
v

ARTIFICIAL INTELLIGENCE

J McCARTHY

Rapporteur : John E Dobson

T,
~

I

I

I

I

V.l

I meant what I Mid, and I said what I m eant.
An elephant 's faithful, one hundre d percent!

moreover,

A n t/ephant never forgets!

Elephant 2000: A ProgramIning Language Based on Speech Acts

by John McCarthy, Stanford University

Abstract: Elephant 2000 is a vehicle for some ideas about programming language
feaiures. We expect these features to be valuable in writi~ and verifying programs
that interact with people (e.g. transaction processing) or interact with programs
~elonging to other organizations (e.g. electronic data interchange)

1. Communication inputs and outputs are in an]-0 language whose sentences are
meaningful speech acts approximately in the sense of philosophers and linguists.
These include questions, answers, offers, acceptances, declinations, requests, per-

~issions and promises.
2. The correctness of programs is partially defined in terms of proper performance
of the speech acts. Answers should be truthful and responsive, and promises should

. be kep t . Sen tences of logic expressing these forms of correctness can be generated
~tomatically from the form of the program .

3. Elephant source programs may Bot need data structures, because they can refer
directly to the past. Thus a program can say that an airline passenger has a reser
~tion if he has made one and hasn't cancelled it .

4. Elephant programs themselves will be rep resented as sentences of logic. Their
p roperties follow from this represen tation without an intervening theory of pro-

_ l5famming or anything like Hoare a.."<ioms. .
~ Elephant programs that interact non-trivially with the outside world can have

both input- output jpecifi cati-ons , relating the pr~ams inputs and outputs, and
accomplishment specifications concerning what the pr~am accomplishes in the
world. These concepts are l'espectively generalizations of the philosophers' il/ocu
tionary and perlocutionary speech acts.
~ P rograms that engage in co=ercial transactions assume obligations on behalf

of their owners in exchange for obligations assumed by other entities. It may be
part of the specifications of an Elephant 2000 pr~ams that these obligations are
exchanged as intended , and this too can be expressed by a logical sentence.

1

•

V. 2

Examples

• Speech acts

Requests (authorized, comprehensible)

Questions (comprehensible)

Answers to questions (truthful and responsive)

Offers (authorized)

Acceptances and refusals

Promises (authorized and kept)

• Reference to the past

A passenger has a reservation if he has made

one and hasn't cancelled.

•

V. 3

ELEPHANT 2DOO AIRLINE RESERVATION PROGRAM

if ,full fit then accept . request make commitment admit (psgr, fit)

answer. query exists commitment admit(psgr, fit)

accept.request cancel commitment admit(psgr , fit)

if now = timefit

full fit -

1\ exists commitment admit (psgr, fit)

1\ ,full1 fit

then accept .request admit (psgr, fit)

card {psgr I exists commitment admit (psgr, fit)} = capacity fit

fulll fit

card {psgr I did admit (psgr, fit)} = capacity fit

•

V . 4

Applications

• Transaction Processing

• Electronic Data Interchange

• Programs that must interact but weren't designed

together

• . Airline reservation system

• Programmed Control Tower

•

V. S

Features of Elephant

• I-O is in speech acts .

• Correctness involves proper performance of speech

acts .

•. Programs can refer to the past.

• Programs are represented as S€ntences of logic .

• Accomplishment and input-output specifications .

•

V.6

ALGOL 48 AND ALGOL 50

Algol 60 program for multiplication by addition

(The numbers in the left margin are not part of the

program.)

0 start : p := 0 ;

1 2 := n ;

2 loop: if i = 0 then go to done ;

3 p := p + m ;

4 i := i - 1 ;

5 go to loop ;

6 done :

Correctness condition: The program will eventually

reach the label done a.t which point the variable p will

have the value mn. This is conventionally proved using

the inductive assertion method, attaching the assertion

p = m(n - i) to the label loop . It is shown that

this property is preS€rved in the loop. One proves that

the program termina.tes by showing that th€ variable i

counts down from n to o.

•

and

V. 7

Algol 48 version of the Algol 60 program

p(t+ 1) =ifpc(t) = OthenO

else if pc (t) = 3 then p (t) + m ,

els€ p(t)

i(t + 1) =ifpc(t) = 1 thenn

elseifpc(t) = 4 theni(t) - 1 ,

else i(t)

pc(t + 1) = if pc(t) = 2 1\ i (t) = 0 then 6

else if pc(t) = 5 then 2

else pc(t) + 1

Its correctness is represented by the sentence

Vn(n > 0 :) Vt(pc(t) = 0 :) 3t'(t' > t l\ pc(t') = 6I\ p(t') = mn))).

This may be proved from the sentences representing

the program supplemented by the axioms of arithmetic

and the axiom schema of mathematical induction. Use '

mathematical induction on n applied to a. formula

involving p(t) = m(n - i(t)).

V.S

Algol 50 version of the Algol 60 program

Preliminary axioms and definitions:

c(var, a(var, '!!al,~)) = val,

var 1 =1= var2 ~ c(var2, a (var 1 , val, 0) = c(var2, 0,

a(var, val2, a(var, vall, 0) = a(var, val2, 0,

and

var 1 i= var2 ~

a(var2, vaI2, a(varl , vall ,0) = a(varl, vall, a(var2, vaI2,0).

The following definitions

step(~) = a(pc, c(pc,~) + 1, {),

goto(label , ~) = a(pc, label , O.

shorten the expression of programs. We mustn't forget

to say p i= i /\ P # pc /\ i ¥ pc.

•

V.9

\it(~(t + 1) =if c(pc,~(t)) = 5tart

a lgo l. s l; [f59 .jmc}

then step a(p, 0, {(t))

else if c(pc, e(t)) = 5tart + 1

then step a(i , n,e(t))

else if c(pc, ~(t)) = loop

then (if c(i,~(t)) = Othengoto(done,{{t))

else step ~(t))

else if c(pc , ~(t)) = loop + 1

then step a(p, c(p,~(t)) + m,{(t))

else if c(pc, ~(t)) = loop + 2

then step a(i , c(i,~(t)) - 1 ,((t))

elsen c(pc,~(t)) = loop + 3

then goto(loop, ~(t))

else ~ (t + 1))

•

V. 10

•

. . .

.MZ(c..Jp)

~t.((!.J~)

V . 11

•

V. 12

Input-output and Accomplishment Specifications

• Illocutionary vs . perlocutionary speech acts

I tell you the meeting is tomorrow.

I inform you that the meeting is tomorrow.

(You believe it.)

I ord€r you to come to the meeting.

I get you to come to the meeting.

• Input-output and accomplishment program

specifications .

It says "Cl.eared to land" only when it perceives

that the runway is clear .

It says "Cleared to land" only when the runway

is clear.

•

V. 13

DISCUSSION

Rapporteur : John E Dobson

Lecture One

In the subsequent discussion, it was pointed out that Professor McCarthy had talked a lot
about what should be in the curriculum but not much about how it should be done, and
that style of presentation is as important as content. Professor McCarthy thought that the
answer lay in the use of proper textbooks.

There was a lot of discussion on whether the demands of students would be better met by
courses taught by computer scientists with a computer science bias or whether they
should be taught by subject specialists. For example, physicists want to know about
computing, by which they mean they wish to be taught Fortran. However, they sometimes
get told by computer scientists, Fortran is no good, we will teach you something else.
Th is is an example of computer scientists not appreciating how much physicists use
Fortran. In this case, what is really required is somebody who understands both fields
equally well. Again , it was pointed out that computer science students need to know a lot
of mathematics so perhaps the only solution is to get mathematicians to teach them.
Professor McCarthy observed that the dialogue between mathematicians and engineers
oscillated, and that mathematicians tended to teach more than is required. He suggested
leaving out number theory (except for cryptography) and geometry (except for
robotics). He agreed that his proposed course contained a lot of material and so one needed
to experiment to determine the correct level at which to pitch the topics. However, he did
not agree that the course could be structured as a core body plus supplementary areas
except with respect to advanced logic topics where it is probably not desirable in the
near future to have computer science variants of these but to use professional courses.

There was agreement on the observation that a very good exercise is to get students to
acquire a feel for the expressiveness of a language by getting them to use it to simulate
something and that the course should include getting them to model something in logic.

On the topic of invariants in writing programs and in proving correctness of programs,
Professor McCarthy commented that as someone with little familiarity with the topic, he
hoped that not everyone had to do it. But some of his students needed proof theory.

Lecture Two

In response to a question as to what needs to be given up in order to achieve the proposed
language extensions, Professor McCarthy repeated that they probably could not be
compiled since the computer would not be able to figure out appropriate data structures.

In response to a question about what happened to responsibilities, Professor McCarthy
replied that responsibilities belong to the owner of the computer program. Obligations
are delegated and it is desirable to prove that obligations are fulfilled in so far as they
depend on the action of the program.

Professor McCarthy was unable to comment on the relation between his thoughts and the
Co-ordinator of Terry Winograd and his colleagues or the BAN logic described by Roger
Needham, but he could describe how the subject matter related to reality. If the axioms
relating reality to the program's model of the world are wrong then problems will occur.
But this is always true in other fields as well. You trust your life to other people's
applied mathematics.

V.14

