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Stable Husbands (extended abstract) 

The purpose of this lecture is to demonstrate the use of three techniques for analyzing 
the behavior of com binatorial algorithms on random data. The techniques are called "late 
binding," "tai l inequalities," and "negligible perturbation ." 

The examp le prob lem. Suppose n boys and n girls have each ranked the members of 
the opposite sex. A stable matching is a way to pair them up so that no boy and girl prefer 
each other to the partners they have been assigned. For example, if the preferences are 

A: Y>X>Z>W 
B: X>W>Y>Z 
C: W>Y>X>Z 
D: X>W>Z>Y 

W: 
X: 
Y: 
Z: 

A>B>D>C 
C>A>D>B 
B>D>A>C 
B>A>C>D 

then (AW,BX,CY, DZ) is unstable because A prefers X to Wand X prefers A to B. But 
(AY , BW,CX , DZ) and (AZ,BW,CX,DY) turn out to be stable , and these are in fact 
the only stable matchings for the stated preferences. 

The stable husbands of a girl are the boys she can be paired with in a stable matching. 
Thus, A has two stable husbands (namely Y and Z) when the preferences are as shown , 
while B has only one (namely W) . 

The a lgorithm. Here is an algorithm that outputs all the stable husbands of a given 
girl G, for a given set of preferences. The basic idea is to maintain partial matchings 
in which each boy who currently has a partner is paired with his best possible choice, 
among all partial · matchings not yet ruled out, for which G is paired with somebody not 
yet output. One of the boys who doesn't have a current partner is temporarily called P; 
he will propose to one of the girls, and she will decide whether to accept or reject his 
proposal (at least for the time being). The role of P passes from boy to boy according to 
the following rules: 

AD. Initially all boys and girls are unpaired. 

AI. If at least one boy has no current partner, let P be one such boy and proceed to A2. 
Otherwise let P be the current partner S of the special girl G. Output S and remove 
the pair GS from the current matching. (The matching was stable , so S was one 
of G's stable husbands.) 

A2. If P has already proposed to all the girls, terminate the algorithm. Otherwise let H 
be the girl P likes best among all those he hasn't approached so far; P now proposes 
to H. 

A3. If H has already received a proposal from a boy she prefers to P, she rejects P's 
offer. Otherwise she accepts, tentatively; the pair H P enters the matching. If H has 
no current partner when she accepts P, the algorithm continues at AI; otherwise the 
algorithm continues at A2, with P equal to the boy just rejected by H. Q 
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Late binding. Our goal is to est imate the number of stable hu sbands output by Algo­
rithm A when the preferences of boys and girls are independently and uniform ly random. 
The tech niqu e of "late binding" replaces Algorithm A by a related pro cedure, Algorithm B, 
which lets t he preferences unfold dynamically to whatever extent t he algorithm needs t hem 
as it runs. When ever a boy is asked to propose in Algorithm B, he proposes to a random 
girl , who rejects him if he has already asked her at least once before. When a girl receives 
her kth nonred undant proposal, she accepts with probability l/k . A stochastic process 
with these characteristics has the same number of outputs as Algorithm A would have on 
random pre ferences, because it has the same transition probabilities between states. 

The modified algorithm maintains the following variables, where j ranges from 1 to n : 

Aj = set of girls proposed to so far by boy j. 

I = number of boys who have played the role of proposer. 

p = the boy who is currently proposing. 

h = the girl who is being proposed to . 

Xj = the boy who has made the best offer to girl j, or O. 

k j = number of nonredundant proposals to girl j. 

BO. Set Aj <-- 0, Xj <-- 0, k j <-- 0 for 1 ::; j ::; n, and set I <-- O. 

Bl. If I < n, in crease I by 1 and se t p <-- I. O t herwise output Xg (where 9 represents t he 
special girl G) and se t p <-- x g , Xg <-- O. 

B2 . Let h be a random number , uniform in [1 .. nJ. If hEAp, repeat step B2 (a proposal 
by p to h is redundant). Otherwise replace Ap by Ap U {h}. 

B3. Increase kh by 1. With probability 1 - 1/ k h , return to B2 (the girl rej ects t he 
proposal) . Oth erwise interchange p"'" Xh (she accepts); if now p = 0, return to B1, 
otherwise ret urn to B2 . 9 

Notice that Algorithm B never terminates . This simplifies the analysis of the number of 
outputs produced . 

Tail inequalities. Although Algorithm B is rather complicated, we can prove that it will 
usually have a fairly simple behavior. The proof is based on showing that the "tails" of 
certain probability distributions are small ; Le ., that certain random variables rar ely assume 
val ues far from their mean. 

Let P(z) = Po + PI Z + P2 Z2 + ... be the probability generating function for a random 
variable X that assumes nonnegative integer values. The tail inequalities assert that 

Pr(X ::; r) ::; X-' P(x) 
Pr(X ::::: r) ::; X-' P (x) 

when 0 < x ::; 1; 
when x ::::: 1. 

These inequali tie s follow im mediate ly from the observation that p, ::; X - ' p, x' when 0 < 
x ::; 1 and k ::; r, and also when x ::::: 1 and k ::::: r. 
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We can often obtain excellen t bound s on the probability tha t X is large or small by 
choosing x so that the right-hand side of a tail in eq uali ty is minimized. For example, let 
X be the number of successes in N independent t rial s when the re is probability lin of 
success on eac h trial. (This is the numb er of times a particular girl h is selec ted during 
N execut ion s of ste p B2.) The probability generating function for X is ((n - I + z)ln) N , 

and the mean value of X is is N In . The probabili ty that X is at most half the mean is 

using the fir st tail inequality with r = tN In and x = t, because 1+ s ::; e' for all real 
values of s. This quantity (2Ie)' goes to ze ro exponentially fast as r ---> 00. Similarly, t he 
prob ab ility the X is at least twice the mean is 

( 
2N ) ( 1) "' /2 ( r:)' Pr X 2 --;- ::; T ' P(2) = T' 1 +;;- ::; 2-'e,/2 = ¥ 

(Here we have used the second tail inequality with r = 2N In and x = 2.) It follow s that 
X will be be tween tN In and 2N In except with exponentially small prob abi lity. 

Negligible perturbation. A stochast ic process like Algorithm B can be viewed as an 
infinite tree, with branches that co rrespond to random transitions between sta tes . In the 
par ticular case of Algorithm B we can let each node a of the tree represe nt a com pu­
tation path to the beginning of step B2 , with 2n branches leading to su bseque nt nodes 
a~, ... , Q~ , Q~ 1 " • . , . a~, where aj means that the next value of h was j and a ~roposal was 
accepted, whil e aj means that the nex t value was j and a proposal was red undant or 
rejected . 

The probability of going from a to aj is 0 if j E Ap (a), or 1/(k + l) n if j if; Ap (a) and 
k = kj(a), where Ap(a) and kj(a) are the values of Ap and kj defin ed by Algorithm B's 
path from th e root of the tree to node a. The probability of going from a to aj is, similarly, 
l i n if j E Ap (a), or kl( k + l)n if j if; Ap (a) and k = kj (a) . These probabilities define the 
behavior of Algorithm B. We write Pr(a) for the probability of reaching node a. 

Suppose we perturb some of the branching probabilities in the tree, changing Pr to 
another probability distribution Pr' that is easier to deal with. Let C be the se t of all 
nod es at level N of the tree that lie beneath a perturbed probability , and let Pr (C) be 
sum of Pr(a) for all a E C. Then 

Pr(not C) = L Pr(a) = L Pr '(a) = Pr' (not C), 

so it mu st be true that 

Pr(C ) = Pr'(C). 
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If Pr (C) is sm all , the pert ur bat ion will have a negligib le effec t on the probab il ity of 
an ar bit ra ry even t E at tim e N , i.e., at an ar bit rary se t of nodes at level N . For we have 

I I 

IPr (E) - Pr' (E) 1 = ! L P r(a) - L Pr' (a)! 
laEE a E E I 

I 

= I L ( Pr (a) - Pr' (a)) I 
I I 
laE En G 

::; L IPr (a) - Pr' (a )1 ::; L ( Pr (a) + Pr '(a)) = 2Pr (C). 
aEC 

T hus we can co nclud e that the original algorithm will have esse nti ally the sam e behavior 
as the eas ie r- to-ana lyze one . 

Ap plica t io n. T he three basic ideas (late bi nd ing, tail ineq ua li t ies, negligi b Ie pert u r ba­
tion ) can now be brought toget her as follows . We say tha t an event EN occurs a .S. 
("a lmost surely") if Pr (not EN) -+ 0 as N -+ 00 . And we say tha t EN occ urs q. s. 
("qui te surely") if Pr (not EN) -+ 0 superp olynomia lly fast as N -+ 00 ; t his means th a t 
P r( no t EN) = O(N-m) for all fi xe d expon ents m . 

(1 ) E ( 2) ( M ) If M events EN ' . N , .. . ,EN each occ urs q.s ., and if M is bound ed by any poly-
nomial in N, then t he com bin ed event 

and and and 

also occurs q.s . 

Let N = nIH where 8 is a con stant, 0 ::; 8 ::; t . We will study the fir st N levels of 
t he tree t ha t co rresponds to Algori t hm B, i. e ., t he fir st N proposals (including redundant 
ones) .T he tail inequalit ies prove 

Lemma 1. Each girl q. s . rece ives at least t n 6 proposal s and at most 2n6 proposals (in ­
cluding redundancy) . Indeed, we proved earli er tha t the probability she doesn ' t is at most 

We can per t urb the probabili t ies at nodes of the t ree where a girl has received fewer 
than t n 6 or mo re th'a n 2n 6 proposals, without affect ing the ove ra ll behavior signifi cantly. 
T hus we can ass um e th at Lemm a 1 hold s alw ays , no t only q. s . This leads to 

Lem m a 2. Eac h boy q. s. beg in s at most 2n 6 run s of proposals (i. e ., sequences of proposals 
befor e he is accepted ). 
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Lemma 2 in turn allows us to make further perturbations and we can prove the follow ing 
sequ ence of le mmas as we zero in on the algorithm's probable behavior: 

Le mma 3 . Each run q.s. contains at most n6 (log n)2 non redundant proposals . 

Le mm a 4. Each boy q.s. proposes to at most 2n' 6 (log n)' gi rl s. 

Le mm a 5 . Each ru n q.s. co ntains at most n 6 (log n)' proposals. 

Le mma 6 . Eac h boy q.s . makes at most 2n'6 (log n)' proposals. 

Le mma 7. Eac h boy q. s . proposes to a given girl at most log n t imes . 

Lemma 8. Each girl q .s. rece ives at least tn6/ 10g n nonred und ant proposals. 

Le mma 9 . A girl who rece ives m nonredu nd a nt pro posals a .s . accepts at least (1- f ) In m 
and at most (1 + f) In m of them. 

Th eore m. Algorithm B a.s. produces at least I;' In n and at most (1 + f) In n outputs. 

C orollary. A gi rl almost su rely has between t in n and In n stab le husban ds, when pre f· 
erences are ran dom. 

Comp lete det ails app ear in t he pap er "S ta ble Hu sba nd s" by Knu t h , Motwan i, and 
P it tel, Disc rete St ru ct ures and Algo ri thm s 1 (1990), 1- 19. 

- Donald E. K n ut h 
S tan fo rd Un i versi ty 
March 31, 1992 
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DISCUSSION 

Rapporteur: Luiz E Buzato and PaulO Ezhilchelvan 

Lecture One 

During the talk, Professor Andrew Tanenbaum sought clarification over the speaker's 
notion of stable matching. The speaker explained citing an example in which a boy gets 
his favourite girls while the girls do not. He confirmed that such asymmetry is 
permitted within his definition of a stable match. 

Professor John McCarthy wanted to know whether the proposed solution will be correct, 
if girls, rather than boys, are allowed to propose. The author said that the solutions will 
still stand correct except that boys will get stable wives. 

During the after· talk discussion, Professor McCarthy asked whether the speaker 
considered more realistic situations where the priorities of the girls were not assigned 
randomly but based on some pre·defined criteria. The speaker answered saying that such 
situations have been considered to some extent, he also cited the extreme case where all 
girls have the same ranking for the boys, in this case the matching problem becomes a 
hashing problem. 

Professor Michael Rabin continued asking about the practical relevance of the algorithm, 
by citing the problem of the assignment of internal students to hospitals. He wondered 
whether hospitals or students should have the priority of choice (as boys had the choice 
over girls in the algorithm described). The author remarked that the hospitals should 
have the right to assign students, given that there is a high level competition among 
students for better hospitals. As a consequence, hospitals will get the optimal choice. 
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