
<statd>
end

to abbreviate

avait 5 SECOND;
loop
<stat>
each 5 SECOND
In a loop ... each statement, the body starts immediately and is restarted on every occurrence
of <oce>; in an every statement the body starts only on the first occurrence of <oce>.

Two other derived instructions are particularly useful. The first one is the signal selection or
multiple await. The syntax is
avait

case <occi> do <statid>

case <occ2> do <stat2>

case <occn> do <statn>
end

Unlike similar statements in asynchronous languages, our selection is deterministic. The first oc.
currence satisfied determines the statement to execute; if several occurrences are satisfied simul-
taneously, only the statement corresponding to the first such occurrence in the list is executed
(therefore the order in the list establishes a priority relation between occurrences). The expansion

is not given here, see [7).
The last important derived statement is the exception handling statement, that generalizes
the trap statement. Here is an example:
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trap ALARN, FOUND(integer) in

. exit ALARN

I
. exit FOUND(VALUE+1)

bandle ALARN do ...
handle FOUND do ... X:=??FOUND+S; ...
ond

An exception acts both as a classical trap and as a signal that can carry values. If the body executes
an exit, it is instantly terminated and the corresponding handler is instantly started. If the body
executes several exits simultaneously, then the corresponding handlers are started in parallel. The
whole construct terminates when all the started handlers have terminated. In a handler, the special

expression “??5” has value that of the exit.
When trap blocks are nested, the outermost ones preempt the innermost ones; for example, in

trap T1 in
trap T2 in
exit T1
Il
exit T2
handle Ti1 do <insti>
end;
<inst2>
handle T2 do <inst3>
end

the exceptions T1 and T2 are simultaneously raised. Then T2 preempts T1: <inst3> is executed,
while <inst1> and <inst2> are not.

4. The ESTEREL programming style

We briefly illustrate the main aspects of the ESTEREL programming style: the use of multiple
time units, the use of broadcasting, and the use of signal simultaneity. A more extensive discussion

can be found in [8,9].
4.1. Using signals as time units

We already mentioned that time is multiform in ESTEREL: any signal is viewed as defining
a “time unit”. A good illustration of the induced programming style appears in the reflex game
program presented in [8]. Let usl;rst realize the following specification: “Wait for a hit on a READY
button within a time limit of 10 SECOND; in case of timeout, emit an 4LiRX: while waiting, any hit
on the STOP button should ring a BELL™:
do
do
every STOP do emit RING_BELL end
upto READY

vatching 10 SECOND
timeout emit ALARN end

(Here upto READY is equivalent to vatching READY; we prefer to use upto whenever we are not
interested in the termination of the body). Let us now realizes the following specification: “Wait
for 10 sEcoND; if sTOP is hit during that time, terminate and emit an ALIRX; while waiting, any hit
on READY should ring the BELL™:
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do
do
every READY do emit RING_BELL
upte 10 SECOND
vatching STOP
timeout emit ALARN end

In this example, the second specification is dual to the first one; it can be read as “Wait for
10 SECOND with a time limit of STOP; in case of timeout, emit an alarm; while waiting ...”.

This shows how useful it is to use watchdogs for arbitrary signals and to nest watchdogs on
different signals. We go further in the same direction by programming the following specification,
to be used as a training program for a mile runner: “Run two laps in the following way: run slowly
100 meters, then, during 20 seconds, jump high and breath deeply upon every step, then finish the
lap by running as fast as possible; end the training session by taking a shower”

do
loop
do RUN_SLOVLY upto 100 METER;
do
every STEP do
JUXP_HIGH
I
BREATHE_DEEPLY
end
upto 20 SECOND;
FULL_SPEED
each LAP
upte 2 LAP;

TAKE_A_SBOVER
The identifiers JUNP_BIGR, BREATHE.DEEPLY, FULL.SPEED, and TAKE.A_SBOVER refer to submodules that
can themselves synchronize on heart beats. Let us make the following remarks:
¢ All upto constructs control statements that would otherwise never terminate.

o The runner jumps only if a lap is longer than 100 meters. Otherwise the corresponding state-
ment is never executed, since it is killed by the enclosing loop ... each LAP.

o Similarly, the runner runs full speed only if the lap is not finished after “100 meters plus 20
seconds” jumping.

¢ The overal]l program lasts exactly two laps plus the duration of the shower.

Such a simple program is not easy to write in classical languages (we lea .~ this to the reader).
4.2. The use of broadcasting

Broadcasting simplifies process communication and improves modularity: when it emits a
signal, a process doesn’t need to know who is listening to that signal; conversely, when a process
receives a signal, it doesn't need to know the emitter(s).

We illustrate this in the wristwatch example described in detail in [9). A wristwatch is an
excellent example of reactive systems; it is comparatively small, but has many features found in
other systems: folding numerous commands into few buttons by using command modes, showing
numerous data in few displays using display modes, establishing communications and instantaneous
dialogues between submodules. The wristwatch programmed in (9] has five submodules: a VATCR
that acts as a regular timekeeper, a STOPVATCH, an ALARM, a BUTTOM.INTERPRETER that interprets
wristwatch buttons as commands directed to the other modules according to the current command
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mode, and a DISPLAY_HANDLER that handles the various displays. Broadcasting makes life easier in
several places:
o The external signal SECOND is automatically broadcast to all the modules that need it.

e Hitting a particular button in a particular mode provokes the toggling from 24H to 12H
AM/PM time display mode. This concerns the watch and the alarm. The button interpreter
broadcasts a message TOGGLE_24H_NODE_COKXAND, without worrying about who is expecting this
message. Adding a second alarm would not modify the corresponding code.

o The timekeeper broadcasts a VATCH.TIKE signal whenever its internal time is modified. This
signal is used by both the alarm and display handler. Adding a second alarm can be done
without any modification of the VATCE and ALARX modules.

4.3. Simultaneity and instantaneous dialogues

The synchrony hypothesis allows us to establish a new form of process communication, the
instantaneous dialogue.

A typical example appears in the wristwatch code [9], more precisely in the body of the
stopwatch; it will be abstracted bere. An instantaneous dialogue appears whenever the behavior of
a process P depends on some property of the internal state of another process P’. For simplification,
assume that P’ is a flip-flop on some signal FLIP_FLOP.COMXAND and that P must perform <stati>
if P' in in the flip state and <stat2> otherwise. Then one introduces two signals ARE.YOU_FLIP and
YES_I_AM_FLIP and one writes P’ as follows:

loop

do
loop
emit YES_T_AX_FLIP
esach ARE_YOU_FLIP
I
<flip code>
upto FLIP_FLOP_COKNAND;
do
<flop code>
upto FLIP_FLOP_COXXAND
end

Now the intended behavior of P is ensured by the following code:

emit ARE_YOU_FLIP;
present YES_I_ANM_FLIP then
<statl>
else
<stat2>
end
The signal ARE_YOU_FLIP emitted by P provokes an instantaneous reply YES.I_AK_FLIP from P’ if and
only if in flip mode.
This method is easy to extend since P only cares for a reply to its question and doesn't need
to know much about the structure of P’ (this is not the case for the method used in the Statecharts
[25) to solve the same problem: thére P must refer to the exact internal name of the state of P’).

5. Causal correctness of ESTEREL programs

The synchrony hypothesis can generate temporal paradoxes, which are analogous to short-
circuits or oscillations in electronics and to deadlocks in asynchronous parallel programs. Here is a

first type of paradox:
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signal S in
present S then
nothing
else
omit S
end
end
The local signal s should be emitted if and only if not present, which is clearly a nonsense. This

programs behaves more or less like a “not™ gate with output plugged on input.

The second example is analogous to a short-circuit, or more precisely to a positive feedback
effect. Consider the purely instantaneous program:
signal S (combine integer with PLUS) in
emit S(0);
avait S(7X+¢1)
end
the signal s can have simultaneous emitters, the values being added (see section 2.5). Since the
reception and emission of S are simultaneous, every reception of n should provoke the immediate
emission of n + 1: this is clearly a nonsense. The short-circuit is initiated by emitting 0.

In both example, the statement had no possible behavior. Here is a “non-deterministic” case
where infinitely many behaviors are possible:
signal S(integer) in

emit S(?8)
end

Any integer value can be considered as the value of s.

Generally speaking, temporal paradoxes appear as soon as the input of a program depends
on its output. They are statically detected by the ESTEREL compilers. This is an advantage over
asynchronous languages where no deadlock detection is possible at compile-time*. See [6, 23] for
details.

8. Compiling an ESTEREL program into a finite automaton

6.1. Mathematical semantics and simulation

As a programming language, ESTEREL is mathematically well-defined. Its semantics is given
by a set of rewrite rules 3 la Plotkin [33]. The rules determine the behavior of a program given
any input event. This behavior has to be defined in a circular way because of instantaneous signal
broadcasting: the output of a program must be combined with its input in order to determine the
event in which the program works, which in turn determines the output. We give no more detail
here, see [5,21,23].

We first show how to use the mathematical semantics to build a simulator of the language. To
simplify the discussion, we treat the case of pure signal programs, that is of programs that contain
no valued signals or variables; we indicate how to extend the results to the general case.

For any causally correct progr';\m P and input event E', the semantic rules uniquely determine
the output event E' and a new ESTEREL program P’ called the derivative of P by E. This derivative

* The ESTEREL v2 compilers sometimes reject programs that do not contain paradoxes. This

problem disappears in the ESTEREL v3 compiler.
! complete events must be used in place of events when dealing with general programs; complete

events are obviously useless for pure signal programs.
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represents “P after £™: if P produces the output history E', E{, E3,..., E},... when applied to the
input history E, Ey, Eq,...,E,..., then P’ produces the output history Ej, Ej},..., E,,... when
applied to the input history Ey, E3,..., En... We write

E' - aP
T

This is enough for building an ESTEREL simulator: given an input history, one constructs the output
events and the new derivatives step by step. This technique is used in the ESTEREL v2 system (the
hard part of the system being of course the computation of the derivative, see [5,21,23]).

6.2. Compiling an ESTEREL program into a finite automaton

Since any pure signal program has a finite number of input signals, the number of its possible
input events is finite and the number of its derivatives by input events is also finite. Hence we
can formally compute all the derivatives of P by all possible input events. For compiling programs
into automata, the idea is to iterate this process and to explore completely the space state of the
program. For this, let us extend the notion of derivative to arbitrary histories. Given a finite

history A = Ey, Eq,..., E,, we set

or ()
dH — 8k,

and, if £ denotes the empty history, we set

aprP

2 P

de
Then we are able to prove the following result, which is analogous to Brzozowski's result on deriva-
tives of regular expressions [16):

TREOREM: Any ESTEREL program bas only a finite number of derivatives: the set
{-g—; | A an history} is finite.

Hence we can construct the finite graph of all possibles transitions of P and of its derivatives.
This graph is nothing but a finite automaton whose behavior is identical to that of P. Once the
graph is constructed, we can of course remove the derivatives associated with the vertices, replace
them by state numbers. and implement the obtained automaton in any classical programming
language (the ESTEREL v2 compilers presently produces C code).

We can apply a similar process to general programs that handle valued signals and variables. At
compile-time, the memory actions to execute are simply kept formal when computing a transition:
because of conditionals, a transition is now a tree whose nodes are elementary memory actions
(assignments, procedure calls, tests). At run time, the resulting automaton handles a memory by
executing these elementary actions.

6.3. Quality of the compiled code
The compiling technique described above calls for several remarks concerning the efficiency
of the compiling process, the size of the resulting automaton, the efficiency of the code produced
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for each transition, the validity of the synchrony hypothesis, and various problems about separate
compilation and code distribution.

6.3.1. Efficiency of the compiling process

The presented compiling process is based on the formal computation of derivatives. As imple-
mented in the ESTEREL v2 compilers, this process is fairly expensive in time and space since all
the derivatives must be explicitely computed and kept in memory for comparisons; it is however
practical: compiling the complete wristwatch described in (9] requires 2mn on a VAX 780, using 2
mega-bytes of memory (the system is written in Le_Lisp [20]).

In the ESTEREL v3 system that we are presently implementing, new algorithms avoid the
explicit computation of derivatives. See [10] for a description of similar algorithms on regular
expressions. The gain is important both in time and space (say a factor of 10 for both).

8.3.2. Size of the resulting automaton

The size of the resulting automaton determines the space occupied by the generated code. In
asynchronous formalisms, it is well known that a complete exploration of the state space resultsin a
rapid blow-up, for internal transitions of the system generate states. In synchronous languages, the
situation is different: a single state transition can correspond to a complex behavior of a program,
where many conceptually simultaneous internal actions take place. A state is really an input-output
state, and no state is generated only by internal actions. However blow-up can still occur for two
reasons:

o For any state, one has to compute the transitions corresponding to all possible input events.
But n input signals generate 2™ distinct input events, since we have to handle the possible
simultaneity of input signals. ESTEREL introduces a notion of input signal relation in order to
break down to a more reasonable size. There are two kinds of relations:

v Exclusion relations, which tell that signals are exclusive: If we write 51252853, we require
$1, 52, and 53 to be pairwise incompatible. Input events such as 51 52 are then forbidden.
Incompatibility relations suppose a serialization of the corresponding input signals by the
underlying operating system, which is not a restriction in most cases.

o Syochrony relations, which on the contrary force input signals to be synchronous. If
a watch receives signals for both the second and the hundredth of second, it is nat-
ural to require the second to be synchronous with some bundredth. One then writes
SECOND => HUNDREDTRE.

In practice it is wise to declare as many relations as possible for input signals. For example, if
all input signals are incompatible, the number of input events is n instead of 2".

o The number of actual input-output states can still be enormous: As for regular expressions,
it is not hard to write programs causing exponential blowups. However practical programs
tend to be really tractable. The wristwatch of (9] has no more than 41 states, and many other
significant examples yield automata that have between 10 and 100 states. As with any other
system, it is essential to understand what to put in the program’'s control and what to put in
data. In a Lift with 32 independent call buttons, the 232 states are more efficiently stored in
the 32 bits of a single memory word than in the 2%? states of an automaton!

It seems that the derivative algorithms tends to construct directly minimal automata, at least in
practical cases (it is easy to construct ad-hoc counter-examples); for this reason, the ESTEREL
systems don’t embody a minimization algorithm on the compiled automata. This important phe-
nomenon is not yet well-understood.
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Let us finally mention that we use a compact representation of automata using byte code
sequences in order to reduce the generated code size. For example the wristwatch's automaton
occupies 2,500 code bytes.

As a conclusion, we think that the presented compiling technique is of practical use as soon as
the input relations are carefully declared.

6.3.3. Efficiency of the transition code

The efficiency of the transition code determines the speed at which the generated code can
react to input signals. This is where the results are the most spectacular. The transitior code
is purely sequential; it almost only contains actions that are necessary at execution time (such as
assignments or emissions of output signals). There is no overhead for process bandling and process
communication. Pure communications generate no code at all: this is clearly the best way of being
instantaneous. Value broadcasting generates a minimal number of assignments to global variables.
For short, the process communication is done completely at compile time and only inevitable actions

are deferred to run-time.

Although not instantaneous, the transition code is therefore minimal and as fast as it can
be. Moreover, its speed is measurable given any particular processor: Hence the validity of the
synchrony hypothesis can be precisely checked for any precise application.

68.3.4. Separate compilation and code distribution

The compiled code automaton form has two drawbacks:

¢ Being sequential, the code must be run on a single processor: no distribution is possible.
When distribution is needed, one can however still use ESTEREL for writing the individually
synchronous parts of the system and link these synchronous parts using procedure calls or
asynchronous communication primitives (provided that the concerned submodules have no
infinititely fast dialogues). This seems to be a reasonable tradeoff in practice: ESTEREL is good
for synchronous applications, not for asynchronous ones. As an example, we present in (9] an
implementation of our wristwatch with five communicating automata. The ESTEREL v3 system
will provide its user with automatic tools for automata connection and code distribution.

o Separate compilation of modules is uneasy, although possible (see [36]). More precisely, it
is not easy to use the compiled automaton form of a module when this module is used as
a submodule. Some form of separate compilation exists in ESTEREL v3. but it concerns an
intermediate code that is closer to the source code than to the automaton. Notice however
that the efficient compiling algorithms are global, as are the efficient algorithms that transform
regular expressions into automata [10]. Separate compilation would not necessarily lead to a
gain in time efficiency.

8.3.5. Proving properties of programs

The translation of ESTEREL programs to automata has a major advantage: it permits to
perform automatic proofs of properties of the resulting automata. There We import the work done
by other researchers. We have interfaced the ESTEREL systems with the EMC system [19] that
allows its user to prove or disprove temporal logic formulae; we are also performing experiments
with the ECRINS system developed in our group [30]; this system is based on algebraic calculi of
processes 4 la Milner [32, 12, 37, 38]. :
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7. Brief overview of other synchronous languages

7.1. LUSTRE and SIGNAL

ESTEREL is an imperative language in which the temporal statements deal with events. On
the contrary, LUSTRE (18] and SIGNAL [24] are synchronous data-flow languages that deal directly
with histories. We describe LUSTRE; SIGNAL is conceptually similar.

A LUSTRE variable X denotes a sequence of values of a given type. The indices of the sequence
represent an “universal time". All variables are synchronous in the following sense: the n-th
components I, and ¥, of two sequences are assumed to be simultaneously available. An equation

Z = JeY
defines a sequence Z such that 2, = X, + Y, for all n. Therefore the primitive operations take no
time as in ESTEREL.

A program is a set of equations such that each variable has exactly one defining equation. Any
variable can appear in the right-hand side of any equation, as in

7 = I+Y
T = I+2

Here X appears in the definitions of 2 and T; this is a form of broadcasting. There are short-circuits
and oscillations, as in

I = nnot I

Y s Z+1

Z = Y41
The main temporal operators are pre(1) that defines the sequence nil. X, Xi,..., X, where nil
is an undefined value, and X->Y that defines the sequence Xy,Y;,....Yn. The following program

counts the number of times a boolean variable I changes value:
COUNT = 0 -> if X=pre(X) then pre(COUNT) else prel{COUNT)+1 fi

There are also primitives to deal with multiple time units. A clock is a boolean variable; intuitively
the corresponding signal is present when the clock is true. If a variable 1 is conceptually synchronous
with a clock ¢, an operator “I when C" brings I back to the universal time. Finally a current
operator provides an asynchronous access to a variable's value (as our “7" operator, that was
absent in the early versions of ESTEREL and introduced after the LUSTRE current operator). We
give no more detail here.

LUSTRE is a functional Janguage that satisfies the substitution property: In the right-hand
side of any equation, any variable may be replaced by its definition. The ordering of equations is
not significant.

SIGNAL differs mainly by its clock calculus that permits to leave the clocking of variables
implicit; its syntax is similar to notations commonly used in signal processing.

Altogether, ESTEREL, LUSTRE, and SIGNAL are very close in spirit. The main difference is
the induced programming style: LUSTRE and SIGNAL are easier for applications that have a simple
control structure, such as signal processing: a program can then be very close to the original set of
mathematical equations that specify a problem; on the contrary, ESTEREL is more suited to appli-
cations having many control states, such as the wristwatch mentioned above: when a single button
can have different meanings according to the command mode, the ESTEREL imperative primitives
help associating pieces of program text with the different modes, while LUSTRE and SIGNAL forces
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to handle explicit state variables. The techniques used in the ESTEREL and LUSTRE compilers are
very similar, and the output code formats are unified to make the languages compatible.

7.2. The Statecharts

The Statecharts [25] are graphical hierarchical notations for automata. The main idea is to
introduce an and/or decomposition of states that allows to zoom states in and out, considering a
state to be a single object at one level and connected parallel automata one level below. Many of
the difficulties that we mentioned for classical automata then disappear.

Arrows are labeled with signals and may go from any state to any other state, including struc-
tured states. This realizes a function similar to that of upto in ESTEREL: if the signal labeling an
arrow is present, the source state is immediately exited, no matter which is the present configura-
tion within it. An additional “enter by history™ mechanism permits to re-enter a state at the point
where it was left, or in some initial position. Signals are broadcast. Instantaneous actions can take
place at states. There are explicit primitives for delays and time outs with respect to the universal
time.

The basic synchrony principle is therefore the same in the Stateckarts and in ESTEREL. How-
ever, the styles are orthogonal: when using the Statecharts, one describes what the user should see
(typically running modes), while in ESTEREL one programs a system from basic bricks (typically
reusable modules). The interested reader can compare the watch specified using the Statecharts
[25] to the watch programmed in ESTEREL(9).

The Statecharts form a specification system rather than a programming system. However
executable automata production should be feasible (provided a complete definition and study of

the semantics).
7.3. SML

SML([15] is an imperative parallel language designed for building circuits. It is not completely
synchronous, but has many points in common with the synchronous languages described so far.
SML is based one one universal clock that represents a chip's clock. Signals are represented by
(shared) boolean variables. as in LUSTRE. As in ESTEREL. control takes no time. However memory
actions such as assignments take one unit of time. Several actions can be grouped under a compross
statement. Then all the actions are realized in one unit of time. There is no more possibility of
instantaneous communication: if a variable is read and written at the same instant, the value read
is the value before assignment. This is certainly a loss of power at the programmer’s level. But
short-circuits and oscillations disappear (deadlocks can still be detected using the EMC system
that is interfaced on SML).

As in ESTEREL, the SML compiler transforms a program into a finite automaton by an ex-
haustive exploration of its state space. Here internal operations can generate states.

8. Conclusion

We have presented new programming concepts applicable to reactive systems: synchrony (in-
stantaneous actions and control flow), signal broadcasting, and the use of multiple time units.
Several languages implement these concepts in various forms. We have presented our own language
ESTEREL. We have briefly described other synchronous languages: LUSTRE (SIGNAL being close
to LUSTRE could have been presented too), the Statecharts, and SML. Each of these languages
induces its own programming style. It is yet uneasy to compare the languages and their induced
styles, since too few common examples have been completely treated. We can however draw three
conclusions from our own experience:
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1. Synchrony is a good idea for programming; it is in fact simpler and more powerful than
asynchrony when dealing with reactive systems. The deterministic character of programs makes
their realization and debugging simpler. Instantaneous dialogues permit modular parallel
object programming at no cost, since they don't produce code.

2. The translation of synchronous programs to automata by exhaustive exploration of the state
space is a practical compiling process. The quality of the object code is excellent. Many
striking optimizations are realized automatically during the compiling process; in particular
the inter-process communication is completely done at compile time and generates basically
no code. Progress is currently being made to make the compilers themselves faster, to bring
them at the same level than scanner or parser generators.

3. Interesting proofs can be performed on the resulting automata, using systems such as EMC [19].
CESAR [35), or ECRINS[30,38]. This is another advantage of the translation to deterministic

automata.
To our belief, there are now two main directions to investigate:

1. On the practical side, many more realistic programs must be written in the different syn-
chronous Janguages. This is of course necessary to gain more experience and to understand
what are the qualities and drawbacks of the Janguages.

2. On the theoretical side, the theory of synchrony has to be studied independently of the pre-
sented Janguages. The languages could then be compared on firmer grounds, and the theories
of program correctness and program equivalences could be developped further. The present
theories of communicating systems are yet too weak to deal with synchronous languages: the
most advanced models such as SCCS [32] or MEIJE[12] cannot express things like “two actions
are performed simultaneously but in the right order”. Boudol, Castellani, and Gonthier [13.
14, 23] recently introduced promizing algebras of instantaneous actions that need to be studied

further.
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DISCUSSION
Rapporteur: Alan Tully

Professor Whitfield asked why reactive systems were considered to be more
deterministic. Dr Halbwach replied saying that such systems react to a signal
according to their own internal state and are deterministic in function and
time, whereas the behaviour of interactive systems depends on loading.

A speaker questioned Dr Halbwach's assumption that computation may be
considered instantaneous. Dr Halbwach said that although it was only an ideal
he was trying to achieve, by adopting certain compilation strategies, execution
time could be considered negligible when compared to the reaction time of
the environment.

Professor Turski asked Dr Halbwach's for clarification on his meaning of "at
the same time". Dr Halbwach said that two events could be considered to
occur at the same time if they occurred in the same time frame as perceived by
the system. Further that simultaneous events were just different branches of a
partial ordering, so although they may not occur at the same instant, the
system behaves as if they were.

Dr Halbwach was asked if the choice between two simultaneous events was
arbitrary, he replied that the choice was deterministic.

The comment was made that although ESTEREL was an attractive language for
system specification, it's zero delay assumption was unrealistic when applied
to distributed systems. Dr Halbwach put forward the view that distributed
systems were not really necessary so ESTEREL wasn't designed to program such
systems!

Professor Randell then asked if, in connection with it's application to aircraft
systems, ESTEREL was executed on isolated centralized computers. Dr
Halbwach answered yes, stating that ESTEREL was primarily used in the
implementation of man/machine interfaces to individual computers.
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