
III.2S

SIM-AGENTS
A TOOLKIT FOR PHILOSOPHERS AND ENGINEERS

A Sloman

• Rapporteur: Professor J E Dobson

•

•

•

•

•

•

II1.26

• •
SIM~GENT

A Toolkit

•

for Philosophers and Engineers
Aaron Sloman

School of Computer Science
The University of Birmingham

Including ideas from:

Riccardo Poli, Brian Logan,

Luc Beaudoin, Darryl Davis,

Catriona Kennedy, Ian Wright,

Peter Waudby Jeremy Baxter (DERA),

Richard Hepplewhite (DERA)

THE TOOLKIT IS AVAILABLE ONLINE

IN THE BIRMINGHAM FREE POPLOG DIRECTORY

http://www.cs.bham.ac.ukJresearchlpoplog/

For an up to date version of this document see

http://www.cs.bham.ac.ukJaxslmiscldraftltoolkit.ps

• • • •

ABSTRACT ~
In order to support exploration of a variety of architectures
without commitment to any particular architecture (e.g. SOAR,
PRS, ACT-R, etc.) we have developed a very flexible toolkit based
on and supporting mUltiple programming paradigms, including
standard procedural programming, functional programming, list
processing, rule-based programming, event-based programming,
object oriented programming (with multiple inheritance), and
logic programming, in an environment that supports rapid
prototyping and the use of incremental compilation to support
exploration of ideas.

We wanted it to be easy to do fairly simple things, so that the
toolkit could be used for teaching and for student projects (for
which it has already proved very successful here in Birmingham)::;
while also supporting more complex and difficult programming -..l

tasks in research projects, including for instance combining
neural and symbolic mechanisms in the same architecture, and
allowing agents with different architectures to interact with one
another and with objects in a simulated environment.

The talk will present some of the motivating ideas, and give some
simple demonstrations. Further information about the toolkit is
available at

http://www.cs.bham.ac.ukJ axs/cog...llffect/sim...llgent.html

It uses the Poplog multi-language software development
environment which is now available free of charge with full
system sources here:

http://www.cs.bham.ac.ukJresearchlpoplog/freepoplog.html

See also:
Aaron Sloman and Brian Logan,

Building cognitively rich agents using the Sim~gent toolkit,
Communications of the Association of Computing Machinery,
42, 3, pp. 71-77,~arch,1999,

A recent presentation on the toolkit is available in postscript and
PDF here:

http://www.cs.bham.ac.uklaxslmisddraftitoolkit.ps
http://www.cs.bham.ac.ukl axs/misd draftitoolkit.pdf

We need to support
SCENARIOS WITH

RICH ONTOLOGIES

p<l ~

~ :.:.,. k-O~_-p<l~
o Objec< §f.?I,,---" -@ 0 gl .. ___ ,,~
pod Instrument t:!!!J~

@ ",«or 0 (@ ~
o Location 0
--s-- CommuniCllt ~ ~
-_."--' , B. .~.ed ~ IG"l
........ Act on t!U

-- -- - --
Various kinds of concurrently active entities, e.g.:
• AGENTS: which can communicate with one another,
• MECHANISMS: which sense and react to other things,
• INSTRUMENTS: which can act if controlled by an agent,
• "REACTORS" which do nothing unless acted on

(e.g. a mouse-trap)
• LOCATIONS: of arbitrary extents with various properties,

including continuously varying heights
etc., etc.

S
N
00

• • • •
[INSIDE ONE AGENT I

Agents can have complex internal architectures
(! Rectangles represent short or long term databases
• Ovals represent processing units.
• Arrows represent flow of information,

including control information

Some components are linked to sensors and motors
(physical or simulated)

Some are connected only to other internal components

•

The toolkit should support different
sorts of agents

• performing different sorts of tasks

• with various kinds of sensors and motors
(either simulated or physical)

• connected to different kinds of internal processing modules

• with different kinds of internal short term and long term
databases,

• with some components monitoring or controlling others

Concurrency is required at all levels E
Agents, their components and other objects can all perform
various sub-tasks concurrently and asynchronously .

With information flowing in all directions simultaneously .

(Compare M.Minsky The Society of Mind. Perhaps we need to
think of an "ecosystem of mind".)

\D

MORE ON INTERNAL
COMPLEXITY AND VARIETY L-, _________________________ ~

It should be possible to have different sorts of agents with
different architectures geared to different tasks and
requirements.

Since architectures may develop over time, the tools must support
changing hierarchical process structures.

We know from several decades of work in AI that different TYPES

of mechanisms are likely to be required, including rule-based
reactive systems, neural nets, parsers, meaning generators,
sentence generators, pattern-directed associative knowledge
stores, low level image analysers mainly crunching numbers, high
level perceptual mechanisms mainly manipulating structures,
~imulations of other agents, event-driven and interrupt-driven
modules etc.

This in turn imposes a requirement for using different kinds of
language for different subtasks.

[Architectural bootstrapping ~-l

Individual agents, through learning or development may need to
be able to modify THEIR OWN architectures,

either

• to simulate biological processes of growth and development,

or because

• applications of artificial agents require changes of competence
at run time (e.g. agents extending themselves with new "plug-in"
components at any level).

:::
~

w
o

• • • •
The toolkit should support varying

resource allocations

E.g. some agents or components of agents should be allowed to
run faster or slower than others.

It should also be possible to vary the speeds of components,

e.g. to investigate the ability of an architecture to cope with
resource limits.

•

FOR INSTANCE WE ARE INTERESTED IN THE ABILITY OF

ATTENTION FILTERS TO COMPENSATE FOR RESOURCE LIMITS IN

DELIBERATIVE MECHANISMS.

• •

The Birmingham 'CogAff' Architecture
(A partial view)

We wish to develop models with multi-level concurrently active
components within perceptual, central and motor sub-systems.

Perception
Central Action

s
W
>-'

This model is explained in more detail in separate presentations
and publications available at

http://www.cs.bham.ac.uklresearcb!cogaff/

,,' ...

"

-'
<,:. .•. " ,', .~

::;,; ">~~i!,~{;l~~;~~N~:;'~~'~ ,f;:~
"

"/ .. :~ ..

-:;. .~~

http :lI-www.cs.bhlllI1~ac_.uk(sra -'
. - .., ". ~ "

<.' "i
; .. ~ "~~:

.'"

~," .r', ":-:1"
;'" <'\>: .. oJ .;

.~, i . ~ . . -: ~; -:.-.;

"

"

~~~~~~:·~~;\~~;t?;~·:~·; ,.,.: 

o 

:.}; '~;:",~;:s;)'l,~ 
, .~ 

'-

-,>. .: 

:\~y;'::;?C~=~i1r'! 
... \:;,' 

[~~ APPROACHES TO DIVERSITY _ =1 
Tools to support this diversity cannot be expected to anticipate all 
types of entities, causal and non-causal relationships, states, 
processes, etc. which can occur. 

So users should be able to extend the ontology as needed. E.g. 

• User provides axioms defining new classes and subclasses 
and new behaviours 

• User assembles architectures diagrammatically. 
• User defines new classes and sub-classes using an object 
oriented programming language (e.g. with multiple-inheritance). 

(THIS IS, AT PRESENT, THE APPROACH SUPPORTED BY 

SIM..AGENT,) 
~ 

;::: 
W 
tv 



• 

E.G. 

• • • 
Which approach works will depend on 

various factors 

• 

~ Whether there's only one type of architecture supported by the 
toolkit (e.g. SOAR, ACT-R, PRS, COGENT, etc.) 
• How well defined the scenario is at the start: e.g. whether the 
only variation allowed is in a limited set of parameters. 

T HERE IS A TRADE-OFF BETWEEN FLEXIBILITY/GENERALITY OF 

THE TOOLKIT AND EASE OF USE. 

Sim_agent aims for flexibility and generality. 
So it takes longer to learn to use than some more restricted 
toolkits. 

But this can be alleviated by developing higher level tools and 
libraries aimed at specific classes of architectures. 

II o 

SIM_AGENT: A POPLOG-BASED 
TOOLKIT 

POPLOG: a multi-language AI development environment with 
incremental compilers for 
• Pop-ll (a Lisp-like language, with a Pascal-like syntax) 
• Prolog 
• Common Lisp 
• Standard ML 
• facilities for adding new incremental compilers 
• a rich interface to the X window system 
• a very fast general garbage collector 
• large and easily extended collection of code and documentation 

libraries and AI teaching materials ~ 
>-< 

"POPLOG" IS A TRADE MARK OF THE UNIVERSITY OF SUSSEX [;; 

WHERE IT WAS ORIGINALLY DEVELOPED . 



I' POPLOG AVAILABILITY I 
From the early 80s until the end of 1998, Poplog was a 
commercial product sold world-wide by ISL, who were 
co-developers after about 1989. 

ISL was taken over by SPSS December 1988 and it was then 
decided by ISL and Sussex university that Poplog should be made 
available free of charge. 

It is still used as the core of Clementine, a data-mining toolkit 
sold world-wide, and other commercial products. 

It is robust and stable. 

The free Poplog system is now available with full system sources 
for various platforms: 

http://www.cs.bham.ac.uklresearchipoploglfreepoplog.html 

It runs on several UnixlLinux systems and VAXlVMS 

WindowslNT Poplog does not yet include graphics (unless used 
with an X window emulation package.) 

THE ARCHITECTURE OF THE .] 
TOOLKIT: 

Built on Pop-ll extended with: 
• OBJECTCLASS (designed by Steve Leach). Like CLOS, it 

supports object oriented programming with multiple 
inheritance and generic functions (multi-methods) 

• RCLm - An object-oriented "relative coordinates" 2-D 
graphical package, making it easy to produce graphical 
interfaces linked to a simulation, including declaratively 
specified control panels. 

• POPRULEBASE - an unusually flexible forward chaining 
pattern-driven production system interpreter, able to invoke 
arbitrary procedures in its conditions and actions, with _ 
meta-rules, and support for hybrid architectures (e.g. a rule'€; 
conditions can run a neural net) .. 

• SIM-AGENT - a scheduler and some default classes and 
methods for sensing, communicating, and a growing library of 
utilities. The object-oriented design provides a set of basic 
classes and methods which can be extended for particular 
applications. 



• • • • 
RCLIB and Poprulebase can be used 

independently of each other and the rest 
of the toolkit. 

The toolkit depends on a large number of re-usable Pop-ll 
libraries, forming part of Poplog, 

including many low-level libraries concerned with the X window 
capabilities and the Poplog X widget set. 

[ HOWBIG!SIT? :J 
The SimJlgent toolkit has been under development since 1994. 

There are now about 245 code files with about 60,000 lines of code 
and comment occupying about 1.8Mbytes, and about 90 
documentation files with about 67,000 lines of text and example 
code, occupying about 2.3Mbytes. 

It is implemented in Pop-ll in the Poplog[tmJ development 
environment. 

s 
W 
lJ> 



[ Run time memory requirements I 
The size of a running system will of course depend on the 
application. As an example: a simple simulation of a sheepdog 
herding five sheep into a pen uses about 12 Mbytes on 
SpardSolaris Poplog (as shown by "top") including the whole 
poplog system and editor. 

It is a little smaller in PC Linux Poplog. 

The same demonstration running in Pop\og on Digital Alpha 
Unix (with 64 bit addresses) takes about 21Mbytes. 

Availability of Poplog and Sim_agent 

It is available at the Free Poplog web site (with full sources). 

• Fetch poplog for your system (machine+OS) 

• Fetch bhamteach.tar.gz 

• Fetch rclib.tar.gz 

• Fetch newkit.tar.gz 

(There are other packages, for vision, neural nets, etc. and more 
will be added.) 

Fl 
w 
0'> 



• • • • 

L_ USERS -- - I 
Sim_agent has been used at various times by a collection of 
undergraduates, MSc students, PhD students, colleagues and 
collaborators at DERA Malvern. 

Suggestions from users have led to many improvements and 
extensions, e.g. including support for self-monitoring. 

It is expected that the process of designing extensions guided by 
user requirements will continue. 

Some extensions may be built deep into the system, while others 
will be optional libraries. 

[ LIBRARIES ~ ~ ~: ] 

It is intended that, with collaborators, we'll develop a set of 
libraries for different sorts of classes of agents and environments. 

A library can define 

• Environmental object classes and mixins 
• Agent classes and mixins 
• Re-usable sensor methods and action methods 
• Re-usable rulesets, and behaviours 
• Graphical appearances 
• Low level utilities 

And can use Poplog's documentation mechanisms 

including hypertext links. ~ 
v.> 

(There is work in progress to provide support for HTML and -J 

XML in Poplog, independently of the toolkit.) 



HOW WE DOlT 
A MULTI-PARADIGM APPROACH 

Combine many styles of programming: 

• Conventional procednral and functional programming POP-II 

• List processing and pattern matching POP-II 

• Rule-based programming POPRULEBASE 

• Object oriented programming OBJECTCLASS 

Including generic functions and multiple inheritance 

• Event-driven programming X WINDOW SYSTEM AND RCLIB 

.. Other computational paradigms needed for particular 
applications, e.g. neural nets or evolutionary mechanisms. 

• Extendable syntax and semantics (macros and beyond) 

• Invocation of other languages as needed 
PROLOG, ML, LISP, C, ... 

• Automatic store management and FAST garbage collection. 

[ Distributed agents ~J 
The basic system supports multiple agents in one Unix process on 
a single CPU. 

However, some users have used Poplog facilities such as the socket 
library to implement distributed systems. 

~ .... 
.." 
00 



• • 
RAPID PROTOTYPING 

AND 
SELF-MODIFYING SOFTWARE 

Use ofPop-ll's INCREMENTAL COMPILER makes 
.it easy to experiment with changes and extensions to a 
nmning system without having to re-start every time. 

• Dynamic replacement of modules (at run time) 
• Essential for debugging complex systems 
• Also for RAPID PROTOTYPING 

i.e. rapid evaluation, exploration, etc. 
(Required when you don't start off with a 
precisely defined well understood problem.) 

• And for self-modifying systems 

As far as I know, ONLY AI programming languages combine all 
of these features, with Java probably the closest contender, some 
way behind. 

There will be continued development of increasingly high level 
languages to express the design ideas, along with compilers (or 
interpreters) to translate them into the sort of code which now 
has to be designed by hand. 

That has been the dominant form of progress in computer science 
and software engineering in the last half century, apart from 
hardware developments. 

OBJECT ORIENTATION IN 
SIM~GENT 

Use multiple inheritance with powerful default methods. 
Define new subclasses combining capabilities of old classes. 

See TEACH OOP 

Default sim_agent classes, with associated methods 
• object - the top level class in Sim..agent 
• agent - the next level down, with additional capabilities, 

e.g. message sending. 

Graphical classes and mixins in RCLm 
e.g. rc_window_object, rcJinepic, rCJllovable, rc.rotatable, 
rc..selectable, rc_constrainedJllover, etc. 

With support for buttons, sliders, scrolling text, etc., 

All with user-extendable methods. 

Additional classes are provided in libraries. 

..... 
~ 
w 

'" 



SIM-.PICAGENT library combines 
RCLIB and SIMAGENT 

• New class of graphical window 
class sim_picagenLwindow; 

is rc_window _object; 

• New types of objects using sim-.agent + rclib 
moon simJIlultiwin; 

(For movable objects in multiple windows) 
mixin simJIlultiwin..static; 

IS SIM..MULTIWIN; 

mixin simJIlultiwinJIlobile; 
IS SIM..MULTIWIN RCLINEPIC..MOVABLE; 

mixin simJmmobile; 
IS SIM..MULTIWIN-STATI C SIM_OBJECT; 

. mixin simJmmobile-.agent; 
IS SIM..MULTIWIN-S TATIC SIM-.AGENT; 

mixin simJIlovable; 
IS SIM..M ULTIWIN..MOBILE SIM _OBJECT; 

mixin simJIlovable-.agent; 
IS SIM..MULTIWI N..MOBILE SIM -.AGENT; 

Users can define new subclasses, and 
extend or replace the methods . 

THERE IS NO FIXED ARC HITECTURE: BUT A VERY FLEXIBLE 

FRAMEWORK FOR EXPLORING A VARIETY OF ARCHITECTURES . 

Each agent's architecture can include: 
• condition-action rules 

In a flexible, user-extendable formalism. 

• rulesets 
composed of a collection of rules which work together to 
perform some task 

• ruleclusters 
Consisting of a group of rulesets, only one of which is 
active at any time. 
(previously called 'rulefamilies') 

• a rulesystem 
Made up of a collection of ruleclusters which run in 
parallel. Each agent has one rulesystem. 

• Various methods for sensing, acting, communicating, tracing 

~ 
~ 

~ o 



• • • 
I ADDITIONAL FEATURES I L _ __________ ---' 

• The rules within an agent communicate via private databases 
and message channels in the agent. 

• Conditions and actions in rules can access arbitrary Pop-II 
code: including code for neural nets and other "sub-symbolic" 
mechanisms (e.g. [WHERE ... J conditions). 

• Pop-ll code can access all the pop log libraries, including pipes 
and sockets, and can invoke 'external' procedures, e.g. C 
procedures, such as the X window facilities. 

• Rulesets can be turned on and off while an agent is running. 

• The rulesystems of different agents run in simulated 
parallelism. 

• The rulesystems within an agent run in simulated parallelism. 

• An agent can inspect and alter its own architecture. 
Each agent's rulesystem is represented as a collection of items in 
its database. I.e. the architecture consists of mechanisms for 
operating on a database which contains the architecture. 

• 

CODE EXAMPLES ] 
......... -~ 

define :class sim_object; 
; ;; Top level class 
slot sim_name = gensym("object"); 

;;; A table for mapping words to rulesets, etc 

slot sim_valof = 
newproperty ( [ ], 17 , false, "tmparg"); 

slot sim_speed == 1; 
slot sim_cycle_limit == 1; 
slot sim_interval == 1; 

slot sim_status undef; e.g . ' alive', 
S 

etj". ..... 

slot sim_data = prb_newdatabase(sim_dbsize, [I) 

slot sim_rulesystem == [I; 

slot sim_sensors = 
[{sim_sense_agent 1000}]; 

slot sim_sensor_data == [I; 

slot sim_actions == [I; 

slot sim_setup_done = false; 
enddefine; 



define : class sim_agent ; is sim_object; 

slot sim_name = gensym( "agent"); 

slot sim_in_messages == []; 
slot sim_out_messages == []; 

enddefine; 

define :class trial_agent ; 
is rc_rotatable rc_linepic_movable 

rc_selectable sim_agent ; 

slot trial_heading == 0; 
slot trial_size == 10; 

slot rc-picx == 0; 
slot rc-picy == 0; 
slot sim_sensors = []; 

enddefine ; 

define : class trial_sheep ; is trial_agent; 
;;; The class defining the sheep's attributes 

slot trial_hunger == 1; 
slot trial_fatigue == 20; 
slot trial_speed == 0; 
slot trial-pspace == 30; 
slot trial-pack_range == 60; 
slot trial_flock_ range == 100; 
slot trial_obstacle_range == 40; 

slot rc_mouse_limit == {-20 -20 20 20}; 

slot rc-pic_lines 

] ; 

WIDTH 3 
[CIRCLE {O 0 10}] 
[CIRCLE {13 0 5}] 

, , , 
, , , 

Round body 
Round head 

slot sim_rulesystem = trial_sheep_rulesystem; 

slot sim_sensors = 
[{sim_sense_agent ~trial_visual_range}l; 

enddefine; 

~ 
~ 
~ 

~ 
N 



• • • • 
define :class trial_dog; is trial_agent; 

slot trial_speed == 0; 
slot rc-pic_lines -_ 

] ; 

WIDTH 3 
[CLOSED 1-10 10} 110 10} 110 -10} 1-10 -10}] 
[CLOSED 18 8} 18 -8} 117 a}] 

slot sim_rulesystem = trial_dog_rulesystem; 
slot sim_sensors = 

[Isim_sense_agent ~trial_visual_range}]; 
slot trial list == [] ; 
slot trial_ current == []; 
slot trial_goal == [] ; 
slot trial_leftpost == []; 

slot trial_rightpost == []; 
slot trial-postlist == []; 
slot trial_sector = []; 
slot trial_side = []; 
slot trial_sheepside = []; 

slot trial_in-pen = false; 
slot trial_deshead = false ; 
slot trial-problempost = false; 
slot trial-problemtree = false; 
slot trial-personalspace = 30 ; 
slot trial_behav ~ []; 
slot trial~emory = []; 
slot trial_trees = [ ] ; 

slot counter = 0; 
enddefine; 

• 
define :rulesystem trial_ dog_rulesystem; 

debug = false; 
cycle_limit = 1; 

include: dog-pen_rules 
include: find_new_sheep 
include: dog-perception_rules 
include: dog_target_rules 
include: dog_side_rules 
include: dog_sheepside_rules 
include: dog_tracing 
include : behaviour_rules 
include: dog_activity 
include : memory_testing 

enddefine; 

define : rulefamily dog_activity; 

ruleset : join 
ruleset: steer 
ruleset: take 
ruleset : treedetection 

enddefine; 

~ 

;:: 
~ 

'" 



define : ruleset take; 

,,"ULE flipttotd 
[WHERE tree_detect(sim_myselfl] 

==> 

[RESTORERULESET treedetection] 

RULE flipttoj 
[behaviour join] 

[WHERE 
sim_distance( 

sim_myself, sim_myself . trial_current) 

> 100] 

==> 

[RESTORERULESET join] 

RULE flipttoj2 

[WHERE 
sim_distance_from( 

trial_coords(sim_mysel f ), 
trial _ coords(sim_myself . trial_current)) 

> 100] 

==> 

[RESTORERULESET join] 

RULE flipttoj 3 
[side pen] 

==> 

[RESTORERULESET join] 

RULE flipttoj 4 
[targ ron] 

==> 
[RESTORERULESET join] 

RULE flipttos 
[behaviour steer] 

==> 
[RESTORERULESET steer ] 

RULE inpen 
[side pen] 

==> 

[ POPll 

[in pen]==>; 
lvars speed , heading, a, dist; 
sim_ distance_ from ( 

tr i al_coords (sim_myself l, 
tr i al_coords (sim_myself.trial_currentll 

-> dist ; 

20 -> speed ; 

pen . orientation - 90 -> heading; 
move_dog ( sim_myself , speed, heading ); 

---~ 
.po 



• • • 
;;;At a distance . . . Approach the s h eep directly 

RULE noproblem 
[NOT targ on ] 
[NOT targ ron] 
[WHERE 

sim_distance( 

==> 

[POP11 

sim_myself, sim_myself.trial_ current) 
> 100 ] 

lvars dist, speed , heading; 
sim_distance_from( 

trial_coords(sim_myself) , 
trial_coords (sim_myself.trial_current)) 

-> dist ; 

if dist > 50 then 10 
e l se round(dist/25 ) 
endif - > speed; 

sim_heading_from( 
trial_coords(sim_myse l f) , 

trial_coords(sim_myself . trial_current)) 
-> heading; 

move_dog (sim_myself , speed, heading) ; 

AN EXAMPLE METARULE 
USING AN [ALL ",] CONDITION 

define : ruleset check_rules ; 

RULE check_constrain ts 

[constraint ?name ?checks ?message] 
[ALL ?checks ] 
==> 

[SAY Constraint ?name violated] 
[SAY ??message] 
[RESTORERULESET backtrack_rules] 

RULE checks_ok 
= = > 

[RESTORERULESET so l ve_rules] 
enddefin e ; 

In the above, the condition 

[constraint ?name ?checks ?message] 

Causes the variable checks to pick up from the database a list of 
conditions (which may include variables. 

S :... 
V> 



Example constraint, from TEACH PRB-.RIVER.P 

, , , 

, , , 
, , , 

Now the constraints - checked by rule check 

first c onstraint -
fail if something can eat something 

[constraint Eat 

, , , 
, , , 

[[?thingl isat ?side) 
[NOT man isat ?side ) 
[?thingl can eat ?thing2) 
[?thing2 isat ?side)) 

[?thingl can eat ?thing2 GO BACK)) 

second constraint, is the current state 

one that's in the history? 

[constraint Loop 
[[state ?state) [history == [ = ?state) == )) 

[ 'LOOP found - " Was previously in state: ' ?st. 

Then this condition 

[ALL ?checks) 

tests whether all those conditions are currently satisfied in the 
database: as if the conditions had been made explicit in this rule. 

----~ 

THE VIRTUAL TIME SCHEDULER .J 
SIM..AGENT provides a scheduler which 'runs' objects in a 
virtual time frame composed of a succession of time slices. 

It uses Objectclass methods that can be redefined for different 
sub-classes of agents without altering the scheduler. 

The default 'run' method gives every agent a chance to do three 
things in each time-slice: 

• sense its environment 

• run internal processes that interpret sensory data and 
incoming messages, and manipulate internal states 

• produce actions or messages for other agents 

After that's done for each agent, default methods are used: 

• to transfer messages between agents 

• to perform the actions for each agent 

So each agent's sensory processes and internal processes run with 
the 'external' world in the same state in the same time-slice. 

Changeable resource limits associated with rulesets supports 
exploration of effects of speeding up or slowing down different 
modules relative to each other and environmental speeds. 

This will help us evaluate the need for meta-management 
mechanisms, and various ways of meeting that need by letting 
meta-management compensate for lack of speed in some contexts 

s 
~ 
0--



• • • 
[~DE_VELOPMENT ENVIRONMENT] 

It has proved quite difficult to design and implement such agents. 
One reason is the difficulty of knowing what sort of design is 
required. This suggests a need for tools to explore possible 
designs and design requirements (e.g. by examining how 
instances of first draft designs succeed or fail in various domains 
and tasks). I.e. support for very rapid prototyping is essential. 

Trade-off: compile time checking etc. vs flexibility. 

Many agent toolkits exist which are geared to support a 
particular type of agent (e.g. agents built from a collection of 
neural nets, or agents which all have a particular sort of cognitive 
architecture such as SOAR). 

For researchers who don't yet know which architecture to use, 
these impose a premature commitment (the field is still in its 
infancy). 

So we need a toolkit which not only supports the kind of 
complexity described above, but which does not prescribe any 
particular architecture for agents, so that we can learn by 
exploring new forms. 

However it should support the re-use of components of previous 
designs so that not all designers have to start from scratch. 
Libraries are needed for this. 

H should support both explicit design by human researchers and 
also automated design of agents e.g. using evolutionary 
mechanisms. 

CHALLENGES FOR THEORISTS ] 

• It seems likely that the sort of complexity outlined above will be 
required even in some safety critical systems. Can we possibly 
hope to understand such complex systems well enough to trust 
them? 

• Will we ever be able to automate the checking of important 
features of such designs? 

• The design of systems of such complexity poses a formidable 
challenge. Can it be automated to any useful extent? 

• Do we yet have good langnages for expressing the 
REQUIREMENTS for such systems (e.g. what does "coherent 
integration" mean? What does "adaptive learning" mean in 
connection with a multi-functional system?) 

• Do we have languages adequate for describing DESIGNS for 
such systems at a high enough level of abstraction for us to be 
able understand them (as opposed to millions of lines oflow level 
detail)? 

• Will we ever understand the workings of systems of such 
complexity? 

• How should we teach our students to think about such things? 

>-< 
>-< 
>-< :.,. 
-..l 



r FUTURE WORK -- I 
• Adding more libraries, including libraries supporting 
particular kinds of architectures 

• Extending the "harness", e.g. with tools to make it easier to 
assemble and run scenarios (including architecture-specific 
graphical tools). 

• Making it easier for agents to inspect and modify their own 
architectures (e.g. to model various kinds of cognitive 
development or self-awareness). 

• Adding a more ''neural like" database mechanism, with 
"sloppy" matching and spreading activation (as in ACT-R) 

For more on sim_agent and its 
subsystems see 

http://www.cs.bham.ac.ukr.axs/cog-.affecUsim-.agent.htmJ 

Overview 

http://www.cs.bham.ac.uklresearchlpoplog!simlhelp/sim-.agent 

Main integrating library 

http://www.cs.bham.ac.uklresearchlpoplog!prblhelp/rulesystems 

How to express agent internals 

http://www.cs.bham.ac.uklresearchlpoplog!prb/help/poprulebase 

More details 

http://www.cs.bham.ac.uklresearchlpoplog!rcliblhelp/rclib 

The graphical tools. 

There are gzipped tar files containing all the above. 

See the file: 

http://www.cs.bham.ac.uklresearchlpoplog!freepoplog.html 

s 
~ 
00 



• 

• 

• 

1II.49 

DISCUSSION 

Rapporteur: Professor J E Dobson 

(Report for lecture one not available) 

Lecture Two 

Dr Elliott asked how quickly the software was changing and what things, if any, were 
stable. Professor Sloman answered that the graphics side was changing fairly fast due to 
incremental availability of extra components. The insertion of the architecture into the 
database was taken fairly slowly, mainly because of the control imposed by the 
requirement to be stable during the lifetime of student projects. 

Dr Cunningham asked about how the results could be validated in accordance with best 
practice of an experimental science. Professor Sloman replied that there were ways of 
justifying design decisions on the basis of theory (e.g. theories of neuroscience or 
evolution). Validation of an implementation could be expressed in terms of understanding 
the problem. Ultimately, though, his claims about humans and brains were probably false 
and unrealistic and to some extent he didn't care; what mattered was the evaluation of an 
application in terms of whether it did what we want it to do (with respect to dependability 
as well as functionality) . 

Professor Henderson observed that if a certain subset was in Java we'd probably use it; 
but what constitutes that subset? Professor Sloman said that it would be a subset of the 
language that allowed for totally universal typing, as was required for pattern matching, 
constraint propagation etc. 

Dr Watson asked whether this meant the speaker was asking for lists where every 
member was of a SUbtype of the universal type. Professor Sloman replied that he was, but 
observed that this was incompatible with Java security. Dr Watson thought that this might 
restrict the list operations to the basic ones (car, cdr etc.) Professor Sloman replied that 
his incremental compiler technique allows runtime adaption to the types of the list 
elements as they are found to be. 

Dr von Sydow observed that the MLJ compiler allows combination of ML and Java. 
Professor Sloman replied that ML has some restrictions in that lists of elements of 
arbitrary type are not permitted. 



III. 50 




