
•

IV

USING REFLECTION AS A MECHANISM FOR ENFORCING
SECURITY POLICIES IN MOBILE CODE

R J Stroud

Rapporteur: Professor M Koutny

IV.2

•

•

•

•

1

IV.3

Using Reflection as a Mechanism for Enforcing
Security Policies in Mobile Code

Ian Welch and Robert J. Stroud

University of Newcastle-upon-Tyne, United Kingdom NEt 7RU
{1 .S.Welch, R.J.Stroud}~ncl.ac.uk.

WWWhomepage:http://vww.cs ,ncl,ac,uk/people/
{I .S.Welch. R.J.Stroud}

Abstract. Several authors have proposed using code modification as
a technique for enforcing security policies such as resource limits, ac
cess controls, and network information flows. However, these approaches
are typically ad hoc and are implemented without a high level abstract
framework for code modification. We propose using reflection as a mecha
nism for implementing code modifications within an abstract framework
based on the semantics of the underlying programming language. We
have developed a reflective version of Java called Kava that uses byte
code rewriting techniques to insert pre-defined hooks into Java class files
at load time. This makes it possible to specify and implement security
policies for mobile code in a more abstract and fl.exible way. Our mech
anism could be used as a more principled way of enforcing some of the
existing security policies described in the literature. The advantages of
our approach over related work (SASI, JRes l etc.) are that we can guar
antee that our security mechanisms cannot be bypassed I a property we
call strong non-bypass ability, and that our approach provides the high
level abstractions needed to build useful security policies.

Introduction

We are interested in applying ideas of behavioural reflection [11) to enforcing
security mechanisms with mobile code. Mobile code is compiled code retrieved
from across a network and integrated into a running system. The code may not
be trusted and therefore we to need ensure that it respects a range of secu
rity properties. The Java security model provides a good degree of transparent
enforcement over access to system resources by mobile code but it does not pro
vide the same degree of transparency for control over access to application level
resources. A number of authors [4)[5) have tackled this problem and made use
of code modifi cation in order to add more flexible enforcement mechanisms to
mobile code. However, although they have provided higher level means of speci
fying the security policies they wish to enforce, they have used code modification
techniques that have relied upon structural rather than behavioural changes. We
argue that reflection can be used to provide a model for behavioural change that
is implemented using code modification. This provides a greater degree of sepa
ration between policy and implementation than the current systems provide. It

IV.4

also addresses some of the drawbacks of existing schemes. In particular) it makes
it possible to specify security policies at a more appropriate level of abstraction.
Another advantage of our approach is that it provides a property we call strong
non· bypass ability. This guarantees the enforcement of security mechanisms by
removing the opportunity to bypass them using the same mechanisms that were
used to produce them. For example, approaches that use renaming are vulnerable
to attacks that discover and exploit the real name of the underlying resource.

The paper is structured as follows. In section 2 we introduce the Java security
model, describing its evolution and pointing out some of its drawbacks. In section
3 we describe our use of reflection to enforce security and introduce our reflective
Java implementation Kava. In section 4 we provide two examples of how Kava
can be used and show how it integrates with the existing Java security model.
In section 5 we describe and evaluate some related work. Finally in section 6 we
conclude with a discussion of the advantages and disadvantages of our approach .

2 Evolut ion of Java Security Model

Java [10J is a popular choice for researchers investigating mobile code technolo
gies. Java has strong support for mobility of code and security. The Java class
loader mechanism supports mobile code by allowing remote classes to be loaded
over the network, and a security manager enforces checks on the use of local
system resources by the mobile code. The ability to supply a user-defined class
loader and security manager makes it possible to customise these mechanisms
to a certain extent.

In the past few years the Java security model has undergone considerable
evolution. In the JDKl.O security model [9J any code run locally had full access
to system resources while dynamically loaded code could only access system re
sources under the control of a security manager. System libraries have predefined
hooks that cause check access methods provided by the security manager to
be called before sensitive methods were executed. The default security manager
sandbox provided minimal access and in order to support a different security
model a new security manager would have to be implemented.

The concept of trusted dynamically loaded code was introduced in JDKl.l
[14J. Any dynamically loaded code that was digitally signed by a trusted code
provider could execute with the same permissions as local code.

Recently JDK1.2/ Java2 [15][16J (see figure 1) has introduced an extensible
access control scheme that applies both to local code and dynamically loaded
code. Fine-grained access to system resources by code can be specified in a
policy file on the basis of the source of the code, the code provider (indicated by
who cryptographically signed the code), and the user of the code. Unlike earlier
versions of the JDK t his policy file allows the security model to be adjusted
without writing a new security manager. This is because the security manager
has standard access control checkpoints embedded in its code whose behaviour
is determined by the selection of permissions enabled in the policy file. The
evaluation of the permissions is handled by an access controller that defines how

o

•

•

IV.5

Code

1
JVM

~ ~ Security Policy

Permissions by
Security Manager I AccessControlier I. - where code came from

I' - who signed code
- who is executing code

System Resources
"- ------(fi les, network

connections, etc)

F ig. 1. Overview of Java2 Security Architecture

different permissions are reconci led to give an overall access control decision.
New permissions can be defined but explicit checks for the permissions must be
added to the security manager or application code if the permissions apply to
application resources rather than system resources.

2. 1 Example: Exten ding t h e J ava Security Model

To provide a flavour of the problems of the current Java security model we
provide the following example of the definition of a customised security policy.

Imagine that an application developer has created a program for watching
television broadcasts over the Internet called WorldTV, We may want to impose
a security policy on the application to constrain which channels a user may
watch. For example, if a machine is provided in a public place we might restrict
the channels to a selection of local news channels.

The recommended steps for customising the Java security model in order to
support such a policy [8) are:

Define a permission class.
- Grant permissions.
- Modify resource management code.

A new permission class that represents the customized permission to watch a
channel must be defined. It is realized by defining a class com. \/orldTV . Channel
Permiss ion that subclasses the abstract class java. Security. Permission.

Then the appropriate permission must be granted by adding entries into
the security policy. In the example below we allow any application to watch
channel 5.

IV.6

grant
{

permission com.WorldTV .ChannelPermission "5 11
, IIwatch" ;

}

Finally, we must add an explicit check into the application 's resource man
agement code that calls AccessController's checkPermission method using
a com. WorldTV .ChannelPermission object as the parameter. If the applica
tion has not been granted the permission then an AccessControlException is
raised. AccessControlException is a runtime exception so does not need to be
declared in the class' interface.

public void watchChannel(String channel) {
com.WorldTV.ChannelPermission tvperm = new

}

com . World TV. ChannelPermission(channel, IIwatch") ;
AccessController.checkPermission(tvperm);

2.2 Discussion

The ability to define application specific permissions makes the Java security
model easily extensible. In previous versions of the Java security model the only
way to implement application specific policy was to create a new SecurityManager
class. For the example above a new method checkChannel would have had to
been added to the SecurityHanager class. By the time all possible checks had
been added to Securi tyManager the resulting interface would be too large and
unwieldy for use and analysis. Through the use of typed access-control permis
sions and an automatic permission handling mechanism (implemented in the
AccessController class) only a single method checkPermission is required.
This represents an extensible and scalable architecture.

However, the application developer must still identify where the permission
checks should be added into the application code and manually insert the checks.
This means that security code is tangled with application code and this makes
management and maintenance difficult . Whenever a new permission type is
added then the application developer must access the source code of the ap
plication and modify then recompile. This raises the possibility of error as the
modifications are made, and it is possible in the case of mobile code that the
source code itself is not available.

A better approach would be to use something similar to the Securi tyManager
approach for system classes where hooks are added to the system classes that
force the check methods of the Securi tyManager to be invoked when certain
critical methods are executed. Essentially it should be possible to take appli
cation code and automatically add hooks that invoke security mechanisms at
appropriate places. For example, instead of manually modifying watchChannel
the application developer should just be able to specify that the permission

•

•

IV.7

ChannelPermission is checked before this method can be invoked. This would
result in a better separation of concerns between application code and security
code.

3 A Reflective Approach using Kava

Our approach is based on the use of metaobject protocols to provide flexible
fine-grained control over the execution of components. The metaobject protocol
implements the security mechanisms that enforce security policies upon appli
cation code. This effectively allows security checks to be inserted directly into
compiled code, thus avoiding the need to recode applications in order to add
application specific security checks. Figure 2 below presents the Kava reflective
security architecture. We discuss each aspect of the architecture in the following
sections.

3.1 Reflective Object Oriented Model of Computation

A reflective computational system (12) is a system that can reason about and
make changes to its own behaviour. Such a system is composed of a base level
and a meta level. The base level is the system being reasoned about, and the
meta level has access to representations of the base level. Manipulations of the
representations of the base level at the meta level result in changes to the be-
haviour of the base level system.

These notions of reflection have been extended to include the concept of the
metaobject protocol (11) where the objects involved in the representation of the
computational process and the protocols governing the execution of the program
are exposed. A metaobject is bound to an object and controls the execution of the
object. By changing the implementation of the metaobject the object's execution
can be adjusted in a principled way.

In order to use reflection as a mechanism to enforce security properties we
need to be able to control all interactions between the object and its environment.
Therefore we need to be able to control all interactions with an object. This
includes self-interactions. Thus, we need to control the following behaviours:

- Method invocation by an object.
- Method execution.
- Setting and getting of state.
- Object instantiation.
- Object construction.
- Exception raising.

The metaobject bound to the object defines the object's behaviour. Security
enforcing mechanisms can be implemented by the metaobject in order to realise
a security policy. In order to provide a guarantee that the security properties are
honoured it must be impossible to bypass the metaobject. We call this property

IV.S

strong non-bypassability. We have implemented a reflective Java that implements
this reflective model of object oriented computation and also has the property
of strong non-bypassability.

In the next two sections we introduce the reflective version of Java we have
developed and describe how it achieves this property we call strong non- bypass
ability.

3.2 Kava metaobject protocol

We have developed a reflective Java called Kava [19) that gives the control over
the behaviour of objects that is required to add security enforcement at the
meta layer. It uses byte code transformations to make principled changes to a
class' binary structure in order to provide a metaobject protocol that brings
object execution under the control of a meta level. These changes are applied
at the time that classes are loaded into the runtime Java environment. The
meta layer is written using standard Java classes and specifies adaptations to
the behaviour of the components in a reusable way. Although neither bytecode
transformation nor metaobject protocols are new ideas, our contribution has
been to combine them. Byte code transformation is a very powerful tool but
it is in general difficult to use, as it requires a deep knowledge of class file
structure and byte code programming. What we do is use a load-time structural
metaobject protocol (such as provided by Joie [1) or JavaClass [3)) in order to
implement a runtime metaobject protocol. Working at the byte code level allows
control over a wide range of behaviour. For example, the sending of invocations,
initialisation, finalization, state update, object creation and exception raising
are all under the control of Kava.

Security Policy

Security Architecture

Kava

Java Runtime

Fig. 2. Overview of Kava Security Architecture

•

•

•

IV.9

3.3 Meta level security architecture

Security policy enforcement (see figure 2) is built on top of the runtime metaob
ject protocol provided by Kava. Metaobjects implement the security mechanisms
that enforce the policy upon the application. Each object has a metaobject bound
to it by Kava. In effect each metaobject acts a reference monitor for each ap
plication object. The binding is implemented by adding hooks directly into the
binary code of the classes. As this binding exists within the component itself
instead of in a separate wrapper class we argue that we are achieving a strong
encapsulation of components. Outside parties cannot bypass the wrapping and
therefore the security implemented in the metalevel by simply gaining an un
controlled reference to the object because no such references exist. This type of
binding we refer to as strong non-bypassibility. There are two common techiques
for adding interceptions to Java classes: creation of a proxy class, or renaming
methods in the class and replacing them with proxy methods. The proxies add
the security enforcement. These approaches only support weak non-bypassability
as there is the possibility that a reference to the real class might escape or the
name of the real method might be discovered. This would make it possible to
bypass the security enforcement.

The Kava system, binding specification and the metaobjects must form part
of the trusted computing base. The Kava system and binding specification are
installed locally and can be secured in the same way as the Java runtime system.
However 1 the metaobjects may exist either locally or be retrieved across the
network. This raises the possibility that the metaobjects themselves might be
compromised. In order to counter this threat we use a specialised version of a
classloader that verifies the identity and integrity of the metaobject classes using
digital signing techniques. Each metaobject is digitally signed using a private
key of the provider of the metaobject. The public key of the provider exists in
the local public key registry on the host where the Kava system is installed .
The digital signature of the downloaded metaobject is then verified using the
local copy of the provider's public key. If there is discrepancy then a security
exception is raised and the system halts. This prevents malicious combinations
of application objects and metaobjects.

4 Example

In this section we provide two examples of how Kava can be used as the basis
for implementing security enforcement mechanisms using metaobjects. The first
example reworks the simple example from our discussion of the Java security
model (an example of static permissions), and the second example is of a security
policy that limits the total number of bytes that can written to the local file
system by an application (an example of dynamic permissions).

4 .1 Overview of Approach

Our approach leverages upon the existing Java security model. As pointed out
earlier in section 2, the main problem with the Java security model is the lack

IV .lO

of automatic addition of enforcement code to application code. K ava provides a
principled way of doing this.

The enforcement Kava adds depends on the particular security policy being
enforced, and the structure of the application. There are two particular phases
in the Kava system. These are loadtime and runtime.

Loadtime. At load time Kava must determine what operations are trapped.
These decisions are encapsulated by a MetaConfiguration class. There should
be one for each security policy to be enforced. For example, there might be one
configuration for a multilevel policy where all interactions between object must
be trapped and another configuration for a simple access control policy where
only method invocations are trapped. The MetaConfiguration class is respon
sible for parsing the policy file which provides additional information about the
application that the security policy is being applied to and the particular policy
settings for that application. For example, what metaobjects to bind to which
classes, and what types of operation to trap. The policy fil e uses an extended
form of the standard JDK1.2 syntax for security policies.

Runtime. At runtime the traps inserted under the control ofthe MetaConfigur
ation class switches execution for the base level (the application code) to the
meta level (the metaobject associated with each object). The metaobject per
forms the permission checks necessary to implement the particular security pol
icy. A specialised Policy object associates the permissions with the loaded
classes. This is a specialisation of the default Policy class because it has to
map additional permissions against classes in order to support the security pol
icy.

4.2 Example: WorldTV

Using the Kava approach the developer carries out the first two steps of defining
a permissions class and granting permissions as necessary. However, instead of
taking the application code and editing it the application programmer defines a
new Metaobj ect class and places the enforcement code here. For example,

import kava .• j
public class EnforcementMetaobject implements Metaobject
{

public boolean beforeRece iveMethod(Reference source ,
Method myMethod, Value [J args)

{

com .WorldTV.ChannelPermission tvperm = new
com. WorldTV. ChannelPermission(

(String) args[O] .getValue, "watch") j
AccessController.checkPermission(tvperm)j
return Constants . INVOKE_BASEj

•

•

•

lY.1l

}
}

This redefines how a method invocation received by an object is handled. It
enforces a check before the execution of the method invocation that the correct
ChannelPermission is held by the thread executing the code.

The next step the application programmer must do is to specify which meth
ods of which class are controlled by this enforcement metaobject. This is included
in the expanded version of the standard Java policy file.

bind
{

kava . EnforcementMetaobject *: : watchChannel (String) ;
}

grant
{

permission com. WorldTV . ChannelPermission "5" , II watch";
}

The bind specification indicates to the MetaConfiguation class which meth
ods of which class should be trapped. In this case any method named watchChannel
with a single parameter of type String belonging to any class will be trapped
and have security checks enforced upon it.

4.3 Example: LimitWrite

The previous example is a traditional fairly static access control security policy.
Kava can also enforce dynamic security policies that depend upon changing
state. The following example shows that Kava could be used to enforce a policy
that places a million-byte limit on the amount of data that may be written to
the file system.

The first task is to define a new permission type that has a dynamic be
haviour. We define a permission class FileWritePermission that subclasses
java. security. Permission. This new permission's constructor defines the max
imum number of bytes that may be written to the file system. It also adds a new
method incrementResourceCounter (long n) that increments the global count
of the number of bytes written to the file system. Finally it defines the implies
method so that when the AccessController calls the implies method to see
if the permission being checked is held, the current number of bytes written is
compared with the maximum to determine if this is true or not.

The second step is to specify the enforcement metaobject. It has a straightfor
ward structure as the security policy decision is specified within the Permission
class.

import kava. * i
public class FileEnforcementHetaobject

{

}

IV.12

i mplements Hetaobject

public boolean beforeSendMethod(Reference source ,
Hethod myHethod , Value [) args)

{

}

FileWritePermission perm = new
FileWritePermission() ;

perm. incrementResourceCounter(Integer. t oLong(args [2] .getValue()) ;
AccessController.checkPermission(perm)j
return Constants. INVOKE_B ASE;

Here the behaviour of an object sending an method invocation to another
object is redefined. We do this because Kava cannot rewrite library classes un
less the JVM is changed. A new FileWritePermission is constructed with a
throwaway value. Then the context for the permission is updated by calling
setPermissionContext using the number of bytes written to the file. Here we
are exploiting the knowledge that the third argument always the number of bytes
to be written to the file.

The third step is to specify the policy file :

bind
{

kava. FileEnforcementHetaobj ect
(* extends Fil eWriter).wr ite(*, int, int)j

}

grant {
FileWritePermission "1000000 1lj

}

The policy file determines which methods of which classes are brought under
the control of the metaobject. It specifies that any invocation of write method
of any subclass of FileWriter is to be trapped and handled by the metaobject
FileEnforcementHetaobj ect . In this way we can ensure that no checks are
accidentally omitted from the source code because of a software maintenance
oversight.

Unlike the previous example we trap invocations made by an object rather
than the execution of a particular method of an object. This is because Kava
cannot rewrite system classes without the use of a custom JVM and so we trap
calls made to the controlled object rather than modify the implementation of
the object itself.

•

•

lV.l3

5 Related Work

The principle of separating security policy and dynamically enforcing security on
applications is not new. In this section we discuss and evaluate four approaches
to implementing this principle.

5.1 Applet Watch-Dog

Applet Watch-Dog [6J exploits the ability of the execution environment to control
code execution. Here the threads spawned by applets are monitored and con
trolled in order to protect hosts from denial of service attacks. It is a portable
approach that requires no changes to the Java platform in order to work. When
applets are loaded in conjunction with the Applet Watch-Dog their use of mem
ory, priority of threads, CPU usage and other resources is monitored and dis
played in a window. The user can choose to stop or suspend threads as required.
A security policy for resource usage can also be specified so that a thread is
automatically stopped if it exceeds the prescribed maximum usage of a resource.

The Applet Watch-Dog approach can prevent a large class of denial-of-service
attacks. However, it cannot prevent other attacks such as privacy attacks. The
example given by the authors is that it cannot prevent an applet from forging
mail as this would require monitoring port usage. The scope of policies enforce
able by a Watch-Dog is obviously limited by the scope of control the execution
environment has over code execution. For example, if the capability to monitor
ports does not exist t hen attacks exploiting port access cannot be controlled.
Another problem is that specifying a new type of security policy requires the
rewriting of the Applet Watch-Dog.

5.2 Generic Wrappers

Generic wrappers use wrappers to bring components under the control of a
security policy. The wrappers act as localised reference monitors for the wrapped
components. A well developed example of this approach is found in [7J. Here the
emphasis is on binary components and their interaction with an operating system
via system calls. Wrappers are defined using a Wrapper Definition Language
(WDL) and are instantiated as components are activated. The wrappers monitor
and modify the interactions between the components and the operating system.
Generic policies for access control, auditing, intrusion detection can be specified
using the WDL.

The use of generic wrappers and a wrapper definition language is an attrac
tive approach as it is flexible and is generaJisable to many platforms. However 1

there are some drawbacks. Wrappers can only control flows across component
interfaces and cannot control internal operations such as access to state or flows
across outgoing interfaces. Also the wrappers are not at the right level of ab
straction. The level of abstraction is at a lower level than the application level.
This makes it difficult to specify security policies that control both access to
system resources and application resources .

IV. 14

5.3 SASI - Securi ty Automata SFI Implementation

SASI [4] uses a security automaton to specify security policies and enforces poli
cies through software fault-isolation techniques. The security automaton acts as
a reference monitor for code. A security automaton consists of a set of states, an
input alphabet, and a transition relationship. In relation to a particular system
the events that the reference monitor controls are represented by the alpha
bet, and the transition relationship encodes the security policy enforced by the
reference monitor.

The security automaton is merged into application code by a rewriter. It
adds code that implements the automaton directly before each instruction. The
rewriter is language specific (the authors have produced one for x86 machine
code, and one for Java bytecode). Partial evaluation techniques are used to
remove unnecessary checks.

The current system does not have any means for maintaining security related
state which makes some application level security policies difficult to express. The
authors propose extending SASI to include the ability to maintain typed state.

One of the problems the authors found when applying SASI to x86 machine
code was the lack of high level abstractions. For example, the lack of a concept
of function or func tion calls meant that the SASI rewriter had to be extended
to include an event synthesizer.

BASI is very powerful and can place controls on low level operation such
as push and pop allowing rich security policies to be described. However, the
security policy language is very low level with the events being used to construct
the policies almost at the individual machine language instruction level. The
Java implementation was at a slightly higher level, mainly because the Java
machine code is a high level machine code for an object oriented machine, but
still the policies were quite low level. The authors plan to investigate a Java
implementation that exposes more high level abstractions and make use of high
level security policies. We would argue that reflection provides an appropriate
model for solving this problem.

5.4 Naccio - Flexible Policy-Directed Code Safety

Naccio]5] allows the expression of safety policies in a platform-independent way
using a speciaiised language and applies these policies by transforming program
code. A policy generator takes resource descriptions, safety policies, platform in
terface and the application to be transformed and generates a policy description
file. This file is used by an application transformer to make the necessary changes
to the application. The application transformer replaces system calls in the ap
plication to cails to a policy-enforcing library. Naccio has been implemented
both for Win32 and Java.

Naccio relies on wrapping methods, the original method is renamed and a
wrapper method with the same name added. The wrapper method delegates the
actuai work to the renamed method but can perform policy checking before and
after the cail to the renamed method.

•

•

•

IV.IS

Naccio provides a high level way of specifying application security that is
platform-independent but it is limited in what can be controlled. For example,
Naccio cannot specify a safety policy that prevents access to a particular field of
an object by other objects. Also because Naccio relies on renaming of methods
there is the possibility that the enforcement mechanisms could be bypassed:

5.5 Evaluation

The Applet Watch-Dog approach makes good use of existing capabilities in the
execution environment to prevent denial-of-service attacks. However, it is lim
ited in the scope of security policies it can support because it relies upon the
capabilities already present in the execution environment. It also is difficult to
specify new types of security policy as this requires the rewriting of the Applet
Watch-Dog.

Generic wrappers, SASI and Naccio provide greater control over code exe
cution and more flexible policy specification. SASI and Naccio extend earlier
work that used code rewriting for security enforcement that was more ad hoc
in nature and focused on specific classes of security policy. For example, Java
bytecode rewriting has been used to implement fine grained access control [13),
and resource monitoring and control policies [21.

However, there are problems with the level of abstraction and expressiveness
of these approaches.

Generic wrappers work at a low level of abstraction, essentially the level of
the operating system. This limits them to enforcing security policies that control
access to system resources. Although it is possible that a number of application
level security policies could be expressed, the lack of high level abstractions
makes this task difficult.

SASI operates at the level of machine code which provides it with a lot
of power. However, it has difficulties when dealing with application level ab A

stractions where the operations that need to be intercepted are related to the
object-oriented computational model. With the Java version there is the concept
of higher level operations because the Java virtual machine bytecode explicitly
uses object-oriented concepts. A higher level approach would be to base the se
curity policy automata primitives on an abstract model of object oriented com
putation. This could be mapped to required behavioural changes which would
then be realized in a platform dependent way.

To some extent Naccio supports application level abstractions. However, it
lacks a rich model for expressing the program transformations. If it had a model
based on behavioural change then it could specify richer policies but still in a
platform independent way.

In our opinion the metaobject protocol [UI approach provides a good basis
for the implementation of security policies. It provides both a high level, abstract
model of the application but also a principled way to describe and implement
changes to the behaviour of the application. The approaches discussed here im
plement the security policies at too Iowa level. Instead of implementing traps
for individual machine code instructions or system calls the better approach

IV.16

is to work at the level of the object oriented computational model. For exam
ple, instead of trapping Java invokevirtual instructions and adding security
enforcement mechanisms at this level, the metaobject approach would trap invo
cations sent from an object and specify before and after behaviour that invoked
required security mechanisms. The actual mapping to code rewriting would' be
handled by the metaobject protocol allowing the security policy developer to
work at a high level. This is the approach that we are taking with our system
Kava.

6 Conclusions and Further Work

Using K ava to implement security mechanisms in Java allows security policy to
be developed separately from application code and then be combined at load time.
This makes it ideal for flexible security for securing mobile code where the policies
that the code must obey are defined by the host and the code is delivered in a
compiled form.

As we have shown Kava can be integrated with the current Java security
model and uses high level abstractions in order to specify policy. The difference
between using the standard Java security model and using Kava is that the
permissions checking takes place in metaobjects that are separate from the ap
plication objects. The metaobjects are only bound at load time allowing security
policy to be changed independently of the application code.

Due to the use of bytecode rewriting Kava achieves a strong degree of non
bypassability than other systems proposed. This is important for making the
case that the metaobject can act as a non-bypassable reference monitor for the
associated object.

The K ava metaobject protocol allows control over more aspects of the be
haviour than a system such as Naccio, generic wrappers, or the Applet Watch-Dog
and at the same time provides higher level abstractions than a system such as
SASI.

A direction for future work is the development of general policy frameworks
for use with Kava. Currently, as shown in the examples, the security policy is
developed manually. This is a useful feature in some situations but ideally there
should be policy frameworks available that free the developer from having to
develop their own set of permissions and metaobjects . We have proposed else
where some frameworks for implementing the Clark-Wilson security model [17}
and a Resource Management security model [18} . We are currently integrating
this work with Kava to provide high level support for application security.

Acknowledgements

This work has been supported by the VK Defence Evaluation Research Agency,
grant number CSM/547 IVA and also the ESPIRIT LTR project MAFTIA.

"

•

•

IV. 17

References

II]

12]

13]
14]

15]

16]

17]

18]
19]

110]

Ill]

112]
113]

114]
115]
116]

117]

118]

119]

Cohen, C. A., and Chase, J . S. : Automatic Program Transformation with JOIE.
Proceedings of USENIX Annual Technical Symposium 1998
Czajkowsik, G., von Eicken, T., JRes: A Resource Accounting Interface for Java,
ACM OOPSLA Conference, October 1998.
Dahm, M. : Bytecode Engineering, J ava Informations Tage 1999
Erlingssoll , U., Schneider, F. : SASI Enforcement of Security Policies: A Retro·
spective. Proceedings New Securi ty Paradigms Workshop, 1999
Evans, D., Twyman, A. : Flexible Policy-Directed Code Safety. IEEE Security
and Privacy, Oakland, CA., May 9-12, 1999
Florio, M.F., Carried, R., Marchetti, C. : Coping with Denial of Service due to
Malicious Java Applets. Computer Communications Journal, August 2000
Fraser, T., Badger, L., Feldman, M. : Hardening COTS Software with Generic
Software Wrappers. IEEE Security and Privacy, Oakland, CA., May 9-12, 1999
Gong, L. : Inside Java(TM) 2 Platform Security. Addison-Wesley, 1999
Gosling, J ., Frank Yellin, and the Java Team, "Java API Documentation Version
1.0.2", Sun Microsystems, Inc., 1996
Gosling, J., Joy, B. , Steele, G. L. : The J ava Language Specification, T he Java
Series, Addison-Wesley, 1996
KiczaJes G. , des llivieres J. : The Art of the Metaobject Protocol. MIT Press,
1991.
Maes, P. : Concepts and experiments in computational reBection, OOPSLA, 1987
Pandey, R., Hashii, S., Providing Fine-Grained Access Control for mobile pro
grams through binary editing, Technical Report TR98-0B, University of Califor
nia, Davis, August 1998
J ava Team, JDK 1.1.8 Documentation", Sun Microsystems, Inc., 1996-1999
Java Team, Java 2 SDK Documentation" , Sun Microsystems, Inc., 1996-1999
J ava Security Team, "J ava Authentication and Authorization Service", Sun Mi
crosystems, Inc., http:// java.sun.com/security/ jaas/index.html , 1999
Welch,!.: Reflective Enforcement of t he Clark-Wilson Integrity Model, 2nd Work
shop on Distributed Object Security, OOPSLA, 1999.
Welch, 1., Stroud, R. J . : Supporting Real World Security Models in Java. Pro
ceedings of 7th IEEE International Workshop on FUture Treads of Distributed
Computing Systems, Cape Town, South Africa, December 20-22, 1999
Welch, 1., Stroud, R. J. : Kava: A ReBective Java based on Bytecode Rewriting.
Springer-Verlag Lecture Notes in Computer Science LNCS 1826, 2000

IV.I S

U sing reflection as a mechanism for
enforcing security policies in mobile code

Ian Welch, Robert Stroud

Department of Computer Science,

University of Newcastle upon Tyne

(Paper to appear at ESORICS'2000)

Sponsored by DERA CSM/547/UA

Introduction

• Secure mobile code is currently implemented using
- Reference monitors
- Safe languages
- Code signing techniques

• But none of these mechanisms is infallible

• Need to use a combination of fault prevention and fault
tolerance strategies

• Additional complications include:
- Customised security requirements for local environment
- Application level security concerns
- Separating security code from application code

• Any mechanism used to add security to mobile code must
itself be secure and non-bypassable

•

•

IV.1 9

Proposed approach

• Would like to be able to monitor and control the behaviour of mobile
code that runs in the local environment

• Would like to be able to enforce application level security policies
such as

- controls on resource consumption to prevent denial of service
- separation of duty, data integrity checks (e.g. Clark/ Wilson)

• One approach is to use a wrapper - however, it is important that the
wrapper should be non-bypassable

• Another problem is that we don't necessarily have access to source
code for 3rd party mobile code

• Our approach is to use reflection as a mechanism for adapting and
controlling the behaviour of mobile code

• Our reflective technology uses byte code rewriting techniques to
adapt the behaviour of mobile code in a secure, non-bypassable way

Experimental Setting

• Java provides a good language with experimenting with such
scenarios:

- Code can be downloaded and integrated into running system.
- Supports introspection that may be necessary for adaptation.
- Allows interception at load time through application level class

loaders but still need a mechanism for adaptation ...
- Many people have proposed using byte code rewriting

techniques to adapt components but this is too low level...
- Reflection provides a better abstraction, making it possible for

programmers to make incremental and local modifications to the
behaviour of the application in a controlled way

• We have implemented a reflective Java called Kava that uses
byte code rewriting techniques at load time to add adaptations
in the form of bindings to meta objects

JV.20

Use of Reflection

• Reflection
- Reflection opens up a system's implementation without revealing

unnecessary implementation detail.
- Provides an abstraction of the application's behaviour and

internal state at the meta level.

• Constrained by a metaobject protocol
- Represents the system at the meta level using a family of

metaobject classes.
- Allows the system's behaviour to be locally and incrementally

adjusted using object-oriented programming.

Meta Object and Object

• With a MOP all access to an object are mediated by its
metaobject

"
"

invocation
MefaObject

" ---,,--.-~ ,
2: : 3 ,

Object

- apparent path

-.--- real path

•

•

•

IV.21

Default behaviour for handling
method invocations received

---"'II

MetaObj

Object handleReceivedMethod(Method method, Args[] arg s)
(

return base.invoke(method, args);
}

Base Ob"ect

Object method(Typel argl, Type2 arg2, .. .)
(

... code ...

Redefining the default
behaviour

SpecialMetaObj extends MetaObj

Object handleReceivedMethod(Method method, Args[] args)
(

}

Object result;
... before behaviour ...
result = super.handleReceivedMethod(method,args);
... after behaviour ...
return result;

Base Ob'ect
Object method(Typel argl, Type2 arg2, . ..)
{

. .. code ...
}

--_ .. _._-

IV.22

Reflection in Java

• Standard Java reflection provides for:
- introspection

• representation of aspects of object model as first class objects
i.e. method, class, object, field etc.

• ability to access values of fields
• ability to dynamically invoke methods
• ability to generate proxy classes (JDK1.3)

• Standard Java reflection doesn't provide for:
- behavioural reflection

• transparent control over implementation of object model, i.e.
can't redefine mechanism for method calls or field access

Dynamic Proxy Classes

• New feature in JDK1.3 - Dynamic Proxy Classes

• Dynamic proxy classes introduce a form of behavioural reflection
into Java

• A dynamic proxy can be created at runtime, it requires: a list of
interfaces the proxy will support, and the class that will handle
invocations

• The class that handles the invocation supports a method:
public Object invoke(Object proxy, Method m, Object[) args)

• In effect the class handling the invocation acts a metaobject

• However, the programmer must explicitly request the proxy:
Foo f = new DebugProxy(new Foo())

• Also the dynamic proxy will only work if the class implements
known interfaces

•

•

IV.23

Approaches to Implementing
Reflection in Java

Source Code

1 Com pile class

Sytecode

l Load class

Installed in JVM

l Just-in-ti me compile

Machine Code

OpenJava

Source Code

~ II
• pre-process source code

• need access to source
Sytecode • purely compile time

l • APM's OpenJava

Installed in JVM

l
Machine Code

IV.24

MetaJava

Source Code

1
Bytecode

1
Installed in JVM .. • make the JVM Reflective

1
• powerful and dynamic

• highly non-portable

• Golm's MetaJava
Machine Code

OpenJIT

Source Code

1
Bytecode

1
Installed in JVM

1 ..
Machine Code

• intercept JIT generation of machine code

• specialise for parallel operations etc.

'OpenJIT

•

IV.25

Our approach - Kava

Source Code

~
Bytecode

l II
• intercept class loading

• attach metaobjects by rewriting byte codes

Installed in JVM • portable and standard Java

l • no preprocessing of classes required

• Kava approach

Machine Code

What is Bytecode Transformation?

• Rationale is that designers of third-party code cannot predict
all features desired by end-users so there must be some
provision for the modification of third-party code post
compilation as late as loadtime

• Also known as Binary Component Adaptation, Class
Rewriting and Bytecode Engineering

• Technique has been used to implement resource controls
aRES), implement parametric types (Poor Man's Genericity for
Java), and implement a CORBA ORB for Java (Barrat)

• Java has three features that make this possible:
- semantically rich binary format
- stack-oriented virtual machine

- hooks for intercepting and redefining class loading

• general toolkits available: JavaClass and JOIE

IV.26

Taming the technology

• Bytecode transformation is very powerful, but difficult to use

• Toolkits take care of a lot of the housekeeping details but are
still too low level

• Need to tame the technology - use a metaobject protocol

• Limits the options but makes it easier to use and easier to
understand outcome

• Kava uses a bytecode transformation toolkit to implement
hooks for a runtime behavioural metaobject protocol

• We add hooks for intercepting a wide range of behaviour :
- receipt of messages, sending of messages, initialisation,

finalisa tion, state access

• By adding hooks directly instead of using a separate wrapper
class we address:

- "self" problem, broken inheritance hierarchies, non-bypassability

Kava Approach

• Instead of describing behavioural changes in terms of bytecode
manipulations, the changes are expressed in terms of local
adjustments to the Java execution model

• Metaobjects inherit from DefaultMetaObje::t. which implements
the MetaObject.interface

• A binding specification specifies which metaobjects are to be
bound to which base level objects

• One-to-one binding between metaobject and instance of class
but metaobject can delegate to other metaobjects

• The scope of the run-time metaobject protocol is determined by
the hooks inserted at load time

• However, subject to this constraint, the meta layer can be
configured dynamically at run-time

IV.27

Interface for MetaObject

public interface MetaObject

public void beforeSendMethod (.~);

public void afterSendMethod{. ..) ;

public void beforeReceiveMethod(... J;

public void afterReceiveMethod (.. J,
public void beforePutField(_);
public void beforePutField{'"I;

public void afterGetField{..,) ;

public void beforeGetField{_.I;

public void afterGetField (... J;
public void beforelnitialisation{._l;

public void afterlnitialisation(...) ;

public void beforeFinalization I..,);

public void afterFinalization f._I;

Overview of Kava Architecture

C Class File)
~---r--' I

byte stream

class tile structure

~in~ing Specification
'." 'File ' .

class Ilia structure •
Verifier

JIT

Runtime system

IV.28

Advantages of Kava

• Portable, entirely written in Java

• No recoding of components required

• Kava can be used dynamically or statically

• Interceptions introduced by Kava are non-bypassable
(important for security)

• Avoids problems with inheritance, or self problem

• Provides a very powerful metaobject protocol:
- Sending and receiving methods
- Accessing fields
- Initialisation and finalisation of objects
- Exception handling (real soon now ...)

• Available from
- http: //www.cs.nc1.ac. ukl research I dependability I reflection

Separating out security concerns

• We're interested in separating security policy from application
code

• The current Java Security model provides a good degree of
separation for controlling access to Java system resources

• But it lacks the same good degree of separation when it comes
to application resource control

• We propose an approach to implementing security in Java
using reflection and object oriented representations of high
level security models

•

•

IV.29

Overview of JDK1.O Security

Remote Code

LocarOde

JVM Full .y Sandbox Restricted

Access ~ Access

to Resources

Security Manager

System Resources
(files, network

connections, etc)

Customisation (JDK1.O)

• Java API contains hardwired hooks that invoke security
manager before "sensitive" operations are invoked

• Example:
- Java API call: System, getProperties ()

- Corresponding securi tyManager class method:
checkPropertiesAccess()

• To customise the default security policy the
Secur i tyManager must be subclassed and implementations
provided for methods such as checkPropertiesAccess ()

IV.30

Overview of JDKl.l Security

Trusted Signed
Local Code Code Unsigned Code

1 1 1
JVMFul1 V f Sandbox Reslricted

Access ;'
~ Access

to Resources

Security Manager

System Resources
(files, network

connections, etc)

Customisation (JDKl.l)

• Applets can be digitally signed using public keys

• Public keys of trusted code providers are maintained in a
keys tore

• If the digital signature is valid then the applet is trusted and
has full access to resources

• As in JDKl.O a customised Securi tyManager can be
implemented in order to apply a custom security policy

•

IV.31

Overview of Java 2 Security

Code

JVM

Security Policy

Permissions by:
Security Manager AccessController i+o-of -where code came from

- who signed code
'-____ ----l _ who is executing code

r-------------------------~
System Resources

(files, network
connections, etc)

Customisation (Java 2)

• Securi tyManager delegates checks on operations to
AccessController

• AccessController checks if appropriate permissions held
by the executing thread

• The operations to be checked are still hardwired into the Java
API

• Code is loaded into protection domains - which domain is
determined by where the code came from, who signed it, and
who is running it

• Association between permissions and protection domains
specified in separate policy file

IV.32

Summary of Changes

• Move towards extensible fine grained access control

• Move towards separation of concerns
- No need to rewrite security manager
- Policy specified in file that can be adjusted independently of the

application

• But only true for a predefined set of system resources

• There are some "Real World" requirements not addressed by
the Java 2 security model

"Real World" Requirements

• Application level security concerns:
- access to state, methods by users
- confidentiality
- denial of service
- integrity, etc.

• Want to describe security policies using high level models

• No built-in support, must build from scratch

• Don't want to have to recode applications

• Use metobjects to enforce security policy

• Use Kava to enforce the security policy automatically by
linking application level code to meta level security policy

• Avoids tangling of security enforcement code and application
sped fic code

•

•

•

•

IV.33

Our Approach

• Leverage upon the existing Java security model: permissions,
authentication framework, etc.

• Add enforcement code to application code automatically

• Kava provides a principled way of doing this. Level of
abstraction is at the object model level: objects, methods, etc.

• The code Kava adds depends on the particular security policy
being enforced, and the structure of the application

• Two phases:
- Loadtime. Kava adds traps into application code
- Runtime. Traps are activated and flow of control switches

from base level to meta level (object to metaobject)
Metaobject performs the permission checks necessary to
implement the particular security policy

Example

• Imagine that an application developer has created a program
for watching television broadcasts over the Internet called
WorldTV. We may want to impose a security policy on the
application to constrain which channels a user may watch. For
example, if a machine is provided in a public place we might
restrict the channels to a selection of local news channels.

IV.34

Example (using Kava)

• Standard approach to support the policy:
- Implement required permission class
- Grant appropriate permission to application
- Modify application code wherever check is required.

• Reflective approach to support the policy:
- Implement required permission class
- Grant appropriate permission to application
- Write (or reuse) enforcement metaobject

- Specify bindings between enforcement metaobject and object

Standard approach

• Implement required permission class
public class Channel Permission

extends java. securi ty. Permission { ... }

• Grant appropriate permission to application:
grant
{

permission ChannelPermission "5", "watch ";

• Modify application code wherever check is required:
ChannelPermission t vPerm =

new Channel Permission (channel, "watch");

AccessController . checkPermission (tvPerm) ;

• Problem - could easily overlook a necessary check, particularly
if the software is modified during maintenance

•

IV.35

Kava approach

• Write (or reuse) enforcement metaobject:
public class EnforcementMetaobject implements Metaobject
(

public void beforeReceiveMet hod(...)
{

II code t o check permission
return;

}

• Specify bindings between enforcement metaobject and object:
bind

(

kava . EnforcementMetaobject *.watchChannel(String);

}

• Advantage - enforcement code is inserted automatically and cannot
be overlooked by mistake

Advantages

• Clear separation between enforcement code and application
code

• Can change where enforcement is applied without having to
recompile application code

• Standard approach requires the programmer to manually find
the appropriate place to add permission checks

• We can take a declarative approach and rely on the toolkit to
make the correct changes

• Example shows control over method invocation, can also
control field access and method sending

IV.36

Example - resource limits

• Requirement is to limit the total amount of data that can be
written to the local file system (e.g. no more than 1Mb)

• The Java permissions framework can be used to implement
such a dynamic security check .

• However, library code cannot be modified to incorporate the
necessary calls to Ac c e s sController

• The Kava MOP allows calls to library classes from application
code to be intercepted using beforeSendMethod

• A suitable metaobject can then be bound to all calls to the
wri te method as follows:

bind
{

FileEn f o r c e me ntMe taobjec t
(* exten d s FileWri ter) .wri te (*, i n t , int)

}

Extensions to the Approach

• Kava is a useful tool for automating the addition of security
checks but it's possible to do more than that

• We can provide a toolkit of enforcement meta objects and
permissions necessary to implement standard confidentiality,
integrity and availability policies

• Toolkit consists of object oriented representations of security
models (to be used to implement specific security policies),
enforcement metaobjects and required permissions

• For example, an availability model for preventing denial of
service, or a model of the Clark Wilson security policy for
ensuring integrity

• Reduces the problem of enforcing a required security policy to
populating the appropriate security model, and specifying the
required bindings and granting the appropriate permissions

(

IV.37

High level model for Denial of
Service

Con s trainl

y "'"-

I prin;pa l I

",,_ i ~~J
Pe n ally Action

Opera tionLimit

Res ource

Thread

Contract I--~

\
\
~

-
Operation

~

--1 Codes ource

Invocation Instantiation

High Level Model for Clark
Wilson

comprises

Principal

Integrity Validation
Procedure

r-1 Audit Log ,.-
monitored by

Constrained Data Item

maps to

I

Field J
'-------

IV.38

Summary and Future Work

• Reflection is a powerful mechanism for adapting the behaviour
of components

• Java features such as user-definable class loaders and portable
byte code format support the notion of load-time reflection

• This can be used to impose appropriate security policies on
mobile code as it enters your local machine

• Meta level security models can be used to capture real world
concerns such as separation of duty and resource consumption

• We are currently evaluating our approach by using it to
reimplement the security mechanisms built into by a third
party application

• We hope to be able to demonstrate that our approach achieves
a better separation of concerns and a cleaner structure

(

•

•

•

IV.39

DISCUSSION

Rapporteur: Professor M Koutny

Professor Randell asked what are the possible disadvantages of the approach presented in
the talk. Dr Stroud answered that in his view a major problem is its inability to handle
programming language extensions, for which other techniques would be more
appropriate. Another issue is dealing with genuine 3rd party software in which case only
the very low-level calls could be intercepted. He then added that the question is difficult
to answer since it is not clear how to measure security of different solutions to the
problem. He also stressed that the talk presented a technological solution that does not
deal with the devising of security policy related issues. To the next question referring to
the existing differences between KAVA and Em, Dr Stroud replied that the principle of
the separation of concerns provided by the latter approach is very interesting. Dr Xu
asked whether the KAVA approach could in principle be used to protect code from a
malicious customer. Dr Stroud answered that he has not investigated this aspect, and
Professor Jones added that in his view such a solution does not seem feasible. A question
was then asked whether the approach presented in the talk was indeed more general than
its application to dealing with security aspects. Dr Stroud answered affirmatively,
stressing that the idea of reflection is much more general than the scope of the solution he
proposed; indeed, it provides a means to address several non-functional requirements
pertaining to dependability of computing systems he has been working on in the past.
Two questions were then posed: the first one was whether it would in principle overcome
the current interleaving of the observing and observed processes (e.g. in order not to
degrade performance), and the second, how the scheme described in the talk would be
implemented in a distributed system. Answering the former, Dr Stroud mentioned that
some hardware systems could be seen as partially addressing this issue. When it comes to
the distributed system implementation, his view was that the necessary checks could be
implemented, for instance, by a component which initiates di stributed computation. The
discussion then centered on the performance implications implied by the KAVA
approach. The discussion was ended by a comment made by Dr Thomsen that the scheme
presented in the talk could be valuable at the gateway level, in order to implement, for
example, campus-wide security policies .

IV.40

