
VIn

SOLVING INTRACTABLE PROBLEMS BY RANDOMIZED STEPS

and

CLOCK CONSTRUCTION IN FULLY ASYNCHRONOUS PARALLEL SYSTEMS AND
PRAM SIMULATION

M 0 RABIN

Rapporteurs: Ann Petrie and John S Fitzgerald

VIn . l

Clock Construction in Fully Asynchronous Parallel Systems and

PRAM simulation

(Extended Abstract)

Yonatan Aumann*

Abstract

In this paper we return to the question of simulating
synchronous computations on asynchronous systems .
We consider an asynchronous system with very weak,
or altogether lacking any, atomicity assumptions.

The first contribution of this paper is a novel clock
for asynchronous systems. The clock is a basic tool
for synchronization in the asynchronous environment.
It is a very robust construction and can operate in
a system with no atomicity assumptions , and in the
presence of a dynamic scheduler. The behavior of the
clock is obtained with overwhelming probability (! -
2- on , or > 0).

We then show how to harness this clock to drive a
PRAM simulation on an asynchronous system. The
resulting simulation scheme is more efficient then ex
isting ones, while actually relaxing the assumptions on
the underlying asynchronous system.

1 Introduction

Parallel algorithms and programs are most com
monly designed and described for systems of tightly
coupled processors working in almost complete syn
chrony. A typical example of such a system is the
PRAM, in which all processors work step by step in
complete synchrony. In less extreme models (e.g. the
BSP model [VaI90]), synchronization is not assumed
to exist at each and every step, but is still an indis
pensable ingredient of the overall structure . Synchro-

-lnatitute of Mathematics and Computer Science, The He-
brew University of JCl"U8alem. Israel; aumannOcs .huji.a.c .il

1 Aiken Computation Laboratory, Harv&rd UniveI"&ity, Cam.
bridge , MA 02138 , USA, and The Institute of Mathematics and
Computer Science, The Hebrew University of Jerusalem, Ja..
rael; rabinCdu.harvard.edu. rabin<mcs.huji.ac.il . The research
of this author wu supported in part by ONR contract num
ber NOOO1491-J-1981. and NSF grant number CCR-90-01677,
at Harvard University.

Michael O. Rabin!

nization assumptions are convenient from the program
development point of view as they free the program
mer from the need to consider actual processor and
network timings and let him or her focus on the ma
jor task of parallelization. These assumptions do not
however correspond to the way .c~~al parallel systems
operate. Typically, processors working on separate
parts of the same program may do so asynchronously
and at considerably different speeds, for a multitude
of reasons: interrupts , context switches, network con
gestion, page faults , etc ..

Handling asynchrony has thus attracted much re
search activity and is the topic of a large body of work .
One important issue is how to simulate the execution
of a PRAM program on an asynchronous parallel sys
tem, but even implementing particular algorithms in
an asynchronous setting is a challenging task . In this
paper we focus on asynchronous systems with shared
memory. Previous work regarding this setting typi
cally assumes some sort of atomicity in carrying out
basic instructions. A minimalistic assumption would
be that single reads and writes are atomic , and more
frequently it is assumed that some compound instruc
tion of the form "read & write" (e .g. test €j set, fetch
€j add, compare €j swap) is atomic. Bootstrapping
on such atoms, consensus protocols and synchroniza
tion mechanisms are then developed . Carrying out
the more complex computations, such as PRAM sim
ulations, generally required the stronger primitives.
In fact, Herlihy [Her88] describes a full hierarchy of
atomicity assumptions, and proves that atoms of a
higher class cannot be implemented by those of a lower
class, in a wait-free fashion in the deterministic set
ting. In particular, complex computations require the
most powerful atoms such as compare €j swap (see also
[Her9!]). Recently, Palem, Kedem, Rabin and Raghu
natan [KPRR92] gave for the first time a PRAM sim
ulation scheme on an asynchronous PRAM for which
only individual reads and writes are assumed to be
atomic.

Appeared in 33rd annual Symposium on Foundations of Computer Science, October
25-27, 1992, Pittsburg, PA

In this paper we describe new and improved results
fo r asynchronous settings with weak , or altogether
lacking, atomicity assumptions. Our first contribu
tion is clock construction for shared memory asyn
chronous systems. The clock is a basic tool to keep
track of the overall amount of work performed by the
system. Thus , if we have an estimate of the amount of
work between synchronization barriers , then the clock
can function as a synchronization mechanism (the no
tion of "work" is formally defined later). This enables
to perform the synchronization on a purely computa~
tional basis without reference to actual time (which is
ill-defined in asynchronous systems) .

The clock is a general construction for asyn
chronous systems and can function in the most ex
treme asynchronous sett ing , in which even individ
ual reads and write (even of a single bit) are not as
sumed to be atomic. Individual read and write op
erations are viewed as occupying physical time inter
vals of varying lengths, and the intervals of different
processors may overlap without coinciding . A formal
description of this Fully Asynchronous Parallel sys
tem (FAPS) is given in Section 2. The clock is a very
robust construction and works, even in this extreme
form of asynchrony, with overwhelmingly high proba
bility (I - 2-'(n»).

In the second part of the paper we show one possible
application of the clock. Using the clock as a synchro
nization mechanism , we show how to efficiently simu
late a synchronous PRAM on an asynchronous system.
The asynchronous system we assume for the PRAM
simulation is not the full asynchronous model , as we
assume atomic reads and writes. No further atomic
ity (e .g. read <3 write) is assumed. For a synchronous
PRAM with n processors we obtain the simulation on
a n processor asynchronous system with an O(log' n)
work overhead, and an O(log n) work overhead if the
asynchronous systems contains nf log n actual proces
sors. This is a log n factor improvement over the previ
ous results ([KPRR92]). We also relax the assumption
regarding the concurrency allowed by the system. Our
scheme requires O(log n) concurrent memory accesses
(instead of O(n) in the previous works) .

1.1 Previous and Related Work

Several studies , over the past years, have ad
dressed the issue of incorporating asynchrony into
the shared memory and PRAM models, and de
signing methods for handling the difficulties it in
troduces ([MSP90 ,CZ89,Gib89,Nis90,Her88) and oth
ers). Among these studies, there is a great diver
sity both in the formulation of the model and the

VIn . 2

complexity measures, and in the "target" algorithms
to be implemented on the asynchronous system (e.g.
PRAM simulation , FFT, graph connectivity). For
a detailed overview the reader is referred to the in
troduction in [KPRR92) (notice there especially the
important distinction between our notion of progres
sive computation and that of wait-free computation of
[Her88, Her91)).

Martel , Subramonian and Park [MSP90) give an
O(Tn) work simulation scheme for a T step n proces
sor PRAM program, on an nflog n log" n processor
actual asynchronous system, which is work-optimal.
With n processors in the actual system, the scheme
gives an O(log n log" n) work overhead . This was later
improved to eliminate the log" n factor in [MS) . Reads
and writes are assumed to be atomic. In addition there
is a "loose atomicityll assumption which states that
no more than O(n) work units are completed in the
system between specified read and write instructions.
(this prevents tardy processors from clobbering cor
rect results).

Kedem, Palem, Rabin
and Raghunathan [KPRR92], give a scheme for the
simulation of an EREW PRAM on an asynchronous
system , assuming only atomic reads and writes. For
an n processor PRAM program and an n processor
system, the scheme gives an 0 (log3 n) work overhead.
If the actual system consists of nf log n actual proces
sors then the overhead reduces to O(log' n).

Both of the above schemes assume that the simulat
ing asynchronous system allows up to O(n) concurrent
reads, even for an EREW program. Both schemes are
randomized and work w.h.p. in the presence of an
oblivious adversary.

For the PRAM simulation scheme in this paper we
assume a system with atomic reads and writes (no
further atomicity assumptions) and O(lognl concur
rency. We obtain the simulation with O(log n) work
overhead for the n processor system, and O(log n)
overhead for the nf log n processor system. We note,
however, that our scheme is Monte-Carlo, while the
previous ones are Las-Vegas.

The idea of keeping several copies of each program
variable used in this work, was introduced in the simu
lation context in [KPRR92). The latter paper also has
a clock. Our clock is, however, rather different , both
in structure and in usage, from that of [KPRR92). We
use the clock to drive the computation, rather than for
performing lateness tests. The possibility of doing so
is unique to our new clock.

A very particular form of asynchrony is the fail
stop behavior. PRAM simulation on fail-stop PRAM
is dealt in [KS91 ,KPRS91 ,KPS90] and others. Clearly

=

ou r results hold for this restricted model as well.
L. Lamport in [Lam86] dealt extensively with the

delicate issue of atomicity of reads and writes , or the
lack thereof. In the first part of [Lam86], a general
defini t ion of asynchronous systems is described. Our
FAPS model is similar to the "global time model" de
scribed there.

1.2 Outline and Terminology

This paper is organized as follows. In Section 2 we
give a formal description of the Fully Asynchronous
Parallel System, which is the general model for the
clock. In Section 3 we give the description of the clock
and prove its strong properties. In Section 4 we give
the application of the clock in the PRAM simulation
scheme.

We , loosely, say that an event E occurs with high
probability (w.h. p') if for all " > 0 there exists a
proper choice of the relevant parameters such that
Pr(E) 2: (1 - n-a). We say that the event oc
curs with overwhelming probability if for" as above
Pr (E) 2: (I - 2- an).

2 The Fully Asynchronous Parallel
System

In the definition of the asynchronous system we
want to formulate the idea that each processor can
have a completely non-correlated idea of "time"; non·
correlated to that of other processors, and n OD- corre
lated to actual (physical) time. It is important to em
phasize that not only can different processors disagree
on the question "what time is it?" but also on how
"fast" t ime passes by. In order to formulate this we
express each processor's internal, subjective, view of
time with regards to the actual (physical) continuous
time axis. Note, however, that actual time does not
exist for the processors; it is only for our convenience
in formulation and analysis that it is introduced.

The asynchronous parallel computer model we as
sume is the following:

• The system consists of n independent parallel pre>
cessors , {P;}?=l' and shared memory. Processors
may also have private memory.

• Processors act by reading from and writing to
shared memory, and by performing internal com
putations . We postulate a set of basic actions
which include: reading or writing a single mem
ory cell, or performing one of a predefined set of
internal computat ions.

VIn . 3

• Processors have an internal view of time. Internal
time is discrete , ranging over the natural numbers ,
lv. At each internal time point , T E IV , a processor
performs exactly one of the above basic actions.

• To each processor Pi there corresponds a sched
ule n mapping discrete internal time into actual
continuous-time intervals. Formally: let lnt =
{[a, b) IO ::; a < b ::; co} , the function T; : N
Int U {Failure} is a mapping with the following
properties:

1. Non overlapping: For r," E N,r of " , if
71(r) E lnt and 71(,,) E lnt then T;(r)nT;(,,) =
</>.

2. Or.der preserving: for r < " if 71(r) = [a , b)
and 71(,,) = [c, d) then b ::; c. And if T;(r) =
Failure then 71(,,) = Failure'.

The mapping T; is called the schedule of processor
P;, and the sequence T = (Tl' T" ... , Tn) is the
total schedule.

• An interval, 71(r), in the range of 71 is called an
action interval. The action interval T;(r) is the
actual time interval required by processor P; to
perform the basic action taking place at its inter
nal time point r. Throughout this interval , and
nowhere else, the internal time for Pi is T .

This formulation implies:

There can be arbitrary long actual time gaps
between actions of any given processor. This
allows the n processors to behave in complex
forms of interleaving and overlapping actions.

The actual time it takes to perform any action,
including the basic actions of reading and writ
ing shared memory cells, may vary from one
processor to another, as well as for the same
processor from action to action .
The model does not assume atomicity of any
sort , not even of the basic actions of reading
or writ ing single memory cells. Even a single
read or write action of a processor to a single
cell is spread over a time interval (rather then
occupying an idealized discrete time point), and
during this interval the state of the memory cell
is not determined. Moreover, two processors
may access the same cell during action intervals
that overlap, but do not coincide.

• Concurrent memory accesses pro-
duce non-deterministic results. If two processors
perform a read or write action involving the same

IThe fint property can actually be deduced from the second.

~ I

memory cell and their action intervals overlap then
the outcome is non deterministic, and can produce
any value (or no value at all). Later we refer to
such overlapping accesses as interfering with each
other (Definition 3.1).

An internal computation by a processor I however I
never interferes with any other action, and cannot
be interfered with , even if the physical time inter
vals overlap.

• The total schedule is determined by an adversary.
We consider two types of adversary:

l. Dynamic adversary: At any actual time in
stance the dynamic adversary may view the en
ti re state of the computation and determine the
continuation of the schedule. The adversary
cannot , however, prescribe what actions proces
sors choose to perform in the action intervals
granted to them.

2. Oblivious adversary: The oblivious adversary
determines the entire schedule before the paral
lel computation starts. The adversary has full
knowledge of the computation to be executed,
but cannot make schedule changes during the
course of the actual computation.

• The only time-based relations available to the sys
tem are: before, after and concurrent. In partic
ular this means that the system is insensitive to
strictly monotonic transformations of the time axis
onto itself.

We call a system thus described a Fully Asyn
chronous Parallel System (FAPS).

Definition 2.1 A FAPS, M, is a triplet M =
(n A T) where n is the number of processors, A the , , ,
set of basic actions and T the total schedule.

Complexity and efficiency in the FAPS clearly can
not be assessed by the standard measures of time or
number of steps. For a FAPS it is natural to me
sure work in number of action intervals. Hence the
following definition:

Definition 2.2 Let M be a FAPS and I = [to, td
a physical time interval. We say that I contains k
work units if, summed up over all processors, there
are k complete action intervals in I; i.e. k =
L:?=, I{rl7i(r) £; I}I (where lSI is the cardinality of
the set S).

VIn . 4

3 The Clock

Our first goal is to construct a robust clock which
functions in this highly asynchronous environment.
Clearly such a clock cannot measure actual time in
the physical sense, rather it will give a good measure
of the amount of work performed. For a system with
n asynchronous physical processors the clock advances
from 1r to 1r + 1 after e(n log n) work units. In subse
quent sections this clock will be harnessed to drive the
entire parallel asynchronous computation. The clock
can function in the dynamic adversary setting I with
arbitrary outcomes for interfered actions (for reads as
well as for writes).

The clock is composed of three arrays , of k =
en log n locations each (c to be determined later) ,
Clock' = (CL C~, ... , Ck), I = 0, 1,2, which drive each
other in a circular fashion . Before going into the tech
nical details let us first outline the general behavior
of the clock. Later on we give exact meaning to the
somewhat "fuzzy!! notions first used.

Locations of Clock' hold values 1r such that 1r '"

Imod3. Initially, the value 0 is written in all locations
of Clocko, 1 in all locations of Clockl and 2 in those
of Clock'. Now the value 2 in Clock' will start dr iv
ing the value of Clocko to 3, which in turn drives the
value of Clock l to 4, and so forth in a circular fashion
(for simplicity, in the following all operations in clock
superscripts are taken mod3 , i.e. 2 + 1 = 0 etc.). We
insure that Clock'+! does not start driving Clock'+'
from 1r - 1 to 1r + 2 until Clock'+l itself has the value
1r + 1 "firmly" written in it. And by the time Clock'+'
starts driving Clock' from 1r to 1r + 3, the value 1r + 1
is written in Clock'+l in an extremely robust form,
durable in face of any number "clobbers" by tardy
processors. The actual clock value i. obtained by tak
ing the value of Clocko and dividing it by 3. Since
the clock is of size 9(n log n), obtaining the value of
the clock is actually achieved by sampling the clock
arrays.

We now give an exact formulation of the above
outline. Let X be a set of memory locations (e.g.
X = Clock'). Ad-sample, S , of X is a reading of d
randomly chosen locations of X . For a sample S and
a value 1r, denote by Count(S,1r) the fraction of the
locations in the sample S which gave the reading 1r.

The protocol for a processor participating in updating
the clock is:

Protocol 1: Clock Update

l. Choose I E {O, 1, 2} at random.
2. d-sample Clock', let S be the sample. If for all

values .. , Count(S, ..) < .7 then exit.

3. Let 7r be such that Count(S, 7r) ?: .7 (7r is
unique). Choose one location of Clock'+l at
random and wri te 7r + 1 in it .

We prove that , with overwhelming probability, o nce
the arrays are ini t ialized as above , the values appear
ing in the vas t majority of the cells of the three clock
arrays advance mono tonically in a circular fashion , in
FAPS phases consisting of ern log n) work units.

Before we analize the overall dynamic behavior of
the clock we must address the impact of concurrent
memo ry accesses , i.e . overlapping read or write ac
tions interfering wi t h each other . We prove that these
have a negligible effect on t he overall behavior .

Denote by Ai (r) the basic action performed by Pi
in internal time point T (i.e . occurring during actual
time interval T;(r)).

Definition 3.1 Say that actions Ai (r) and Aj (",)
(i f. j) interfere with ea ch other, if they both access
(read or write) th e same shared memory cell and the
corresponding action intervals overlap (Ti(r)nTj("') f.
.p). When Ai (r) and Aj (",) interfere with each other
we also say that Aj("') interferes with Ai(r) , and vise
versa.

Lemma 3.1 Let M be a FAPS, and I = [to , t,] a
physical time interval containing b . n log n action in
tervals. Assume M is running Protocoll . Then, with
overwhelming probability, no more than O(n) actions
are interfered with in I .

Proof: Consider the following ordering of actions:
for Ai (r) and Aj("') with T;(r) = [a , b) and 1j("') =
[c, d), Ai (r) -< Aj ("') iff a < c, or a = c and i < j .
This is a complete ordering of the actions. Say that
Aj ("') injures Ai (r) if:
I. Aj("') interferes with Ai(T) .
2. Ai(T) -< Aj("')'
3. For all A.(A), Ai(r) -< A.(A) -< Aj("')' A.(A) does

not interfere with Ai(r).
The idea behind the injuring relation is that while

an action can interfere with several actions, it can in
jure at most one . Also, every action which is interfered
by a later action , is also injured by some action.

We now count the number of injuries in I. Let Ai
be the i-th action in I , according to the above order
ing. Let Xi be a Bernoulli random variable getting
the value 1 if Ai injures another action in I , and 0
otherwise . Let ti be the beginning time of action Ai.
Let Li be the set of cells in t he clock arrays which are
accessed at ti by some action previous to Ai (accord
ing to the defined ordering). At any given physical

VIII. 5

time instance there are at most n read or write ac
tions in progress, thus ILd :0; n. Each clock array con
tains en log n cells and t he processors randomly choose
which cell to access. Thus Pr(Xi = 1) :0; l /c log n.
The X i 'S, however, are not independent . We define
another set of Bernoulli random variables , Yi '5, as fol
lows . For all Li choose a set ii of cells of t he clock,
such that Li ~ ii and lid = n. Let Yi be a ran
dom variable such that Yi = 1 iff action Ai chooses to
access a cell Ii. Now, t he Yi 's are independent and
Pr(Yi = 1) = 1/ clog n . Thus in a total of bn log n ac
tions occurring during the interval I , with overwhelm
ing probability L: Yi ?: 2bn/ c. Clearly L: Xi ::; L: Yi.
Thus , with overwhelming probability, t here are no
more then 2bn/ c injuries in I. It remains only to notice
that number of actions interfered with in I is at most
double the number of injuries. Thus the total number
of interfered actions is at most 2 . 2bn/ c = O(n). •

Denote by Count(Clock' , 1r) the fraction of loca
tion of Clock' which hold the value 7r. Say that a
sample,S, of Clock' is <-distorted if there exists a
7r such that throughout the physical time interval in
which the sample was taken Count(Clock' , 7r) ?: .3 and
ICount(S, 7r) - Count(Clock', 7r)l ?:!. A sample is in
terfered if at least one of the reading actions involved
in it is interfered. The following fact is proved by
standard statistical arguments:

Fact 3.2 For any p < 1, < < 1, there exists a d such
that the probability that a non-interfered d-sample is
<-distorted is :0; p.

Definition 3.2 Let I be a real time interval. An ex·
ecution of Protocol 1 is said to transcend I if the ex
ecution partially, but not fully, overlaps I .

Fact 3.3 For any phy.ical time interval I there are at
most 2n protocol executions transcending it.

An execution of a protocol is interfered if the sample
or the write action are interfered.

Using the above definitions and lemmas we can now
prove the following main lemma.

Lemma 3.4 There exist constants c > 1, 0 < < <
1, 1 < d1 < d2, such that if at some time instance, to ,
the state of the clock i. the following:

• Count(Clockj
, 7r) > .5,

• Count(ClockCH1),1r+ 1) > .7+<
• Count(ClockCH2), 1r + 2) > .7 + <,

then , with overwhelming probability, after a time in·
terval I containing w work units, with d1 n log n < w <
d2n log n , the following state will be reached:

• Count(Clocki , ,,. + 3) > .7 + <,
• Count(ClockU+1

) , ,,. + I) > .5
• Count (ClockU+'),,,. + 2) > .7 + <-

Proof: W .I.o.g. assume j = O. Let us first concen
trate on non-interfered protocol executions originating
after to. The progress of the clock will take place in
two stages. Initially, protocol executions for which the
sample is at most <-distorted have the following out
comes , depending on the choice of I is stage 1 of the
protocol:

• I = 0: Write". + 1 in Clock' or exit.
• 1= 1: Write". + 2 in a random location of Clock'

(e ither overwriting a previous value or rewriting
". + 2) .

• 1= 2: Write". + 3 in a random location of Clocko,
By fact 3.2 at most a p fraction of the to

tal amount of executions are with distorted sam
ples , and will produce other values. Thus, for
p small enough, with overwhelming probability,
Count(Clock' , ,,. + 1) and Count(Clock3 ,,,. + 2) will
not decrease, while Count(Clocko, ,,. + 3) will be con
stantly growing. This state of affairs continues at least
until Count(Clocko,,,. + 3) "" .7 - <- Which means
a change of at least 20% of the locations of Clocko,
Thus, this stage should take roughly no less than
3(.2dcnlogn) work units and no more than d'nlogn,
for some d'.

Once Count(Clocko,,,. + 3) ~ .7 - < then Clocko
can start driving Clock' to ". + 4. At this point, for
non-interfered and at most <-distorted samples, the
different choices of I have the following outcomes:

• 1=0: Write ".+4 in a random location of Clock' ,
or exit.

• I = 1: Write". + 2 in a random location of Clock',
or exit.

• I = 2: Write". + 3 in a random location of Clocko,
thus driving up Count(Clocko,,,. + 3).

As above, only a p fraction of the samples
are <-distorted. Thus, with overwhelming proba
bility, Count(Clock3 ,,,. + 2) will not decrease, and
Count(Clocko,,,. + 3) will continue growing. This
state of affairs will continue at least as long
as Count(Clock',,,. + 2) > .5. Initially we had
Count(Clock',,,.+2) > .7, thus, for it to fall under
.5 will require at least 0.2dcn logn work units. Due to
the randomization roughly the same amount of work
is performed with the choice I = 2. For a proper choice
of < this will be sufficient to drive Count(Clocko,,,. + 4)
to at least .7 + <-

Interfered protocol executions, and protocol execu
tion transcending from before to may result in out
comes other than those presumed above. However,

VIII . 6

by Lemma 3.1 and Fact 3.3 there are only O(n) such
writes , and thus they have a negligible effect on a
en log n size clock. •

At any time instance t let the value of the clock be:

{
"./3

Clock(t) = d fi d un e ne
if Count(Clocko, ,,.) 2: .6
otherwise

Since the initial state of the clock obeys the condit ions
of the lemma we get by induction the following as a
simple corollary:

T heorem 1 Let M be a FAPS with a dynamic adver·
sary. For all C'r, m = 2Cfnlogn and s > 0 there exist
constants d, c, such that if M is operating by Protocol
1, then with probability ~ 1 - 2-'" logn the following
holds:

• The value of the clock propagates monotonically
through all integer values {I, 2, ... , m}.
• There exist constants db d2 ! d31 d4 such that for

each integer value". the value of the clock is ". for
w work units, with din log n ~ w ~ d2n log n, and
between the time the value is ". and the time the
value is 1r + 1 there are w' work units, d3n log n :5
w' $ d.nlogn .

Thus the clock gives us a good measure of the amount
of work performed on it.

Reading the clock is performed by d log n-sampling
Clocko. Let S be such a sample . The value of the clock
is taken to be ". if Count(S, 3".) ~ .7, and undefined if
this does not hold for any". . Theorem 1 tells us that
this form of reading gives us a "clock-like" behavior.

4 PRAM Simulation

In this section we show how to use the clock to ob
tain an efficient PRAM simulation scheme. In the sim
ulation, however, we cannot cope with full asynchrony
and must introduce some minimal atomicity assump
tions. We assume an Asynchronous Parallel System
(APS) with an oblivious adversary, for which only sin
gle reads and writes are guaranteed to be atomic. In
addition we assume the system allows up to O(log n)
concurrent reads and writes to the same memory lo
cation (with some arbitration policy for conflicting
writes). A formal description of a similar model with
O(n) concurrency may be found in [MSP90,KPRR92j.

4.1 PRAM Computation and Simulation

Our overall objective is to enable execution of
computations programmed for a synchronous PRAM

-.

(without fai lures) on an asynchronous system. This
is achieved by means of program transformation. We
give a uniform method for transforming any given
PRAM program into a APS program, which yields the
same results (under an appropriate interpretation).
The PRAM model we consider is the EREW (Ex
clusive Read Exclusive Write) PRAM. For the sake
of completeness let us state the characteristics of · a
EREW PRAM program:

• The program is written in parallel steps. In every
step each PRAM processor is to perform one in
struction of the form x - fly , z) . It is postulated
that each of the variables x , y, Z I occupies a single
shared memory cell .

• All instructions in a step are assumed to be per
formed concurrently and completed together. In
particular no processor haa to await the output, in
the same step, of any other processor .

• It is assumed that all reads in the parallel step
occur before all writes. Thus if a processor reads
a variable it will obtain the value last written in it
before the current step.

• The program is written is such a way so as to guar
antee that during no one parallel step more than
one processor attempts to access (read or write)
the same memory cell.

Each PRAM step is t ranslated into a phase in the
operation of the APS, consisting of 0(n log2 n) atomic
actions. The transformation guarantees that, w.h.p.,
the computation is:

1. Correct: produces the same results (under suit
able interpretation) as the original PRAM pro
gram.

2. Progressive: If 0(n log2 n) work units are de
voted to a phase then the corresponding PRAM
step is completed.
A single step would take the synchronous PRAM

0(n) work units. Thus, the complexity overhead is
0(log2 n).

4 .2 Program Transformation

In each PRAM parallel step each PRAM proces
sor, Vi I is to perform an instruction of the form
x - fly, z). Focusing on one such step, we designate
the instruction that a specific processor II; is to per
form by Xi - /;(Yi, Zi). Following [KPRS91j we split
each parallel step into two sub-steps. First II; reads
the values of Yi , Zi" computes fi(Yi , Zi) and writes the
value in the i-th location of a special temporary array:
tmPi - fi (Xi , y;). Then the new value is copied back

VIII . 7

from the temporary array into its location in memory,
Xi - tmPi ' This two sub-step operation mode, known
as TIES, is also enforced when dealing with control
variables, such as the individual processor 's program
counters etc .. Having split each instruction this way,
each sub-step becomes idem potent, that is: performing
it several times has the same effect as performing it
once. For the exact formulation and a full description
of TIES the reader is referred to [KPRS91j.

To avoid confusion we refer to the work to be
performed by the PRAM processors as computation
threads. Thus, there are n computation threads
Thread!, ... , Threadn, corresponding to the n PRAM
processors to be simulated.

In an asynchronous machine processors may "go to
sleep" for long periods of time and then "wake up"
in a later stage without knowing it. If the processor
was about to write some variable before falling asleep
then when waking up it might overwrite a new value
by an obsolete one. In order to avoid losing the correct
values, following [KPRR92], for each memory variable
we keep I' actual copies, I' = 0(log n). We shall see to
it that w.h.p . at all times at least 3/4 of the copies of
each variable hold the correct value. The temporary
array variables also have I' copies. For a variable (or
temporary variable) v, we denote the by vU) the j-th
copy of v.

Processors divide their effort between working on
the actual program and advancing the clock, by ran
domly chosing between the two. Since we have definite
bounds on the amount of work it takes to advance
the clock , this will also give an accurate measure of
the amount of work devoted to the program. We see
to it that this amount is sufficient to guarantee that
w.h.p. by the time the clock advances from one value
to the next, the current program sub-step has been
completed.

When a processor chooses to work on the program it
could either be in a computing sub-step or in a copying
back sub-step. There are separate protocols for each of
these. Recall that reading the clock is performed by
d log n-sampling Clocko, and dividing by 3 (Section
3). The overall protocol is thus (0 < q < I to be
determined later):

Protocol 2: General Step

1. Chooee r E {O, I} at random, with Pr(r = 0) =
q, Pr(r = 1) = 1 - q.

2. If r = 0 then perform clock update protocol
(Protocol 1).

3. If r = 1 then read clock. If clock value is unde
fined then abort, else let". be the value.

4. If 7r is odd then perform computing sub-step pro
tocol , else perform copying back sub-step pro
tocol.

Definition 4.1 The 7r-th phase is the actual time in
terval in which the clock value is 7r.

Later we will see that the individual computing and
copying back protocols consist of O(1og n) basic ac
t ions each. Call the work performed on the clock clock
work and that on the program (i.e. computing and
copying protocols) program work. Recall that proces
sors randomly choose if to perform program work or
clock work using a (q, 1 - q) biased coin .

Fact 4.1 For all b there exists a q such that with
overwhelming probability in each phase the number
of work units devoted to program work is W, with
w ~ bn log' n , w = O(n log' n).

We now turn to describing the protocols for com
puting and copying back , starting with the former.

At each step there are n computation threads to
be simulated. Corresponding to each thread Thread,
there is a value !i (Yi , Zi) to be computed and stored in
the temporary array. Each such value must be written
in J10 = ,Hog n copies in the temporary array. Thus
there are all in all pn log n tasks to be performed. Each
time a processor is in a computing sub-step protocol
it chooses one of these tasks at random and performs
it. Obtaining the value of a variable is achieved by
reading all the copies of the variable and taking the
value that appears in most of them.

Protocol 3: Computing Sub-Step

Let 11' be the clock reading obtained in the general step
protocol.

1. Choose i E {I,· .. , n} and j E {I, ... , J1o} at ran
dom.

2. Read i-th thread program counter. Let !i(Y' , x,)
be the value to be computed by Thread, at this
step.

3. Read Yi and z, .
4. Read clock. If value other than 11' then exit.
5. Write value of program counter PC(i) in

tmpPC(i) (j).

6. Compute !i(Yi, Zi) and write the value tmpp>'

The protocol for the copying back substep is analo
gous. Both protocols consists of 6 (log n) action each.

We now give a brief analysis and prove the correct
ness of the scheme.

VIII .8

D efinition 4.2 An executio n of a protocol is sa id to
be in sync if it s entire execution is within one phase.
The execution is out of sync if it spans more than one
phase.

Lemma 4.2 For all b' there exists a b such that if at
least bn log:2 n work units are devoted to program work
during each phase then w.h. p. each phase contains at
least b'n log n complete in-sync protocol executions of
program work.

Proof: Assume each protocol takes at most slog n
work units. By Fact 3.3 there are at most 2n out
of sync protocol executions transcending the phase.
At most 2n8 work units are devoted to these out of
sync executions. Thus there are at least (b n log' n -
2sn log n)1 slog n in sync protocol executions in the
phase. •

Thus, combining this with Fact 4.1, we can see to
it that each phase contain "sufficient" amount of com
plete protocol executions.

Say that protocol execution successfully terminated
if it is completed (does not exit in step 4). Note that
only successfully terminating protocol execution per
form write actions. For a successfully terminating pro
tocol execution, say it is a 1I'-th phase execution if it
works with a clock reading of 11'. Recall that reading
the clock is performed by a d log n-sample.

Fact 4.3 With high probability, all clock reads are
correct.

Corollary 4.4 Let E be a 7r-th phase successfully ter
minating protocol execution. W.h.p. all the readings
o! all variables in E where performed within the 7r-th
phase.

Proof: The clock is read before and after reading
the variables. By Fact 4.3 w.h.p. the clock readings
are correct. The value of the clock must be identical
in these two readings for the execution to successfully
terminate. •

Next we examine the write actions and the values
they produce in the copies.of the variables.

Definition 4.3 Let [be a time interval. A variable
v is said to be A-correct in [if there exist at least a
A fraction of the copies of v that contain the correct
(current) value throughout [. The entire memory is A
correct in [if all variables which are not to be updated
in [(according to the PRAM program) are A-correct
in [.

We prove that at all times the entire memory is at
least 3/4-correct, which has the following implication:

Fact 4.5 Assume that the memory is 3/4.correct dur
ing the /roth phase. Then all copies written by a /r·th
phase protocol executions aTe in fact written with CO T

rect va lu es according to the /r·th PRAM step.

Thus a copy updated by an in sync protocol executions
holds the correct value (if that value was not overwrit
ten later) . There are two possible reasons why a copy
does not hold the correct value.

o Old copy: the copy was not updated during the
most recent update phase.

o Clobbered Copy: the copy was correctly updated,
but was later overwritten by a protocol execution
originating in a previous phase.

The following simple lemma bounds the probability
of a copy to be old.

Lemma 4.6 Assume that the memory is 3/ 4-correct
during the /roth phase. Let v be a variable to be updated
during this phase. For all p < 1 and (3 there exists a b'
such that if there are at least b'n log n in sync protocol
executions during the 1f·th phase then the probability
that by the end of the /roth phase a specific copy of v,
vCil, is not updated is ~ p.

The next lemma bounds the probability of a copy to
be clobbered.

Lemma 4.7 The probability that a copy is clobbered
is ~ l /{3 logn.

Proof: Let vCil be a copy of a variable and let 1f

be the most recent phase that v was to be updated.
The copy v(j) can only be clobbered by protocol ex
ecutions originating before the /roth phase and termi
nating during or after it. There are at most n such
protocol executions. Let us focus on one such execu
tion. The PRAM step thiB execution is simulating is
(I < 1f . If variable v was not to be written at the (I-th
step then this protocol cannot cause a clobber in v. If
variable v was to be written in the (I-th step then the
probability that this specific execution chooses to up
date v(j) is ~ l/{3n log n (the scheduler is oblivious).
Thus the total probability iB ~ n/ {3n log n. •

Each variable has J.I = {3 log n copies. Thus we ob
tain:

Lemma 4.8 Let 1f be the most recent phase that a
variable v was to be updated. For all < there exist {3 and
b', such that if v has (3 log n copi .. and at least b' n log n
in sync protocol execution were completed in the 1f-th
phase, w.h.p., following the 1f-th phase at most an <
fraction of the copies of v are old or clobbered.

Thus we have:

VIn .9

Lemma 4.9 Assume that the memory is 3/ 4.correct
during the /r·th phase, then w.h.p. the memory is 3/ 4·
correct during the phase /r + 1.

Since initially the memory is completely correct we ob
tain the correctness of the entire simulation by simple
induction. Finally we address the issue of concurrency.

Lemma 4.10 Wh.p . no cell is accessed concurrently
by more than a(log n) processors.

Proof: The variables accessed by different threads
are distinct. There are n processors and n threads.
The processors randomly choose which thread to sim
ulate. •

Putting this all together we obtain:

Theorem 2 Let M be an n processor asynchronous
system with atomic reads and writes, allowing up to
a(log n) concurrency in memory access. Let P be an
m = poly(n) step EREW PRAM program. The above
protocols are a transformation ofP into a program for
M, such that with overwhelming probability each step
takes 6(n log' n) work units, and with high probability
for each PRAM variable at all times at least 3/4 of
the J.I copies representing it hold the correct (cu rrent)
value.

For a system with n/ log n actual processors we can
reduce the complexity overhead to a(log n) . However ,
the protocols and the analysis are somewhat more
complex in this case, and we cannot give the details
here. This is planned for the final version.

Finally, if we want to have 80me indication of the
termination of the computation, then, w.l.o.g. the
PRAM program can be augmented so as to include
a control variable which will hold the value "Done",
iff all the program counters, for the n PRAM proces
sors reached "halt". Thus, by examining the copies of
this variable, one can can determine that the simula
tion is completed. The output/results of the simulated
PRAM computation can be then acquired by reading
most copies of the relevant program variables.

.5 Final Remarks

o The Clock described here iB composed of three sub
arrays. It is also possible to construct such a clock
with only two sub-array. (clearly, properly modi
fying the update protocols). We found the present
construction to be the simplest to describe , and
preferred presentation clarity over technical effi
ciency.

• The clock described here has size 0(n log n) . We
proved it works with probability 2: 1-2- 0

' . Actu
ally we can prove a probability 2: 1- n -on. A simi
lar construction with an 0(n) size clock (each array
with cn locations) , gives a probability 2: 1 - 2- 0

'.

• In the present work we made no assumptions re
garding the actual or relative speeds of t he pro
cessors . The results hold even with a schedule in
which only one processor is doing all of the work , or
any other schedule chosen by the adversary. This is
due to the full randomization implemented by the
processors. If we substitute this adversary schedul
ing by a stochastic timing model , then we can do
away with some of the randomization. In particu
lar , if the clock is composed of elements with fixed
connection wires, but for which the timing is de
termined by a proper stochastic process, then a
behavior similar to the one of the present clock
should be expected. Thus, this clock may be signif
icant and applicable in other domains as well , both
within the world of asynchronous and distributed
computing and elsewhere. This is the topic of a
current study.

References

[CZ89]

[Gib89]

[Her88]

R. Cole and O. Zajicek. The APRAM:
Incorporating asynchrony into the PRAM
model. In Proc. of the 1st ACM Sympo
sium on Parallel Architectures and Algo
rithms, pages 169-178, 1989.

P. B. Gibbons. A more practical PRAM
model. In Proc. of the 1st ACM Sympo
sium on Parallel Architectures and Algo
rithms , pages 158-168, 1989.

M. Herlihy. ImpoBBibility and universal
ity results for wait-free synchronization. In
Proceedings of the 7th Annual ACM Sym
posium on the Principles of Distributed
Computing, pages 276-290, 1988.

[Her91] M. Herlihy. ImpOBBibility results for asyn
chronous PRAM . In Proc. of the 9rd ACM
Symposium on Parallel Architectures and
Algorithms, pages 327-336, 1991.

[KPRR92] Z. M. Kedem, K. V. Palem, M. O. Rabin ,
and A. Raghunathan . Efficient program
transformation for resilient parallel com
putation via randomization . In Proceed
ings of the 24th Annual ACM Symposium
on the Theory of Computing, 1992 .

VIn . LO

[KPRS91] Z.M. Kedem, K.V. Palem, A. Raghu
nathan , and P.G. Spirakis. Combining
tentative and definite executions for very
fast dependable parallel computing. In
Proceedings of the 29rd Annual ACM Sym
posium on Theory of Computing , pages
381-390, 1991.

[KPS90] Z.M . Kedem, K.V . Palem, and P.G. Spi
rakis. Efficient robust parallel computa
tions. In Proceedings of the 22rd Annual
A CM S ymposium on Theory of Comput
ing, pages 138-148 , 1990.

[KS91] P Kanellakis and A. Shvartsman. Effecient
parallel algorothms on restartable fail-stop
processors. In Proceedings of the 10th An
nual ACM Symposium on the Principles of
Distributed Computing, pages 23-36, 1991.

[Lam86] L. Lamport. On interprocess communica
tion . Part i: Basic formalism, and Part
ii: Algorithms. Distributed Computing,
1(12):77-101,1986.

[MSP90] C. Martel, R. Subramonian and A. Park .
. Asynchronous PRAMs are (almost) as

good as synchronous PRAMs. In Proceed
ings of the 91st Annual Symposium on the
Foundations of Computer Science, pages
590-599, 1990.

[MS] C. Martel and R. Subramonian. On
the complexity of certified write-all algo
rithms. Unpublished Manuscript.

[Nis90] M. Nishimura. Asynchronous shared
memory parallel computations. In Proc. of
the 2nd ACM Symposium on Parallel Ar
chitectures and Algorithms, pages 76-84,
1990.

[Val90] L. G. Valiant. A bridging model for par
allel computation. Communications of the
ACM, 33(8) :103-111, August 1990.

VIII.ll

DISCUSSION

Rapporteur: Ann Petrie

Lecture One

Professor McCarthy said that Professor Rabin's pattern match ing depended on the
particular structure of multiplication and asked him if he had any idea what kinds of
problem admitted of this structure. Professor Rabin agreed that he was making strong
use of the distributivity and associativity of multiplication (not commutativity since
matrix multiplication is not commutative). This makes his method look very particular.
However he still believed that the method was useful and would answer the question by
reminiscing abcut his own experience.

In 1975 he gave a lecture at CMU on randomized algorithms, not probabilistic ones that
would work well in the average case, but ones where "you twist things around and bend
them to your will and create an algorithm which, with exceedingly high probability is
true in every case". The two examples he used were primality testing and finding the
nearest pair in a very large set of points in n dimensions. The reaction of people there
was that it was "all very nice" but rather specialized: he had used a variation of Fermat's
theorem for the primality example and something else problem specific for the nearest
pair example and consequently the method was not going to have wide utility.

Professor Rabin said that it turns out that there are many applications, as can be seen if
you look at meetings in theoretical computer science and also in some actual applications.
I n theoretical computer science maybe a third of all papers at important conferences are
devoted to randomized algorithms. Consequently, letting history be his guide, he
considered that his approach merited study and that he would not like to say what its
actual limitations were. He added that the parallelization of the pattern matching method
works equally well for n dimensions as for two.

Professor Knuth said that he did not understand what was meant by the assertion that a
program was correct "with very high probability" and asked for clarification. Professor
Rabin said that he had not said that the program was correct. It was an important point
that had been raised and he would explain what he did mean. He was not asserting that a
program or procedure was correct - such a statement would have to be concerned with
its semantics. What he was talking abcut was the following experiment.

Suppose we have a procedure for multiplying together two matrices - this is a black box.
The experiment consists of choosing 10,000 random pairs of 1 000x1 000 {0,1}
matrices A and S. (These are taken from a discrete domain so the problem of choosing
randomly presents no problem.) For each pair we calculate A.S using the given
procedure and then compare it with the result obtained using the ordinary (laborious)
method of matrix multiplication which we assume to be correct. The question is, in the
space of all 1 000x1 000 {0,1} matrices (which is enormous), what percentage of pairs
will lead to results which disagree? If the the black box procedure is wrong (i.e . the
results of the two methods for matrix multiplication disagree) in more than 1 % of the
cases, then the probability of this not being discovered in 10,000 trials is smaller than
1/exp(100). This is the assurance that we have without going into the semantics of the
procedure.

VIII. 12

VIII . 13

DISCUSSION

Rapporteur: John S Fitzgerald

Lecture Two

Professor Dijkstra recalled that Professor Rabin's clock consisted of three lines of equal
length and asked him to justify the number of lines and the equality of length.

Professor Rabin replied that the number three was not sacrosanct, but convenient in that
it made the operation of the clock easier to explain than a two line case. All of that was,
he said, "amenable to play". Filling the clock by threes allows an element of stability ,
whereas a two-line clock is more delicate in terms of the cross-actions between lines . A
clock in a logical system could have a pulsator between two modes.

Professor Rabin commented that he liked the fact that we can reliably do things in this
loose environment because of its potential for looking at neural systems. We WOUld, for
example, expect that if two neurons performed simultaneous writes, the result would be
meaningless. This contrasts with the unrealism of synchrony, which forms the basis of
current work in neural networks.

Professor Knuth commented that a difference between real neural networks and
Professor Rabin's environment was that, in the latter, each processor can access any
part of the shared memory with no restriction.

Professor Rabin thanked the questioner for an important remark, agreed and commented
further that here he had adopted the randomised point of view. He would envision neural
networks in nature in a statistical rather than randomised way. He would assume an
array with fixed but random connections: this has statistical behaviour like random
sampling. It is important to have some randomness of these connections and then the
mathematical analysis becomes very similar.

Professor Wells suggested that this could be achieved by selecting cells randomly at the
outset.

Professor Rabin pointed out that it would still be necessary randomly to select cells to be
read in order to calculate the clock reading.

Professor Whitfield commented on Professor Rabin's "fuzzy variables" . He pointed out
that several processes were changing variable values and that the final value chosen was
determined by the majority. He therefore proposed the terms "ballot variable" or
"democratic variable". Professor Rabin favoured the former.

VIII . 14

