
II

ALGEBRA AND MODELS

CAR HOARE

Rapporteurs: Jon Hall and Lucia Rapanotti

=

..

Summary

II. 1

MODELS AND ALGEBRA

C.A.R. Hoare
Computing Laboratory

University of Oxford
11 Keble Road

Oxford
OX13QD

Science makes progress by constructing mathematical models, deducing their observ
able consequences, and testing them by experiment. Successful theoretical models are
later taken as the basis for engineering methods and codes of practice for design of
reliable and useful products. Models can playa similar central role in the progress
and practical app lication of Computing Science.

A model of a computational paradigm starts with choice of a carrier set of poten
tial direct or indirect observations that can be made of a computational process. A
particular process is modelled as the subset of observations to which it can give rise.
Process composition is modelled by relating obser.vations of a composite process to
those of its components. Indirect observations play an essential role in such composi
tions. Algebraic properties of the composition operators are derived with the aid of
the simple theory of sets and relations. Feasibility is checked by a mapping from a
more operational model.

A model constructed as a family of sets is easily adapted as a calculus of design
for total correctness. A specification is given by an arbitrary set containing all ob
servations permitted in the required product. It should be expressed as clearly as
posssible with the aid of the full power of mathematics and logic. A product meets a
specificat ion if its potential observations form a subset of its permitted observations.
This principle requires that all envisaged failure modes of a product are modelled, as
indirect observations, so that their avoidance can be proved. Specifications of com
ponents can be composed mathematically by the same operators as the components
themselves. This permits top-down proof of correctness of designs even before their
implementation begins. Algebraic properties and reasoning are helpful throughout
development. Non-determinism is seen as no problem , but rather as a part of the
solution.

1. Introduction
A scient ific theory is formalised as a mathematical model of reality, from which can
be deduced or calculated the observable properties and behaviour of a well-defined
class of processes in the physical world. It is the task of theoretical scientists to de
velop a wide range of plausible but competing theories; experimental scientists will
then refute or confirm the theories by observation and experiment. The engineer then
applies a confirmed theory in the reverse direction: the starting point is a specification
of the observable properties and behaviour of some system that does not yet exist in

II . 2

the physical world; and the goal is to design and implement a product which can be
predicted by the theory to exhibit the specified properties. Mathematical methods of
calculation and proof are used throughout the design task.

This paper suggests a similar fruitful division of labour between theoretical and
experimental Computing Science, leading to eventual application in the engineering
of computer software and hardware. Theoretical computing scientists develop a wide
range of plausible theories covering a variety of computational paradigms. The math
ematical consequences of each theory are explored , and also relationships with other
competing or complementary theories. The experimental computing scientist can then
select some combination of related theories as the basis for the design of a software
system or language, or an architecture for a computing device. The efficiency and ef
fectiveness of this design is then tested by simulation or experimental implementation
and application in representative case studies. Reliable use of the system or device or
language will be further assisted by mathematical theorems , methods and heuristics
derived from the original theoretical model.

Computing Science is primarily concerned with discrete phenomena; and therefore
cannot take advantage of the large body of established knowledge of continuous math
ematics, developed by applied mathematicians for the enormous benefit of physical
science and engineering. It is rather pure mathematics that supplies the concepts,
notations, methods, theorems and proofs that are most relevant for computing. But
in contrast to pure mathematics, potential relevance to computing is taken as a goal
and a guide in the selection of directions for our research. Its achievement depends
on a good general (but informal) understanding of practical Computing Science. This
should cover

1. a range of problems which may be solved by application of some computing
device, and the terminology in which they are described.

2. the methods by which solutions to complex problems can be found by decompo
sition into simpler subproblems, so that these can then be solved by similar or
even simpler methods.

3. the methods by which complex systems can be constructed by connecting sub
assemblies and components implemented in a similar or lower level technology.

4. the comparative cost and efficiency of alternative methods of design and imple
mentation in hardware or in software.

Understanding of this wide range of topics should relate not just to the current
computing scene (for which any new theory will come too late) but to some possible
future evolution of it. As in all branches of physical science, success depends on a
large element of intuition, insight, guess-work and just plain luck. That is why the
community of theoretical scientists must be prepared to develop a large number of
alternative theories, most of which will never achieve experimental confirmation or
find practical application. This apparent profligacy is justified by simple economics.
It is less expensive and risky to invent and develop ten new theories than it is to make
even a prototype implementation of just one of them. And it is less risky and less

-~

II . 3

onerous to design and implement ten prototypes than it is to invest in development of
a new market for a genuinely innovative product. And not all new products that come
to market will remain there. So theories are as numerous as the seeds scattered by the
winds; only very few will settle and germinate and take root and reach maturity and
propagate more seed to populate the forests of the future.

So let us postulate the wisdom or courage to select some general line of enquiry
for a new theory. In its detailed development, the researcher would be well advised
to lay aside all hope of future relevance, and adopt the attitude of pure mathemati
cians, engaged in the pursuit of truth wherever their curiosity may lead them. Avoid
competitive promotion of one line of enquiry against another. Otherwise you lose
the spirit of dispassionate scientific objectivity, so necessary for the health of science.
Whenever choice arises between directions of pursuit, choose first the path of greater
simplicity and of greater elegance. And that should be your second and third choice
too, and especially your last one. An elegant theory will attract attention of other
theorists, and a simple one will attract the interest of teachers and students. This is
the only way to reduce the risk that the theory will be forgotten before the time is ripe
for its development and practical application. And finally, when the theory achieves
widespread use or standardisation, the quality of elegance is the only hope we have of
rescue from the quagmire of arbitrary complexity which is so pervasive, particularly
in software of the present day. And elegance is a property that is needed not only for
a mathematical model but also for the theorems and algebraic laws derivable from it.

It is the purpose of this paper to encourage the development of new and simple
theories with the aid of set-theoretic models. Such models permit easy derivation
of algebraic laws, which in turn assist in derivation of efficient solutions to practical
problems. Models also readily support a general method for deriving designs from
specifications by top-down decomposition; in crossing levels of abstraction. we exploit
a helpful correspondence between generality of specification at higher levels. and non
determinism at lower levels of design and implementation.

2. Observations
The first task of the theoretician is to decide on what kind of system to explore, and to
characterise which of its properties are to be regarded as observable or controllable or
otherwise relevant to the description and understanding of system behaviour. For each
property, an appropriate name is chosen: for example in a mechanical assembly the
name x may denote the distance of a joint along one axis, and x may denote its velocity.
In mechanics, the observed values vary continuously with time, and they are often
called measurements. In computing, observations usually yield discrete values , and
they are made only at discrete points of time. For example, in the case of a fragment
of program, x may denote the initial value of an integer variable before execution starts,
and x' might denote its final value on termination. The fact that these observations are
not continuous measurements in no way detracts from the mathematical and scientific
quality of the theories which describe them.

Once the relevant observations have been named, the behaviour and properties of
a general system or a particular one can be described or specified by mathematical
formulae, equations, inequations or other predicates which contain these names as

II .4

free variables. Each predicate describes those systems in which the observed values
of all its variables make the predicate true. In science, a general class of system is
often described by differential equations; and a specific member of the class by adding
particular boundary conditions. For example, the predicate

x < k±

describes the behaviour of any joint which moves sufficiently slowly in the vicinity of
the origin of the x axis. Similarly in the case of programs,

x' > x

describes the behaviour of any piece of code which does not decrease the value of
x. Such predicates may serve either as scientific predictions about the behaviour of
known systems, or as engineering specifications of systems yet to be designed and
implemented.

Sometimes the validity of a prediction R depends on validity of some other con
dition P. This condition usually mentions variables whose values can be controlled
by the experimenter, or the user, or in general by the environment within which the
described system is embedded; and so it is often called a precondition. If the environ
ment fails to make P true, no prediction at all can be made of the behaviour of the
system; and, in the case of a specification, no constraint whatsoever is placed on the
design of the product.

Observations which are described in user specifications are usually those which
can be made directly, as it were with the naked eye. But in a mature branch of
science the most important observations are those which can be made only indirectly
by some more or less elaborate experiment. An experiment involves connection of
its subject in some well understood manner with other processes whose bf'haviour is
well understood, so that a more direct observation can be made of the bf'haviour of
the combined system. Very often, the presumed understanding of thf' f'xpcrimental
apparatus itself depends on the very theory that is being tested. Thf'rf' is clearly a
danger of circularity, a risk which attends research in all branches of science. But
a successful choice of the right kind of indirect observation (for examplf'. f'ne rgy in
physics) can provide a remarkably coherent and general explanation of wide range of
diverse phenomena. Such an indirect observation is often accepted as if it Wf're a direct
observation in some theory at a lower level of detail.

A familiar example of the distinction between direct and indirect obs('rvations can
be drawn from models of sequential and parallel programming. For sequential pro
gramming it is adequate to make direct observations of the values of variabl es before
and after execution; and specification of a complete program can be formulated en
tirely in terms of initial and final values. But suppose in the interests of efficiency
we wish to implement the specification with the aid of component programs execut
ing concurrently in a multiprocessor with a single shared store. These processes can
interact during execution in ways that cannot be understood in terms of direct observa
tions before and after execution. So the presumed observations of each process must
include complete sequences (called trajectories) of state pairs, representing changes

-.

II . 5

due to atomic act ions of that process. These sequences are in practice not directly
observable, except by running the process concurrently with some other process de
signed to test it. Indirect observations are usually more complex and abstruse (and
even controversial) t han direct observat ions, and they are not in tended to appear in
the user's specification of the completed product; but t hey are vital to the engineering
soundness of the design , because they permit accurate specifications of interfaces and
components t hat may then be designed and implemented separately by separate teams
of engineers at separate t imes.

In a theory intended for engineering design, it is also important to include among
the potential indi rect observations all the possible ways in which a physical implemen
tat ion may break or fai l. It is only in a theory which includes such failures that it is
possible to prove that a particular design or product will avoid them. Since all kinds
of failure are to be avoided, there is no need to make fine distinctions between them,
or to give accurate predictions of the behaviour after failure. For the same reason,
t here is no need to mention avoidance of failure expl icit ly in a user speci ficat ion of a
complete product. Let us describe all such universally undesirable observations by a
predicate named FA IL.

A familiar example of fai lure in software is non-termination of a sequential program
due to infinite iteration or recursion . This can be represented by introducing a special
variable "terminated", which is true when the program has terminated, and remains
false if it never terminates. It is understood that the final values of the variab les
x', y', . . . are observable only when "terminated" is true; this understand ing can be
coded in the mathematical t heory by allowing these variables to take arbitrary values
when "terminated" is false. A specification never needs to talk about termination:
one can take for granted that it is desirab le. But implementations need to avoid it.
So the first step in moving from specification to design notat ion is to in troduce this
ext ra variable.

Of course , in practice we can never wait the infinite time required to make an
observat ion of a false value of the variable "terminated" . This leads to philosophical
objections against introducing a value which is so essentially unobservable; but they
are the same kind of objection that can be made to zero as a number or empty as
a set . Project ive geometers never expect to observe their line at infini ty, but their
theory would not work without it . And in our case, t he explicit int roduct ion of non
termination and similar failures gives a similar advantage: it enables us to deal auto
matically with failure to meet "liveness" conditions in the same simple way as we deal
with "safety" properties. To deal with "fairness" conditions one must accept an even
greater variety of .indirect observations, which would take an infinite time to observe.

The danger of failing to introduce enough indirect observations is that a product
designed with the aid of the theory will break in some way unpredictable by the theory;
so the theory establishes only condit ional or partial correctness . A bad example is the
Brock-Ackerman anomaly in non-interleaving models of non-determinist ic data flow.

T he converse danger of introducing too many indirect observat ions is that the
theory wi ll be more complicated than necessary. It is possible to prove that t his
danger has been avoided by showing that t he theory is fully abst ract in the sense of
Milner and Plotkin. But this proof can be done only after the theory has been more

II . 6

fully developed.
In summary, a theory intended for engineering des ign works with observations

at two (or more) levels of abstraction. The direct observations are those which are
described in a user specification 5, and in a precondition P , placing constraints on the
method and circumstances of use. The indirect observations are those mentioned in a
description D of the actual behaviour of a delivered product, and in the description
FAIL of all t he undesirable ways in which a product may fail if the precondition is
violated. The fact that the product meets its specification in now encapsulated in a
single mathematical theorem

D * (P * ~FAILI\ 5) .

This means that if the precondition P is satisfied, then every observation of the be
haviour of the delivered product D will be a non-failing observation, and will also
sat isfy the specificat ion S.

The last important message of this sect ion is t hat an engineer never just deliv
ers a product, but rather a product together with its specification, including operat
ing instructions and preconditions for safe and successful use. Clarity and precision
of specification are included among the most important qualities of a product; and
mathematics provides excellent assistance in achieving them. Failure to realise this in
software specification is notorious; and leads to many of the other problems encoun
tered in current software engineering practice.

3. Implementable processes.
The implication displayed at the end of t he last sect ion formali ses a proof obligation
which may be 'discharged after the design is complete. But it is far better to regard
it as a mathematical statement of the designers task, namely to find some design D
which satisfies the implication and so meets t he specification. Eventually, the whole
design D must be expressed wholly within some limited set of design notations, which
are known to be directly implementable in t he available technology. The task is in
principle no different from that of solving any other engineering problem which has
been precisely formulated in mathematics.

An essential quality of the solution of a mathematical problem (for example a
differential equation) is that it is expressed in more restricted notations than those
used to formulate the original problem; otherwise the solution could be just a trivial
restatement of the problem. It is the notational restriction that makes the solution
useful. In Computing Science, such notations can be designed to be translated au
tomatically for diTect implementation either in hardware or in the machine code of
a computer. And, as in mathematics, it is very important that the notation of the
solution should just be a subset of the notations used for specification. So the theorist
must undertake to select from the class of all specifications those which are more or
less directly implementable.

In the previous section we have assumed that specificat ions are written as math
ematical predicates with free variables standing for observable values in a fashion
generally understood by the educated professional. This is a style preferred by prac
ticing engineers and scientists, who tend to manipulate, differentiate or integrate the

II. 7

text of formulae rather than abstract functions: it is also the style adopted by the Z
school of specificat ion, and in the specification-oriented semantics of programming lan
guages. Pure mathematicians, on the other hand, tend to prefer closed mathematical
abstractions like sets and functions and (more occasionally) relations. This is evident
in the study of Analysis and even more in Topology. It is the style preferred in the
denotational semantics of programming languages. Each style is more appropriate for
the use to which it is put, and there is no conflict between them. Every predicate
can be identified with a set, namely the set of those assignments of values to its free
variables which makes the predicate true. And the sets and functions of the pure
mathematician can and should be translated into predicates and formulae before use
by engineers and programmers. The important relation of set inclusion then trans
lates to logical implication, defining precisely the designer's proof obligation. In the
remainder of this talk, it is more convenient to adopt the style of pure mathematics ,
dealing with sets and relations rather than variables and predicates.

Let us give the name OES to the set containing mathematical representatives for
all possible direct and indirect observations of all possible processes of interest. We
can now represent a part icular process P as that subset of OES which contains all
observations which could in any circumstances be made of that process. The set of
all such processes, implementable in a particular envisaged language or technology,
constitutes a family of subsets of OES, to which we give the name of PROC. So the
first two components of our model are similar to those of a topology - a carrier set
OES and a particular family PROC of its subsets. It is already possible to formulate
interesting questions about the family, for example does it contain the empty set, or
the universal set OES itself? Is it closed with respect to union or intersection? We
will later give reasons for answering these questions by no, yes, yes, and no.

The family PROC may be defined by describing the mathematical properties of
each of its members. These commonly take the form of closure condit ions, which force
the sets to be "large enough" .

1. Sometimes the reason for such conditions are obvious. If a process contains an
observation "it weighs less than g" then it must also contain all observations
that "it weighs less than 9 + h", for all positive h.

2. Sometimes the motive is one of realism: a conventional program can be started
in any initial state whatsoever; so for all s it must contain a state pair with s
as its initial component - an important condition which we will call totality.
The possibility of nontermination therefore has to be represented by a special
"bottom" value of the final state, usually written 1-. This represents falsity of
the "terminated" condition, described in the previous section.

3. Sometimes a condition arises from some intended property of the operations
provided in the implementation. In a constraint language, the states of the
machine are predicates, and no operation is provided to weaken the state. So
the sequence of predicates in any trajectory must form a strengthening chain.

4. Sometimes the goal is to permit efficient implementation. For example, in con
current execution of a process, it is more efficient for a processor to execute many

-.

II . 8

consecutive transitions from one process while some other process is stationary.
The validity of this implementation method can be assured by the closure condi
tion: for any trajectory containing a pair of consecutive transitions (8, t), (t, u),
there is also a possible trajectory similar to the first , except that this pair is
replaced by the single atomic transition (8, ul , going straight from the first to
the final state.

5. Sometimes the aim is to avoid making unnecessary distinctions. For example, a
process should never be started in an initial state for which it has non-termination
as one of its outcomes. So we may not care what other possible outcomes it may
have in this case. Our deliberate indifference is formalised by a closure condition
that whenever - is a possible final state, so is every other state whatsoever. This
is just a set-theoretic statement of the fact that before termination the final value
of the state is unobservable and therefore arbitrary.

6. And finally, the motive may be simply mathematical convenience, to avoid rea
soning about special cases, or to satisfy some desirable algebraic law. But of
course this should not detract from realism or range of applicability of the the
ory; so concessions to convenience should usually be confined to circumstances
involving failure; since failure is going to be avoided anyway, the details of its
treatment in the model are more open to arbitrary decision.

A closure condition can often be expressed in terms of a function or relation which
maps members of the set to other members. A set S is closed with respect to a relation
c if it contains its own image through c

cS c;;. S

where cS =df {yI3x.x E S /I x(c)y}.

For example, condition (1) states closure with respect to the ordering relation on
weights; and (4) and (5) can also be expressed as relational closures. Closure conditions
expressed in this way are easier to treat mathematically.

The conditions defining membership of PROC are intended to ensure physical
implementability. Like the laws of physics, they describe general properties such as
conservation of energy that must be preserved in any physical system. So it is not
surprising that their discovery and formalisation is the first and most serious difficulty
in the construction of realistic models; what is worse, their sufficiency and validity can
be established only at the very last step in the evaluation of the model by practical
use. That is why Dana Scott once characterised formalisation as an experimental
science. So when the experiment succeeds, when all aspects of the theory link together
harmoniously, then great satisfaction can be derived from the achievement, in addition
to the possibility of more practical benefits.

The sets in PROC are intended to represent exactly the implementable processes
of the theory. But a specification of such a process does not have to be a member
of PROC. Any other subset S, defined by any desired combination of mathematical
predicates, can serve as a specification of requirements placed on a particular member

II . 9

P from PROC, which is yet to be designed. T he design will be correct if and only
if the eventually delivered P is a subset of S, i.e., all poss ible observations of the
process (including even the undesirable ones) are permitted by t he specification. So
the subset relation between a process and a specification captures exactly the concept
of satisfaction , as described in the previous section. Of course, it may be that there
does not exist any P in PROe which satisfies the specification. It is then logically
impossible to meet t he specificat ion within t he given technology. The theory may help
t he engineer in avo iding the danger of promising to deliver such a product .

Consider a specificat ion T, and let S be subset of T. Then S is a stronger specifi
cat ion t han T : it places more const raints on t he product and may therefore be more
difficult to implement . Indeed , because set inclusion is transitive, every product that
meets specificat ion S will serve also as an implementation of T , so implementation of
T cannot possibly be more difficult than S.

The subset relation may also be used to define an ordering among the members of
PROe. By transitivi ty of inclusion , P ~ Q means that P sat isfies every specification
sat isfied by Q, and maybe more. Consequent ly for all relevant purposes and in all
relevant respects P is better than Q (or at least as good). Thus if Q is a simple design
or prototype which clearly meets its specification , t hen Q can be validly transformed to
(or replaced by) P , withou t jeopardising correctness; the motive for doing so may be a
reduct ion in cost or increase in efficiency. One of the main objectives of a mathematical
t heory is to provide a comprehensive collect ion of such correctness· preserving, but
efficiency· increas ing transformations. Notice that t he interpretation of the relat ion ~
as "better t han" depends on the fact that aBS contains all relevant ways in which a
process may fail. It is this that ensures that the better process is the one that fails
less often; and furthermore, because it gives ri se to fewer non-failing observations, it is
eas ier to predict and cont rol what it is going to do. In this way "better" also implies
"more deterministic" .

We can now single out from PROe those processes which are the best of their kind ,
in the sense that none of them can be fur ther improved. This subfamily will be called
DET, because it contains those processes which are as deterministic and as free from
failure as possible. For each process D in DET there exists a specification (namely D
itself) which is met by D and by no other process

P ~ D =} P = D ,

for all P E PRO C, and all D E DET.

The size of DET is therefore indicat ive of the range of solutions provided by the theory,
and therefore of the range of essentially distinct problems that can be solved by it. So
a theory in which DET has only a few members is not likely to be widely applicable.

It is unusual for a general theory to include cost or speed among is observables,
because t hese factors are highly variable between one project and another. However
if they are included in a more specific theory, it is important to ensure t hat the
observations take the form "it costs less than n" or "it goes faster than m". Then
P ~ Q means that Q can cos t more and go slower, so the interpretation of inclusion
as a merit ordering can be maintained. But such a theory can deal only with uniform

11.10

improvement with respect to all criteria simultaneously; it becomes wholly inapplicable
in the more frequent case when one criterion must be traded against the other. That
is another reason why these considerations are usually omitted from a general theory,
and left to the good judgement of the engineer. No amount of mathematical theorising
can ever replace that!

4. Some useless processes.
Certain individual members of PROC can be simply defined as sets of observations;
and the simplest example would be the empty set of observations. But there are
two devastating arguments against including the empty set in PROC. Firstly the
philosophical one: it is wholly unrealistic to design and deliver a product which could
never give rise to any observation whatsoever, either direct or indirect. Secondly
the practical objection: the empty set would by definition satisfy every specification
expressible in the theory. It would be the only member of DET, and even if there were
other members of PROC, there would never be any need to use them. The empty set
would be a miracle or panacea, and a mathematical theory which contains it can only
be applied to a problem domain in which a panacea exists. But in such a domain,
there is hardly any need for a mathematical theory. For this reason, it is essential to
introduce enough indirect observations to ensure that no process is represented by the
empty set.

Another easily defined process is the universal set OBS itself. This is called ABORT

in Dijkstra's sequential programming language, and CHAOS in CSP. It is the easiest
of all processes to implement - in fact any process whatsoever will serve as an im
plementation. But it is the worst possible process to use; its behaviour is maximally
uncontrollable and unpredictable, and it may go wrong in any or all possible ways. It
is difficult to imagine a computational device that really behaves as badly as this; but
perhaps one example would be a program which on receipt of an external interrupt
executes a wild jump to a floating point number. But a true understanding of CHAOS
comes from a recognition that a specification is an integral part of the delivered prod
uct . If somehow the specification becomes detached, say from a bottle of medicine,
then the only safe thing to do with it is to throw it away unused. So also must one treat
a product, say processed food , which has been stored in a manner which violates the
stated preconditions for safe consumption. These are the most useless of products; and
they are modelled in our theory by the weakest of all processes, namely the universal
set OBS. These are good enough reasons for including OBS as a process in PROC;
since OBS satisfies all possible closure conditions, it is mathematically convenient to
do so. And since the responsible engineer should do anything to avoid such a dreadful
process, mathematical convenience is a sufficient excuse for including it in the theory.

The following examples are more useful than OBS, but more specific to a particular
computational paradigm. In a sequential programming language there is usually a
process that terminates immediately without making any change to its initial state.
It is called SKIP in Dijkstra's language and CONTINUE in FORTRAN. If the states
before and after execution are observed, they will be found to be the same. SO SKIP

is modelled as the identity relation

SKIP =df {(s, tlls = t}.

n.ll

In a const raint language, the states of the machine are represented as predicates.
Such a language provides a method for strengthening the current state predicate by
addition of some proposition b The process is named "affi rm (b)", and its observations
are those in which the final state is 'a conjunction of b with the initial state

{(s,t)lt = s i\ b} ,

We can already prove the algebraic law

affirm(true) = SKIP.

In a programming language that allows concurrent computation, it is usual to
provide some means for synchronisation, whereby one process can wait until other
concurrent processes bring the machine state into a condition satisfying some desired
predicate c. This is achieved by a process which we wi ll call "wait(c)". In a conven
tional procedural language, a state s satisfies c when evaluation of c in state s yields
true. In a constraint language, satisfaction means that the state s logically implies the
truth of c. If c is satisfied in the initial state, the wait has no effect, so observations
of "wait (c)" will include

{(s, s)ls sat isfies c} .

In the more interesting case when c is not sat isfied by the initial state, the "wait(c)"
process simply waits . We therefore need to introd~ce a special "wait state" denoted
by the symbol ? The pair (s,?) means that the process is observed to be waiting in
state s; it corresponds to a refusal in esp. The definition of "wait(c)" is

{(s,s)ls satisfies c} U {(s, ?)Is does not satisfy c} .

If s does not satisfy c, then all states weaker than s also fail to satisfy c. So we have
another closure condi tion for processes

If (s, ?) E P then (s V t, ?) E P.

Since every predicate satisfies the predicate "true" we have the simple algebraic law

wait(true) = SKIP,

The wait state is useful even in a non-parallel language: Dijkstra's concept of a guarded
command can be simply modelled:

b -> P =df wait(b); P.

A process which waits for false to be satisfied is likely to wait forever. Such a
phenomenon is known as deadlock, and is denoted by STOP in esp or NIL in ees

STOP =df wait(false)

= {(s,t)lt =?}.

The behaviour of STOP is certainly highly undesirable , almost certainly the result
of a design error or violation of a precondition. It is therefore tempting to make no

II .1 2

dist inction between STOP and the worst poss ible process 0 BS. Experience shows
that it is wise to delay giving way to this temptat ion. Late r we may wish to define a
combinator that permits recovery from deadlock, but which cannot recover from other
kinds of failure like non-termination. Premature identificat ion of STO P with OES
would prevent int roduct ion of th is useful combinator.

The processes affirm and wait are both in DET. They are both deterministic (fun c
t ional) because each initial state is paired with exactly one final state. Any process
with less fin al states than that would violate the totality condi t ion.

5. Boolean combinations of processes.
The single processes like those defined in the previous section are too simple to solve a
real problem, even of the most trivial kind . They can only serve as primi t ive compo
nents, which need to be connected together and used in combination to exh ibit more
complex and useful behaviour. In order to prove in advance that such a combination
will work as intended, we need to formalise by mathematical definition the various
ways in which components and subassemblies can be combined into larger assemblies
or can be adapted for new purposes. These combinators are usually denoted by math
ematical operators, whose operands are written representations of the processes which
they combine. The combinators are selected and designed to ensure that they map
implementable processes to implementable ones; furthermore that they themselves
are implementable by some kind of interconnection· of components described by their
operands. In this section we will int roduce some combinators which can be defined
with the aid of simple boolean operators on sets.

Let P be a process and let S be some suitable subset of OES, such that P n S
(P restricted to. S) is also a process. T hen P n S is like P , except that its capability
of giving rise to observations outside S has been removed . For example suppose P
has a two-position switch , and S contains only observations taken when the switch is
off. Then (P n S) describes an object in which the switch (or at least the capabili ty
of t urning it on) has been removed. T his kind of restriction is used in CCS and
ACP to prevent external observation or interference with interact ions occurring on
internal communicat ing links in a network. It is immediately obvious that rest riction
distributes through set union . So do all the other combinators defined in the remainder
of this paper.

In a concurrent program it is sometimes desirable to force the execution of a se
quence of transitions as if it were only a single atomic transition, uninterrupted by
any concurrent process. Let S be the set of all atomic transitions, i.e. all trajectories
of length one. Then (P n S) eliminates from P all trans itions that are not atomic. We
have assumed here that P already satisfies the closure condi t ion that consecut ive t ran
sitions of a process are permitted to be amalgamated; in (P n S) such amalgamation
is forced.

Conjunction might seem to be a useful operator for removing mistakes from a pro
gram, for example if S is the set of all observat ions that do not involve non-terminat ion.
UlIfurtun<Ltely the wlIjulIdiun (P n S) will usually fail the closure conditions (like to
tali ty), except for very special sets S. Or perhaps this is fortunate, because in practice
such a process would be im possible, or impossibly inefficient, to implement. For the

II .1 3

same reason, a modeller should always take great care not to exclude accidentally the
ways in which a combination of processes can in practice go wrong.

If P and Q are processes represented by sets , then their set union (P U Q) is the
strongest specificat ion satisfied by both P and Q

(P U Q) S; S iff (P S; Sand Q S; S), for all S S; DES.

If the closure conditions for PROC are expressed in terms of a relational image, P U Q
will be just the set union of the observations of P and of Q. This is ext remely con
venient, and explains why the standard semantics of CSP is given in terms of refusal
sets, which are closed with respect to the subset relation, rather than acceptance sets,
whose closure condition is not relation ally definable.

This specification (P U Q) presents no great difficulty of implementation. For
example it can be implemented either by P or by Q, whichever is the eas ier; though
the conscientious engineer will use his judgement to choose the one that is most cost
effective for the eventual user of the product . (P U Q) can be thought of as a product
delivered with two different operating instruct ions, one for P and one for Q, and no
indication which is right. Of course it may be possible to decide between them by
subsequent experiment; but until then t he only safe thing is to use the product in a
manner consistent with both its manuals. Or maybe there is a single manual, which is
ambiguous, and does not state whether it will behave like P or like Q. Sometimes t he
supplier has good reason for the ambiguity - think of a restaurant which has fresh
vegetable soup on its menu. Similarly, a designer may wish to keep opt ions open for
later decision, or a manufacturer may wish to retain freedom to deliver later variations
of a product. In any case, the formula describing PUQ may be simpler , more abstract ,
and easier to manipulate than either of the separate formulae for P or Q. SO it is not
unreasonable to regard (PUQ) as a member of PROC, provided it satisn!'s the relevant
mathematical closure condit ions. And we do not have to decide the v("xed question
whether it is allowable (or even possible) to const ruct a genuinely non·detf'rministic
process, whose behaviour is not determined even at time of delivery. W" will return
to th is point in a later section.

If it is possible to take the union of two processes P and Q, what about their
intersection (P n Q)? Such a process would engage only in observations on which
both P and Q agree. If this is a member of PROC, it is better than both P and Q,
although it is the worst process with this property. What is more, intNs('ction can
be very useful in meeting a specification expressed as a conj unct ion of a r("'lllirement
S with a requirement T. For example suppose S requires that the final value of an
array must be soited in ascending order, and T requires that the nnal value must
be a permutation of the initial value. With the aid of non-determinism it is easy
to write a program P which assigns to the array an arbitrary ascending sequence of
numbers, thereby meeting requirement S . Requirement T can be met similarly by
a program Q that assigns to the array an arbitrary permutation of its initial value.
Elementary propositional logic now guarantees that the intersection (P n Q) will meet
the conjunction (S n T) of the requirements.

Unfortunately, in a conventional sequential language, the implementation of P n Q
would involve repeated execution of both P and Q, looking for an outcome possible

II .14

for both of them . And if there were no such outcome, it would be impossible to
implement , because even non-termination would be disallowed. This impossibili ty is
reflected in the theory, which insists that all members of PROe are total. Intersection
is such a useful and common combinator for specificat ions that it is highly desirable
to explore special cases in which a conjunction of specifications can be effi ciently
implemented by some combination of processes, each of which meets only part of the
specification. That is the main driving force behind research into non-conventional
and non-sequential programming languages, as well as modular st ructures for more
conventional ones .

If union is easy to implement but intersect ion infeasible, let us explore some further
process combinators that lie between these two extremes. Let S be some sui table subset
of OBS. Then the conditional process P(S) Q (P if S else Q) is defined to exhibit an
observation of P just when that is an observation in S; but each observation from
outside S is an observation of Q:

P(S)Q =df (P n S) u (~S n Q).

Simple Boolean algebra gives

P n Q ~ P(S)Q ~ P U Q

In the case of a convent ional sequential language, the set S usually takes the form of
a computable test b to be applied to the initial state, independent of the fi nal state:

B = df {(s , t)ls satisfies b} ,

so its complement also takes the same form:

~B = {(s,t)ls does not sat isfy b}.

This means that P(B)Q can be executed by a test on the initial stat.e , before
choosing between execution of P or of Q. Such a combinator is included in all general
purpose procedural programming languages. But for other choices of S, it is very
unlikely that the result will be a process . For example consider the relation al converse
of B , which tests the final state rather than the initial state. Such a condi tional will
not in general satisfy the totality condition; and even when it does, it coul d hardly be
implemented wi thout systematic backtracking.

The algebraic properties of (S), considered as an infix operator, are easi ly deriv
able by Boolean algebra. It is idempotent and associative; furthermore, it di st ributes
through union and union distributes through it . Finally, (S) distributes through (T)
for all Sand T. Boolean algebra provides an extraordinary variety of mutually dis
tributive operators: indeed , it seems that any operator which makes a select ion be
tween its operands, involving execution of exactly one of them, will dist ribute through
itself and every other operator of the same kind.

I have encountered some resistance among algebraists to the idea of mutually dis
tributive operators. To help overcome this prejudice, here is a whole new class of them.
Let S be some suitable subset of OBS. Then the process (P[S]Q) is defi ned to exhibit

II.ls

an observation in 5 just when both P and Q agree to do so; but each observation
outside 5 may be eit her from P or from Q

P[S]Q =df (P n Q)(S)(P U Q).

This is called the negmajority, because it gives the majori ty vote of P and Q and the
negation of S . Simple Boolean Algebra again gives

pnQ ~ P[S]Q~PUQ.

A useful special case is when 5 is STOP, i.e. t he set {(s,t)l t =?}. SO P[STOP]Q will
wait only in those states in which both P and Q are waiting; if the initial state is a wait
state for P but not for Q, then the next and all subsequent transitions of P [STOP]Q
will be determined by Q and P will be ignored; and symmetrically, interchanging P
with Q. In a state in which both P and Q can proceed, either of t hem may be selected
for execut ion, t hereby giving rise to non-determinism. In ees this operator is written
+ and in esp it is ~; it is called (external) choice because it allows the environment
a degree of choice between its operands. Because the relation STOP is a constant
fun ct ion , [STOP] preserves the totality condit ion of its operands.

By Boolean algebra [5] clearly shares all algebraic properties common to both union
and intersection (which are actually just the special cases lOBS] and [{}] respectively) .
Furthermore, [5] has 5 itself as unit ; t his provides 'a method for averting deadlock in
ees or esp by giving a better alternative

STOP~P = P.

Finally, [5] is high ly distributive. Indeed, each of the operators [5], [T], (U) and (V)
distribute t hrough all of them (including itself).

Associativity is a useful property of ~; for example, it just ifies writing Dijkstra's
guarded command set without brackets

b --> P~ c --> Q~d --> R.

The definition of ~ and --> ensures that the whole set deadlocks if and only if all the
guards are false. In Dijkstra's language, t he deadlock is converted to abortion by
surrounding the guarded command by if . .. fl, which can be defined

if P fl = df P U {(s , t)l(s,?) E Pl.

As our last Boolean combinator, let us consider negat ion or complementation.
Suppose we wish to define a process which behaves like P, except that it can never do
anything that Q can do. Such a process could be very useful as a safety-critical control
program. Let Q be a process whose observations include all erroneous or dangerous
ones; thus (P - Q) is guaranteed to be safe. Unfortunately, there is no general way to
implement such a complementat ion operator: and mathematically it is very unlikely
to satisfy the closure cond itions which define processes. If physical and mathematical
impossibility are not strong enough arguments , we will later find yet another reason
for not admitting complementat ion as a combinator on processes. But of course, like

.1

II. 16

all the Boolean operators, it remains extremely useful for specification.

6. Relational combinations of processes
We now shift attent ion to relations between observations of two or more processes;
such relations are effectively subsets of the cartesian product space OBS x OBS. If r
is such a relation and P is a process, we define r P as the relational image of P through
r. Each observation of rP is related by r to some observation of P

rP =dj {yI3x.x E P II (x, y) E r}.

It follows that r, considered as an operator on PROe, distributes through union

r(P U Q) = (r P) U (rQ).

A simple example of a relation is the identi ty relation on some subset 5 of observations:

{(x,x)lx E S)

The image of P through this is nothing but the famili ar restriction operator (P n 5).
The relation r must of course be selected so that its image has the same desired

closure properties as its operand. If the closure conditions are expressed in terms of a
relation c, it is sufficient to prove

ij C ~ Cj T,

where; denotes relational composition. It follows that rP sat isfies t he closure condi
tion:

c(rP) ~ r(cP) ~ r(P) , provided cP ~ P.

Another example of an image is the operation in ees which changes the names
of the events in which a process engages. In esp, this is represented by a funct ion
I from the alphabet of the operand to the alphabet of the result, which is applied to
each event in each trace. If I is a bijection , I P is st ructurally identical (isomorphic) to
P; but if it maps several different events onto the same one, it introduces an element
of non-determinism: when I P engages in an event I e, it is not known which of the
events in I-JUe) actually took place; and so its future behaviour will be more difficult
to predict and control. There is no problem in generalising I to an arbitrary relation,
at the expense of even greater non-determinism.

In a concurrent programming language, observations are sequences of events. If e
is an event and s is a sequence, the sequence (e) ~ s is defined as one that starts with
e and continues with s. The prefixing relation (actually a total injection) is defined
simply as

(e -t) =dj {(s,t)lt = (e)~s)

The image of a process P through this relat ion is a process which fir st engages in the
event e and then behaves like P. It is denoted (e .P) in ees and (e -t P) in esp;
though in esp some additional observations (refusals) are needed to preserve closure
conditions.

Now suppose a process P has already engaged in an initial event e, and we wish
to predict what its future behaviour will be. This is known as "P after e" (Pie) in

II .1 7

esp, or the derivative of P by b in the terminology of regular languages. Each of the
traces of P/e must be such that restorat ion of e by prefixing will give back a t race
of the original process P; so "after" is just the relational converse of prefixing. Since
prefixing is a total inject ion, we obtain immediately

(e -t P)/e = P.

However, if t he after operator is app lied to a process which could not have started
with an occurrence of e, the result will be empty, which we have decided should not be
considered as a process. So "after" is only a partial operator on executable processes,
which is why it does not feature in ees or other process algebras. However, there is
no reason why the operator cannot be used in specifications and in reasoning about
the design of processes.

Now suppose that a known process P is known to have engaged in not more than
one event, but it is not known what the event was , or even whether it has happened.
Then the future behaviour of P is just the union of P with its image through the
truncation operator, defined as the removal of the first event from any non-empty
sequence. This is a projection operator, which conceals some part of the behaviour of
a process; it therefore tends to introduce or increase non-determinism. Think of what
is known of the contents of a box of assorted chocolates, after their hiding place has
been discovered by chi ldren, who may have eaten some of them. A similar projection
or hiding operator operation is used in esp to prevent observation or participation
by the environment in communications along internal channels of a network . In an
actual implementation the events do actually occur, but they are unknowable and
uncontrollable from outside. In an actual machine, advantage is taken of this non
determinism by allowing the events to occur as fast as they possibly can.

To define combinat ions of two or more operands, we need relations between three or
more observations: for simpli city we shall confine attention to just binary combinations
requiring only ternary relations:

r ~ ((OBS x OBS) x OBS).

Wherever possible, more complex combinators (with three or more arguments) should
be defined in terms of simpler binary combinators, preferably associative ones; my
treatment of Dijkstra's guarded command shows the way.

The relational image will be written by an infix notation

(PrQ) =dj r(P x Q)

= {z I3x ,y.x E P II Y E Q II ((x,y),z) E r}

The simplest examples are provided by the familiar Boolean operations. (P U Q) IS

just the image of the relation

{((x,y),z)lz = x V z = y},

and (P n Q) is the image of

{((x,y), z) lx = y = z}.

II .1 8

Relational definitions of (5) and [T] are hardly more complicated . Of course, com
plementation cannot be defined as a relat ional image; bu t there are good reasons for
excluding th is anyway as a combinator for processes.

In a sequential programming language, each program is itself a relation, containing
pairs (5, t) of ini t ial and corresponding final states. Sequential composition of processes
is defined as the image of the following relation between these pairs:

{ (((s, t), (t, u)), (s, u)) Is, t , u are states}.

In fact, t his yields the famili ar composition of relations , which is easily implemented
as sequential composition in a convent ional programming language: the final state of
the first process is taken as the initial state of the second process. This intermediate
state is then concealed

P;Q = df {(5,u)13t .(s,t) E P 1\ (t ,u) E Q}.

As with other concealment operators, interests of efficient implementation require
explicit representation (and certain ly not the concealment) of all the ways in which
a combination can go wrong, either as a result of failure of the components or some
mismatch between them . For example, what happens in sequential composit ion if t he
final state of the first operand is not in the domain of the second? Avoidance of this
problem is the main motive for the closure condition that all processes must be total
relat ions. Similarly, if t he fi rst operand of composition fail s to terminate, the math
ematics must ensure that the whole composition wi ll fail. This can be achieved by
an additional closure condition, namely that (.l,.l) and (?,?) should be observations
of every process, thereby ensuring that the possibility of non-termination of the first
operand is preserved by sequential composition . Of course, t his is something of an
artificial coding trick; but t his does not matter , since - is anyway an art ificial state,
which is going to be deliberately avoided in practice. An alternat ive solu tion is to com
plicate the definition of composition to treat non-termination as a special case. Choice
between such alternat ives is one that must often be made by a modeller, and often
requires detai led exploration of both of them. In the end, mathematical convenience
may be the only deciding factor.

In a constraint language, sequent ial composition P; Q involves appending each
t rajectory of Q to every trajectory of P, except those ending in ?, which remain
unchanged. No intermediate states are hidden; but any trajectory that violates the
strengthening chain condi tion is removed. Parallel execut ion of two processes can be
modelled by a form of interleaving of complete t races from each operand, subject to
the strengthening chain condi tion, and the terminality of ? In addition, any pair
of transitions (s, t) , (s, t') of the operands may be replaced by the single resulting
transition (5, t 1\ t'). Similarly, two final wait states (s,?) and (5' , ?) should be merged
to (5 U 5', ?) .

When all t he implementable operators on processes have been defin ed, it is at last
possible to check that the design of the whole theory is fully abst ract. Full abstraction
means that the difference between any two processes P and Q, represented by different
sets in PROC, may be detected by a direct observat ion of some experiment to which

•

II .1 9

they are both subjected. T he experiment is conducted by connect ing each process
into an environment C, consist ing wholly of implementable operators of the theory,
giving C(P) and C(Q) respectively. The experiment is designed to ensure that the
direct observations of C(P) differ from those of C(Q). If such an experiment is always
possible, then the theory is said to be fully abstract; and this shows that the particular
choices of indirect observation have not introduced any unnecessary complexity.

The characteristic feature of computational processes is that they involve many
more steps than could ever be described explicit ly in a program or other written
representation of a design. This problem is solved by repeated use of parts of a program
in some form of iteration, or more generally by recursion. We describe a simple but
general form of recursion without parameters. Let X be a variable standing for an
arbitrary subset of OES. Let F(X) be an expression of the programming language
built up from X (and perhaps other process variables and explicit ly defined processes)
by means of combinators of the language. Consider the equation

X = F(X)

which states that X is a fixed point of F. Now subsets of OES form a complete
lattice under inclusion ordering, and F, being defined solely by relational images, is a
monotonic function. A famous theorem by Knaster and Tarski proves existence of a
solution to the equation.

In fact, there is a complete lattice of solut ions: which one do we want? Since
we want to be able to implement the solution, we want the easiest one, namely the
greatest of them. Such a solution always exists as a specification; but in a general
purpose prograIllming language we would like it also to exist as a process. A general
way of achieving this is due to Scott and Smyth.

1. Allow OES to be a process.

2. Suppose {Xdi E N} is any descending chain of processes. Ensure that niXi
is also a process (in particular, it must not be empty) . This usually requires
exclusion of infinite non-determinism.

3. Ensure that all combinators are continuous in the sense that F(niXi) = ni(F Xi)
for all descending chains. This is guaranteed if all combinators are defined in
terms of relations that are finitary, in the sense that the inverse image of any finite
set is also finite (or universal). Sometimes a non-finitary relation is allowable, as
in the case of hiding in CSP.

Now the fixed point of F is just

where Fi is the ith iterate of F. This can be readily computed by unfolding the
definition of F as many times as required. If no finite unfolding is adequate, the im
plementation will fail to terminate; but this is exactly what the theory also predicts.
T he existence of this simple general way of defining iterations or recursions is a great

II . 20

simplificat ion of t he task of the modeller, who can concent rate attent ion on the math
ematical properties of finite processes, i.e., those that are defined without recursion.
Another equally valid general method of explaining recurs ion is by metric spaces and
contraction mappings: these always give an unique fixed point.

7. Calculus of design.
The previous sections have shown how to give a mathematical model of various ways
in which processes may be combined into larger assemblies . The theory may be used
predictively, as in science, to calculate t he observable properties of a system whose
components have known properties. But engineers have to work in the reverse direc
tion. A specificat ion is a description of t he desired properties of an assembly that
does not yet exist. The engineering task is to design and implement t he components,
and assemble them in a manner which meets the specificat ion. For t his we need a
calculus of design. T he calculus is based on the idea that a combinator defined on
processes P, Q, .. . can be equally well applied to specificat ions, that is to arbi trary
subsets S, T, .. . of OBS. T his fact is heavily exploited (us ing predicates in the place
of sets) by the schema calculus of Z.

Let us suppose that a designer is faced with a specificat ion U. Judgement based
on experience perhaps suggests an implementat ion in which (say) two components
are connected by some combinator r. The further design and implementat ion of the
components is to be delegated as separate tasks to two teams, or two persons, or even to
one person working on the two tasks at separate times. Successful delegation requires
careful formalisat ion of the correct specifications Sand T of the two components.
T heir correctness should be proved before t he first step of implementation, because
detection and correction of design errors after delivery and assembly of the components
may give rise to arbitrary unbounded expense and delay. The theorem that needs proof
is formalised by using r to combine the specificat ions of Sand T, showing this implies
the original overall specification U:

SrT <;;; U.

Because r is monotonic, any implementation of S, when combined by r with any im
plementation of T , will assuredly satisfy U. This method of rigorous decomposition
can be applied equally well to the design of the subassemblies too, and can be repeated
until each component can be implemented by a primitive process or assembly already
known to work. It is part icularly effective in Computing Science, where t he combi
nators available for connecting large assemblies are logically indistinguishable from
those available for much smaller subassemblies, right down to the level of primitive
components.

T his design method can be adapted to ass ist in reuse of subassemblies that have
already been designed, for example as a module in a library. Suppose T is a specifica
tion of such a module, which is to be connected into a system with speci fication U by
means of a combinator r. The designer has to find and implement the specification S
of t he rest of t he system, in a manner which sat isfies the inequation

SrT <;;; U.

II . 21

The method described above requIres discovery and form alisat ion of 5 followed by
proof. If the proof fail s, the formal isation of 5 must be repeated - a frustrat ion
familiar to many an engineer who does indefin ite integrat ion by guessing a formula
and checking its derivative. Far better to calculate the correct result directly and
immediately from T and U. Provided r is defined as a relational image, this can be
done by t he formu la

5 = U{XIXrT ~ U},

or better, by some simpler formula which has been proved equivalent to it. This gives
the weakest specification of any product X which has the required property, namely

X rT ~ U iff X ~ S.

So the choice of t his particular 5 as a specificat ion for t he rest of the system involves
no additional design comm itment or loss of generality. The technical term for this
situation is a Galois con nect ion, a simple case of a categorical adjunction. In general,
let r be any relat ion . T hen the weak inverse of r is defined as a relation s with the
property that

X rT ~ U iff X ~ U sT .

The weak inverse of sequential composition has been called the weakest prespecifica
tion; and in C5P the weak inverse of parallel composition has been called the weakest
environment . But in pract ice weak inverses give ri se to complications that belie the
simplicity of the general theory :

1. 5 may in fact in unimplementable. In fact an early proof of this may save a lot
of wasted .effort , because it shows that either the choice of T or of r has been
mistaken.

2. In practice, the size of the formulae derived by t his method can be excess ive.
Nevertheless, the stepwise simplification of t he formul ae, wi t h the aid of strength
ening, may be a good guide to the further design decis ions needed at this stage.

Further theoretical research to solve these problems is to be st rongly recommended.

8. Non-determinism
T he method of modelling a computational process as a set of observations is intended
to deal in a uniform fashion wi th both deterministic and non-deterministic processes.
It is possible to single out determinist ic processes as a special case; it is possible to
note informally when a combinator may fail to preserve determinism of its operands.
But once non-determinism is accepted and taken for granted, there is no necessity to
make these distinctions; and the mathematical theory develops most smoothly without
t hem.

Many practicing engineers are very reluctant to accept non-determinism, and rightly
so. T he only way that they have been taught to assess reliabili ty of a product is to
test it. But a non-deterministic product may very well pass every test, yet later fail in
pract ical use, just when most reliance is placed upon it. The only known solution to
this problem lies in mathematical design methods that inhibit the intrusion of error.

t·

II . 22

Indeed, this is already coming to be accepted by some engineers as more effective than
test ing, even for determinate products. Hence the slogan "Design right - First time" .

Many mathematical computing scientists are also reluctant to accept non-deter
minism, and rightly so. They have been educated in a tradition that mathematics is
about functions, and that its concepts are expressed primarily in functional notation.
The use of functional notation for non-deterministic operations leads to immediate
confusion: for example, one has to question t he validity of the absolutely fundamental
equat ion of mathematics, namely

f x = fx.

Similar difficulties arise for partial functions; and the solution is the same: go back to
the foundation offered by set theory, and use relational notations wherever they are
appropriate. This is a solution which is already being applied by abstract functional
programmers, of the schools of F P and squiggol; they have found it more effect ive to
calculate with function composition rather than function application.

One important characteristic of our treatment of non-determinism is that it is not
possible to specify that a delivered product must be non-determinist ic at the time of
delivery. Any satisfiable specification is satisfied by some member of DET. It is this
that makes it possible to use the same mathematical model for non-determinism in
products as for under-determination in designs and specifications; and full advantage
is taken of this in the calculus of design.

Finally there is an interest ing technical question, with st rong philosophical over
tones. Is it possible to make an observation of a delivered product that will reveal that
the product was non-deterministic at time of delivery? In technical terms, could there
be an observation of a non-deterministic process P which is not possible for any of the
deterministic processes contained in P ? Or is each process P equal to the union of
all deterministic processes contained in it

P = u{DID E DET 1\ D ~ P}?

One of t he major differences between ees and esp is that in esp conforms to t his
principle of invisibility of non-determinism.

Of course, it is always possible to detect non-determinism if one can observe the
internal structure of the implementation. For example a process known to have the
structure (P; P) could be observed to be non-deterministic if each instance of P were
observed to behave different ly. In the theory of testing which underlies the equivalence
of ees, it is permitted at any time to take a copy of the current state of the process,
and conduct the same (or different) tests on each copy; and it is this that may make
non-determinism visible. In many app lications, of course, such wholesale copying is
physically impossible - for example if the system to be copied is the whole universe,
or some large or inextricable part of it, like you or me. Even at the level of a single
particle, quantum theory tells us that no copy can be made: otherwise it would be
possible to test momentum of one copy and position of the other. It is really only in
the abstract world of mathematics that copying is possible, and so easy that it can be
taken for free.

But enough of philosophy: there are also interesting technical and practical con
siderations. For example, if non-determinism is unobservable, it is possible to prove

II. 23

that a resource allocating process that chooses among free resources at the time of the
request is just as good as one that gains efficiency by preselecting the next allocation
at the time of the previous request. In CCS, these two processes can be distinguished ,
because one of them resolves its non-determinism later than the other; and this can
be detected by cloning the whole allocator before the next request. But of course, a
resource allocator is a prime example of a process that should never never be copied.
So in th is case at least there are good reasons for using the slight ly more powerful
proof methods avai lable in CSP.

There is reason to suppose that non-determinism will come to play an increasing
role in Computing Science, both practical and theoretical. In practice, continuing
miniaturisation of circuits will continue to favour highly parallel hardware, and provide
increasing incentives to use it efficient ly. But if parallel processes are to cooperate
on the solution of a single problem, possibly sharing mechanical resources such as
disc storage, they will certainly need on occasion to synchronise with each other.
Each synchronisation will in principle delay at least one of the processes involved.
Examples of the most significant delays are those arising from paging faults in a
virtual memory, or from scheduling of arithmetic units in a data flow architecture.
Increase of processing speed can only increase the sign ificance of these delays. The
only solution is to allow the existence and duration of the delay to influence the course
of the computation. For example the programmer can use the ~ combinator of CSP
to allow the earliest possible select ion of the first possible event that can occur. Since
delays are essentially unpredictable, we are almost fo rced to accept non-determinism
as an inherent property of programs and algorithms, and even of computer hardware.
Learning how to cope with non-determinism is one of the most significant challenges
and achievements of theoretical computing science, and still offers exciting challenges
for the future.

9. Operational semantics.
The main danger in constructing mathematical theories about technological products
is that they may in the end be unrealistic, impossible, or impossibly expensive to
implement. The ultimate test of feasibility is widespread use by practicing engineers
and programmers, supported by mechanical design tools and compilers. For example,
theoretical investigations into communicat ion and concurrency have been validated by
efficient implementation of the occam programming language on the transputer, and
by use of its algebraic laws in the design of the T800 floating point unit. But the
installation of theory in practice requires an enormous investment and usually takes
more than fifteen years. So it is duty of the theoretician to take every possible step
to reduce the risk of unpleasant surprises at at later stage. Fortunately mathematics
again provides methods of discharging this responsibility.

For a theory of hardware design, the justification for an abstract mathematical
model, expressed say in Boolean algebra, is found by relating it to some more detailed
model of implementation of the hardware components, say in terms of voltages on
wires. And this too can be validated at an even lower level of abstraction by appeal to
the relevant laws of physics. Only at this point, if there is any doubt, the mathematical
theorist is entitled to hand over responsibility to the experimental scient ist to confirm

II .24

the physical accuracy of the theory.
In the case of software designs and programming languages, the mathematician

can discharge more of the responsibility. For example consider the risk that a theory
of processes is in principle unimplementable; perhaps because one of the operators
requires a test whether its operand will fail to terminate; or because it is more subtly
incomputable in the sense of Turing and Church. This danger can be averted by giving
the language a denotational semantics, expressed usually in a functional notation
which is known to be Turing-computable. At one time this was the only known way
of presenting an abstract formal semantics for a programming notation.

Apart from total incomputability, there is an equally serious danger, particularly
for theories that include non-determinism: the language may contain an operator like
conjunction whose implementation requires exploring all the possible non-deterministic
behaviours of its operand, looking perhaps for one that terminates in some desirable
state. Such an operator can indeed be implemented, but only by backtracking or
similar technique, which introduces an exponential increase in time taken or resources
consumed. The way to check against this risk is to construct a mathematical model
of a step-by-step implementation , for example as a Petri net , or by formalisation in
Plotkin 's structured operational semantics. Both of these techniques ensure that that
the permissible next steps in the evolution of a composite process can be determined
by considering just the first possible step in the evolution of each of its components.
Often at any given time only a small subset of the components need to be considered,
which increases the possibilities for parallel execution of many steps, and reduces the
need for synchronisation. But once feasibility has been checked by an operational
model, operational reasoning should be immediately abandoned; it is essential that all
subsequent reasoning, calculation and design should be conducted in each case at the
highest possible level of abstraction.

10. Process Algebra.
The practical use of a model to assist in engineering design requires a significant use
of mathematical reasoning of one kind or another. In principle, this reasoning can be
based on the raw definitions of the operators involved; but the labour involved would
be totally unacceptable - like solving partial differential equations by expanding the
primitive definitions in terms of the epsilons and deltas of analysis. The only way
that a branch of mathematics can be applied by engineers in practice is when it offers
a range of useful theorems, symbolic manipulations and calculations, together with
heuristics for their application. It is reasonable to expect a modeller to formulate and
prove an initial collection of such theorems, because their proof may require changes
in some aspect o(the model, its operators, its processes, or even its observations.

For example, in a sequential programming language, it is reasonable to expect that
sequential composition will be associative, and that it will have SKIP as its left and
right unit (identity). These properties need proof, which can be given in terms of the
definitions of the operators. If the definitions do not have these properites, it is the
definitions that should usually be changed.

For example, it is reasonable to expect that wholly erroneous program ABORT cannot
be reliably rescued by a program which will not start until the ABORT has successfully

II . 25

terminated - because there is a strong possibility that it never will. This expectation
can be most clearly expressed in a proposed algebraic law

ABORT; P = ABORT , for all P E PROC.

However, this equation is false in the simple relational model of sequential composition ,
unless the image of P is total, like that of ABORT. One way to estab li sh t his is to insist
that each process P contains the whole set {(s , t)ls =.J..). But now it is necessary to
check that all the other operators of the theory preserve t his property. If not , they
too may have to be changed ...

The easiest kind of theorem to use is one that is expressed as a general equat ion ,
which is true of all values of the variables it contains. An equat ion which is needed
in a particular application can often be deduced by a process of calculation: starting
at either side of the desired equat ion , a series of subst itutions is made until t he other
side is reached; each substitution is justified by a known equation of theory. Each step
is relatively easy to check, even with t he assistance of a computer; and long sequences
of steps may be carr ied out almost automatically by a term rewriting system. Such
transformations are most frequently required to increase the efficiency of implemen
tation by breaking down the more elaborate structure resulting from the top-down
development. A very similar advantage can be taken of theorems (inequalities) using
inclusion in place of equality, since all the operators involved in our theories are mono
tonic, and an engineer needs to exercise freedom to take design decisions which reduce
non-determinism.

Of course, there is no limi t to the number of t heorems that may be derived from a
model, and the mathematician needs good judgement in selecting the ones which are
likely to be useful. Equally important, the chosen theorems should be reasonably mem
orable; for this, brevity and elegance are an important aid, as well as self-evidence to
the operational understanding of engineers. Again , it is helpful if t he t heorems express
familiar algebraic properties of combinators, for example, associativity, commuti vity,
idempotence, or distribution of one operator through another. In fact t he best possi
ble way of educat ing an engineer in a new computational paradigm is by an elegant
collection of algebraic laws, together with examples and exercises combining theory
with practice. This is the way in which pupils at school are taught to reason about
the various kinds of number - integers, fractions, reals , complex numbers. The study
of the sophisticated and widely differing models for these number systems is more
the province of theoretical pure mathematics, and is a topic of specialist study in
Universities .

An important goal in the derivation of algebraic properties of a model is to find
enough laws to decide whether one finite process (defined without recursion) is equal
to another, or below it in the relevant ordering. In some cases there is a decision
procedure which app lies the laws in a particular direction to eliminate the more com
plex operators, and produce a simple normal form. This procedure is applied to both
sides of an equation or inequat ion, and a simple comparison is then made of the two
normal forms. The symbolic calculations are easily mechanised by a term rewriting
system, though in many cases the normal form (or some intermediate expression) is
so much larger than the original formula that it may exhaust the avai lable resources

II . 26

of a machine, of at least the patience of its user. Except in the case of rather small
finite universes, there is rarely any hope of an effective decision procedure for processes
defined by recursion: in general, an inductive proof is necessary to reason about them.

The practical benefit of deriving laws strong enough for a decision procedure is that
thenceforth it is known that all necessary equations (or inequations) can be proved from
the laws alone, without expanding any of the definitions or even thinking about any of
the observations. This is so valuable that it does not matter if the normal form contains
notations which are not in fact implemented, or perhaps not even implementable. But
even then the task of the mathematical modeller is far from over. In each particular
application area for a computational paradigm, there are likely to be more specialised
theorems, which can help in reliable use of the paradigm; and sometimes the theorems
will be of more general utility, and so deserve a place in the central core of the theory.
The constant illumination of practice by theory, and the constant enrichment of theory
by practice over many years and centuries has led to the current maturity of modern
mathematics and its applications in science and engineering; and it shows the direction
of future advance for the comparatively immature discipline of theoretical Computing
Science.

Algebraic laws have proved their value particularly in the design and implemen
tation of general-purpose programming languages. They are most valuable in trans
forming a program from a structure which clearly mirrors that of its specification to
one which most efficiently matches the architecture of the machine which will execute
it. Such transformations may be carried out automatically, by an optimising com
piler. Sometimes the motive is to transform a program into some smaller subset of
a language, so that it may be implemented in some more restricted technology, for
example by silicon compilation. Finally, algebraic transformations seem quite effective
in verifying aspects of the design of the compiler itself.

The value of algebraic laws and equations is so great that there is a great temptation
to avoid the laborious task of modelling, and simply to postulate them without proof.
As Bertrand Russell has remarked: "The method of postulation has many advantages:
they are the same as the advantages of theft over honest toil". In the case of a
computational paradigm, the honest toil of linking algebra with an operational model
is required to help implementation of the paradigm; and the link with a more abstract
observational theory of specifications is essential for an effective calculus of design.

But of course, in spite of Russell's remark, the study of abstract algebra, inde
pendent of all its models and applications, has a most important role. A complete
and attractive algebra can stimulate the search for applications and models to match
it. A cramped and awkward algebra can give warnings about problems that are best
avoided. When two models obey exactly the same complete set of algebraic laws, there
is no need to choose between them; each can be used for the purpose it suits best.
But the most important role of algebra is to organise our understanding of a range of
different models, capturing clearly those properties which they share, and those which
distinguish between them. The various number systems share many familiar algebraic
properties - a useful fact that is totally concealed by the radical differences in the
structure of their standard models. The variety of programming languages is subject
to a similar algebraic classification.

..

I I. 27

My discussion of the relationship between models and algebra suggests future di
rections of research for pure algebraists.

1. An algebra usually starts with a collection of primitive constants and operators
(the signature), in terms of which other useful concepts and notations can be
defined.

2. The derived notations are often as useful as the primitive ones; and their algebraic
properties should be explored with at least as much enthusiasm.

3. As in other branches of algebra, alternative but equivalent choices of primitive
signature and axioms should also be explored.

4. Preference should be given to operators which preserve interesting properties of
their operands. For example, the parallel combinator of CSP preserves deter
minism, and the more complex chaining operator preserves responsiveness; both
of these properties help in avoiding deadlock.

5. Many useful laws can be expressed as inequations using some preorder repre
senting improvement or implementation of specifications. All operators must be
assumed monotonic in this order.

6. The most useful advances in pure and applied mathematics have been made by
postulating inverses for more primitive operators, especially when this is counter
to engineering intuition.

7. Where exact inverses are impossible or otherwise undesirable, weak inverses may
be a very useful substitute, even if they are not directly implementable.

8. The existence of normal forms is a good test of the completeness and consis
tency of an algebra. There is no need for the normal form to consist wholly of
implementable notations.

9. Limits and recursion can be introduced by standard techniques, using the same
ordering suggested in (5), or some suitable complete metric space.

10. If possible, the algebra of implementable processes should be embedded into a
complete Boolean algebra, which can serve as a specification language.

11. The eventual goal of research is the development of a family of related algebras,
suited to a wide range of application areas and implementation technologies.
The more powerful and expressive members of the family will be more useful for
specification and design; and methods of symbolic calculation will be available
to transform designs to more directly implementable notations.

But the most important message of this paper is one that we know already: that the
interplay between models and algebra is constantly fruitful; and each of them provides
guidance in taking rational decisions between otherwise arbitrary lines of development
in the other.

II . 28

11. Outlook
I have described the ways in which both models and algebras can contribute to so
lution of practical design problems in computing; and I have illustrated my points
by examples which may have given the impression it is easy. This is not so. The
construction of a single mathematical model obeying an elegant set of algebraic laws
is a significant intellectual achievement; so is the formulation of a set of algebraic laws
characterising an interesting and useful set of models.

But neither of these individual achievements is enough. We need to build up a large
collection of models and algebras, covering a wide range of computational paradigms,
appropriate for implementation either in hardware or in software, either of the present
day or of some possible future. But even this is not enough. What is needed is a deep
understanding of the relationships between all the different models and theories, and
a sound judgement of the most appropriate area of applicat ion of each of them. Of
particular importance are the methods by which one abstract theory may be embedded
by translation or interpretation in another theory at a lower level of abstraction. In
traditional mathematics, the relations between the various branches of the subject
are well understood, and the division of the subject in to its branches is based on the
depth of this understanding. When the mathematics of computation is equally well
understood, it is very unlikely that its branches will have the Same labels that they
have today. The investigations by various schools, now labelled as CSP, CCS, ACP,
Petri Nets , etc., will have contributed to the understanding which leads to their own
demise.

The estab lishment of a proper structure of branches and sub-branches is essential
to the progress of science. Firstly, it is essential to the efficient educat ion of a new
generation of scientists, who will push forward the frontiers in new directions with
new methods unimagined by those who taught them. Secondly, it enables individual
scient ists to select a narrow specialisation for intensive study in a manner which assists
the work of other scientists in related branches, rather than just competing with them.
It is only the small but complementary contributions made by many thousands of sci
entists that has led to the achievements of the established branches of modern science.
But until the framework of complementarity is well understood, it is impossible to
avoid gaps and duplication, and ach ieve rational collaboration in place of unscientific
competition and strife.

The advantages to practical engineering are equally important. In most branches
of engineering, product design involves mixture of a number of differing materials
and technologies. Each separate technology must be well understood; but most of
the difficulties and misunderstandings and unpleasant surprises occur at the interfaces
between the technologies. And the same is true in computing, when attempting to
put together a system from programs written, perhaps for a good reason, in different
languages, with equipment of differing architectures, and perhaps increasingly in the
future, with highly parallel appl ication-specific integrated circuits. An appropriate
theory can help in each individual aspect of the design; but only an understanding of
the relationships between the theories, as branches of some more abstract theory, can
help to solve the really pressing problems of overall system integration.

II. 29

12. Conclusion.
It is possible and quite common to conduct valid and useful mathematical research in
theoretical computing science, avoiding all consideration of mathematical models. It is
possible to confine attention almost wholly to operational models like Petri nets. Or it
is possible to start with a structured operational semantics, and investigate a range of
equivalence relations based on various choices of bisimulation. Differing bisimulations
give different collections of algebraic laws. These laws are then applied directly in
case studies both to specification and design of useful algorithms and protocols. All
these are valid specialisations, each with its own goals and methods of research. Their
conceptual framework is simple and operationally intuitive, and it is attractive as well
as advantageous to explore their range of usefulness to its limits and even well beyond.

But specialisation also has its dangers; and here I am worried that too much con
centration on operational origins may inhibit, discourage, or delay the introduction,
investigation and use of theories at higher levels of abstraction , closer to the user's
problem. Surely it is only by taking advantage at all times of reasoning at the highest
possible level of abstraction that we can master and control the incredible complexity
of software, computers and communications devices of the present day. That is why
my own preference is to start my investigations not with a particular algebra or com
putational paradigm but by exploring a class of related problems and the language in
which they are most naturally expressed. The next task is to relate this to a concep
tual framework and language in which a solution can be designed. Only after passing
through several levels of abstraction is it necessary to consider the intricate detail of
actual implementation.

If this general top-down method of constructing models is accepted as a useful
complement to. the bottom-up approach, then I can make a number of more detailed
recommendations arising from my experience as a maker of models.

1. A model intended specification should describe only variables directly observable
or controllable by the user.

2. A model intended for design should include enough indirect observations to per
mit the definition and accurate prediction of the behaviour of composite processes
in terms of the behaviour of their components.

3. The indirect observations should include as far as possible the errors or failures
of an implemented process, covering both safety and liveness conditions, and
even fairness if desired.

4. Implementable processes should be defined by closure conditions, sufficient to
ensure realism, avoidance of irrelevant distinctions, efficiency of implementation,
and satisfaction of algebraic laws.

5. Combinators are defined to construct implementable processes from implementable
components.

6. At all stages, the elegance of the model should be checked by proof of nice
algebraic laws.

-.

II . 30

7. Combinators applied to specificat ions provide a calculus of design , with weak
inverses to help in top-down development.

8. Non-determinism should be accepted, either as an inherent property of compu
tations, or as a convenient (or at least harmless) mathematical fiction.

Each of these recommendations can be vigorously disputed, and considerable re
search can and should be conducted on the consequences of violating them. However,
if the recommendations are accepted as a whole, they provide a coherent methodology
for achieving one of the major goals of engineering research, namely the estab lishment
of a link between theory and its practical application.

So let's make models. It's challenging, inst ruct ive and enjoyable; and it may even
one day be useful.

II . 31

DISCUSSION

Rapporteurs: Jon Hall and Lucia Rapanotti

Lecture One

Professor Knuth and Professor Hoare agreed that specifications and predicates are
essentially the same thing and that this has the fortunate implication that people who
don't like predicates can use specifications, people who don't like specifications can use
predicates . Professor Hoare added that not all specifications were programs. For
instance, the specification "false" cannot be satisfied by any program expressible in the
language.

Professor McCarthy suggested that using Professor Hoare's Calculus it was not possible
to reason about intentional properties of programs, for instance, the number of times
the "cons" operator is used in a LISP program. Professor Hoare disagreed saying that it
depends upon what was considered as observable in a program as to whether properties
should be regarded extentional or intentional, and hence whether or not they could be
expressed using predicates.

Professor Rabin suggested that Operating Systems were one form of program which did
not lend itself to this point of view - they did not conform to an input/output paradigm
and were immensely complex. Professor Hoare restated his answer to Professor
McCarthy and added that he was willing to consider large spaces in which his predicates
existed if this was required by a particular application.

Professors Dijkstra, Best and Backhouse asked if Professor Hoare could give
justification for particular choices he had made. Professor Hoare replied that he wanted
the presentation of his approach to be as appealing and simple as possible, considering
that his audience would usually be first year undergraduates to whom he was not teaching
the Propositional Calculus per se but its application to programming . However he did
agree that different choices could be made both in operators and in the axiomatisation.

Lecture Two

Professor Turski asked what sort of exercises Professor Hoare would consider suitable
for his course. Professor Hoare replied that program optimisations were a suitable class
of problems: for example, given a longer program whether it was possible to replace it
with an equivalent shorter one. He added that, for non-trivial optimisation, this was
usually remarkably difficult to do.

Professor Hoare agreed with Dr. Moszkowski that, although having exclusively used
equivalences in his presentation, it was also useful to consider implications in the
semantic characterisation.

II . 32

I

