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Stable Husbands (extended abstract)

The purpose of this lecture is to demonstrate the use of three techniques for analyzing
the behavior of combinatorial algorithms on random data. The techniques are called “late
binding,” “tail inequalities,” and “negligible perturbation.”

The example problem. Suppose n boys and n girls have each ranked the members of
the opposite sex. A stable matching is a way to pair them up so that no boy and girl prefer
each other to the partners they have been assigned. For example, if the preferences are

A Y>> X >Z>W W: A>B>D>C
B: X>W>Y >1Z X: C>A>D>8BHB
C: W>Y>X>Z Y: B>D>A>C
D: X>W>2Z>Y Z: B>A>C>D

then (AW,BX,CY,DZ) is unstable because A prefers X to W and X prefers A to B. But
(AY,BW,CX,DZ) and (AZ,BW,CX,DY ) turn out to be stable, and these are in fact
the only stable matchings for the stated preferences.

The stable husbands of a girl are the boys she can be paired with in a stable matching.
Thus, A has two stable husbands (namely ¥ and Z) when the preferences are as shown,
while B has only one (namely W).

The algorithm. Here is an algorithm that outputs all the stable husbands of a given
girl G, for a given set of preferences. The basic idea is to maintain partial matchings
in which each boy who currently has a partner is paired with his best possible choice,
among all partial matchings not yet ruled out, for which G is paired with somebody not
yet output. One of the boys who doesn’t have a current partner is temporarily called P;
he will propose to one of the girls, and she will decide whether to accept or reject his
proposal (at least for the time being). The role of P passes from boy to boy according to
the following rules:

A0. [Initially all boys and girls are unpaired.

Al. 1If at least one boy has no current partner, let P be one such boy and proceed to A2.
Otherwise let P be the current partner S of the special girl G. Output 5 and remove
the pair G'S from the current matching. (The matching was stable, so § was one
of G’s stable husbands.)

A2. If P has already proposed to all the girls, terminate the algorithm. Otherwise let H
be the girl P likes best among all those he hasn’t approached so far; P now proposes
to H. '

A3. If H has already received a proposal from a boy she prefers to P, she rejects P’s
offer. Otherwise she accepts, tentatively; the pair HP enters the matching. If H has
no current partner when she accepts P, the algorithm continues at Al; otherwise the
algorithm continues at A2, with P equal to the boy just rejected by H. (&)
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Late binding. Our goal is to estimate the number of stable husbands output by Algo-
rithm A when the preferences of boys and girls are independently and uniformly random.
The technique of “late binding” replaces Algorithm A by a related procedure, Algorithm B,
which lets the preferences unfold dynamically to whatever extent the algorithm needs them
as it runs. Whenever a boy is asked to propose in Algorithm B, he proposes to a random
girl, who rejects him if he has already asked her at least once before. When a girl receives
her kth nonredundant proposal, she accepts with probability 1/k. A stochastic process
with these characteristics has the same number of outputs as Algorithm A would have on
random preferences, because it has the same transition probabilities between states.

The modified algorithm maintains the following variables, where j ranges from 1 to n:
A; = set of girls proposed to so far by boy j.
I = number of boys who have played the role of proposer.
p = the boy who is currently proposing.
h = the girl who is being proposed to.
r; = the boy who has made the best offer to girl j, or 0.

k; = number of nonredundant proposals to girl j.
BO. Set A4; « 0, z; « 0, ki <0 for 1 <j <n, and set | « 0.

Bl. Ifl < n, increase [ by 1 and set p « [. Otherwise output z, (where g represents the
special girl G) and set p « z,, z, « 0.

B2. Let h be a random number, uniform in (1 .. n]. If h € A,, repeat step B2 (a proposal
by p to h is redundant). Otherwise replace A, by A, U {h}.

B3. Increase k, by 1. With probability 1 — 1/k,, return to B2 (the girl rejects the
proposal). Otherwise interchange p « z, (she accepts); if now p = 0, return to B1,
otherwise return to B2. )

Notice that Algorithm B never terminates. This simplifies the analysis of the number of
outputs produced.

Tail inequalities. Although Algorithm B is rather complicated, we can prove that it will
usually have a fairly simple behavior. The proof is based on showing that the “tails” of
certain probability distributions are small; i.e., that certain random variables rarely assume
values far from their mean.

Let P(z) = po + p1z+ p222 + -+ - be the probability generating function for a random
variable X that assumes nonnegative integer values. The tail inequalities assert that

Pr{X < #)
Pr(X > 1)

L2~ Pl when 0 < z < 1;

O i when z > 1.

These inequalities follow immediately from the observation that p, < 2~ "p,2* when 0 <
2 <1and k <r, and also when z > 1 and & > r.
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We can often obtain excellent bounds on the probability that X is large or small by
choosing = so that the right-hand side of a tail inequality is minimized. For example, let
X be the number of successes in N independent trials when there is probability 1/n of
success on each trial. (This is the number of times a particular girl h is selected during
N executions of step B2.) The probability generating function for X is ((n — 14 z)/n)V,
and the mean value of X is is N/n. The probability that X is at most half the mean is

N 1 =it 1 2nr r
Pr(XSl—) S(—) P(—) &= 2 (1—i) g‘h*’:(g) :
2n 2 2 2n e

using the first tail inequality with r = %N/n and z = %, because 1 + s < e* for all real
values of s. This quantity (2/e)" goes to zero exponentially fast as r — oo. Similarly, the
probability the X is at least twice the mean is

nr/2 F
2N 1
(2 2) crrmo v (14 ])" s - ()
n n

(Here we have used the second tail inequality with » = 2N/n and 2 = 2.) It follows that
X will be between %N/n and 2N /n except with exponentially small probability.

Negligible perturbation. A stochastic process like Algorithm B can be viewed as an
infinite tree, with branches that correspond to random transitions between states. In the
particular case of Algorithm B we can let each node a of the tree represent a compu-
tation path to the beginning of step B2, with 2n branches leading to subsequent nodes
O 5e 5 0 5 O e 500, 5 WhieTe a}‘ means that the next value of A was j and a proposal was
accepted, while a] means that the next value was j and a proposal was redundant or
rejected.

The probability of going from a to af is 0if j € A,(a), or 1/(k+1)n il j € A, (a) and
k = k;j(a), where A,(a) and k; () are the values of A, and k; defined by Algorithm B’s
path from the root of the tree to node @. The probability of going from a to «f is, similarly,
1/nif j € Ap(a), or k/(k+ 1)n if j € A,(a) and k = k; («). These probabilities define the
behavior of Algorithm B. We write Pr(a) for the probability of reaching node «a.

Suppose we perturb some of the branching probabilities in the tree, changing Pr to
another probability distribution Pr’ that is easier to deal with. Let C be the set of all
nodes at level N of the tree that lie beneath a perturbed probability, and let Pr(C) be
sum of Pr(a) for all @ € C. Then

Pr(not C) = Y, Pr(a) = D Pr'(a) = Pr'(not C),

ag C ag C

so it must be true that

P#(C) = PE(C).
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If Pr(C) is small, the perturbation will have a negligible effect on the probability of
an arbitrary event E at time N, i.e., at an arbitrary set of nodes at level N. For we have

|
[Pr(E) = Pr'(E)| = |2 Pr(a) — 2 Pr'(a)]
|

ac EncC
< Y. |Pr(a) — Pr'(a)] < Y. (Pr(a) + Pr'(a)) = 2Pr(C).
aecC a€C

Thus we can conclude that the original algorithm will have essentially the same behavior
as the easier-to-analyze one.

Application. The three basic ideas (late binding, tail inequalities, negligible perturba-
tion) can now be brought together as follows. We say that an event Ey occurs a.s.
(“almost surely”) if Pr(not Ex) — 0 as N — o0o. And we say that Ey occurs g.s.
(“quite surely™) if Pr(not Enx) — 0 superpolynomially fast as N — oo; this means that
Pr(not Ey) = O(N~™) for all fixed exponents m.

If M events Ef\,l),ng),... ,EEVM) each occurs q.s., and if M is bounded by any poly-
nomial in N, then the combined event

E{’ and E{’ and .- and EV"

also occurs q.s.

Let N = n'*? where § is a constant, 0 < § < % We will study the first N levels of
the tree that corresponds to Algorithm B, i.e., the first N proposals (including redundant
ones).The tail inequalities prove

Lemma 1. Each girl q.s. receives at least $n’ proposals and at most 2n’ proposals (in-
cluding redundancy). Indeed, we proved earlier that the probability she doesn’t is at most

(37"

We can perturb the probabilities at nodes of the tree where a girl has received fewer
than :n’ or more than 2n’ proposals, without affecting the overall behavior significantly.
Thus we can assume that Lemma 1 holds always, not only q.s. This leads to

Lemma 2. Each boy q.s. begins at most 2n’ runs of proposals (i.e., sequences of proposals
before he is accepted).
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Lemma 2 in turn allows us to make further perturbations and we can prove the following
sequence of lemmas as we zero in on the algorithm’s probable behavior:

Lemma
Lemma
Lemma
Lemma
Lemma
Lemma

Lemma

3.

i

5
6
T,
8

9.

. Each girl q.s. receives at least

Each run q.s. contains at most n®(log n)? nonredundant proposals.

Each boy q.s. proposes to at most 2n*’ (log n)? girls.

. Each run q.s. contains at most n’(log n)? proposals.

. Each boy q.s. makes at most 2n?* (log n)? proposals.

Each boy q.s. proposes to a given girl at most log n times.

L

~ n’/log n nonredundant proposals.

A girl who receives m nonredundant proposals a.s. accepts at least (1—¢)Inm

and at most (1 + €)ln m of them.

1—¢

Theorem. Algorithm B a.s. produces at least “><In n and at most (1 + €)ln n outputs.

2

Corollary. A girl almost surely has between ;—ln n and In n stable hushands, when pref-
erences are random.

Complete details appear in the paper “Stable Husbands” by Knuth, Motwani, and
Pittel, Discrete Structures and Algorithms 1 (1990), 1-19.

—Donald E. Knuth
Stanford University
March 31, 1992
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DISCUSSION
Rapporteur: Luiz E Buzato and Paul D Ezhilchelvan
Lecture One

During the talk, Professor Andrew Tanenbaum sought clarification over the speaker's
notion of stable matching. The speaker explained citing an example in which a boy gets
his favourite girls while the girls do not. He confirmed that such asymmetry is
permitted within his definition of a stable match.

Professor John McCarthy wanted to know whether the proposed solution will be correct,
if girls, rather than boys, are allowed to propose. The author said that the solutions will
still stand correct except that boys will get stable wives.

During the after-talk discussion, Professor McCarthy asked whether the speaker
considered more realistic situations where the priorities of the girls were not assigned
randomly but based on some pre-defined criteria. The speaker answered saying that such
situations have been considered to some extent, he also cited the extreme case where all
girls have the same ranking for the boys, in this case the matching problem becomes a
hashing problem.

Professor Michael Rabin continued asking about the practical relevance of the algorithm,
by citing the problem of the assignment of internal students to hospitals. He wondered
whether hospitals or students should have the priority of choice (as boys had the choice
over girls in the algorithm described). The author remarked that the hospitals should
have the right to assign students, given that there is a high level competition among
students for better hospitals. As a consequence, hospitals will get the optimal choice.
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