
Abstract : 

THE ST RUCTURE OF THE COMPUTER UT ILITY 

Professor J . B. Dennis 

Project MAC, 
Massachusetts Institute of Technology , 

Cambridge, 
Massachusetts, 02139 , 

U. S .A. 

Some of t he trends in t he design of f u ture systems are outlined 
and the ways in which these developments will effect computer 
systems and the challenges which will be presented to f utur e 
systems designs are mentioned . 

Abstractions of computer systems are used to fo r mulate mathematical 
models from practical computer systems probl ems . The effect of 
these trends in systems design on computer science education are 
also discussed. 

Rapporteurs: 

Mr . C. R. Snow 
Mr . L. B. Wilson 





attention has been given to them. In these arguments two assumptions are 

generally made, firstly that in general purpose computer systems there will 

always be a hierarchy of physical storage media and not infinite core 

memory, and secondly programming generality is required. It is asserted 

that , in such a system, the storage allocation decisions must be made by 

the system itself as no procedure can be expected to know the storage 

requirements of any other procedure it may u se . In the machine represent-

ation of a procedure, an identifier of information must not imply where 

t hat information is stored; henc e there is a need for location independent 

addressing or virtual memory . 

The next problem is the criterion by which the system moves 

information. This must be ' upwards' on demand because the system cannot 

anticipate the need of proc edures for specific references. 

is meant towards levels having smaller acces times. 

By 'upwards' 

Further to this it is necessary to determine the unit of information 

which is to be moved upward on demand and the page size required. Up to now 

large sizes of page have been used due to limitations in the hardware; 

however, a large page size is inconvenient as a whole page is brought into 

core when a particular word is demanded but the rest of the page may be of 

little use. Thus, large quantities of useless information may be l oaded 

and also the channels between core and drum may get congested. Programmers 

have tended to circumvent this difficulty by putting related information on 

the same page, but this runs counter to the idea of programming generality. 

Hence small page sizes seem desirable and we can see, in the IBM 360 Model 85, 

a trend in this direction. Professor Dennis believed that the next major 

achievement in commercial computer systems would be a small page size and the 

replacement of software paging techniques by hardware. As a smaller page 

size will produce a lower bound on program running time with sequential 

operation, it is the smaller page size which will lead to an increase in 

parallel computation. 

2. Computer System Architecture 

In this section Professor Dennis described some ideas which might 

be useful for some of the problems in computer system architecture, the two 

main ideas presented being a model for information structures and the 

concept of the application of procedures in a computer system. 

1 24 



1 . Classification of Information Systems 

The information systems considered below all include the concept of 

' time sharing' either in its original sense of the multiplexing of hardware 

amonst several activities or in its more modern sense of man/computer inter­

active terminal systems. 

Transact:i:on ' Systems 

This type of system, of which the SABRE airline reservation system 

is one example, is characterized by conventional multi-programming 

techniques, by having been written in machine code, by not using the 

concept of virtual memory, by the ability to service requests from 

many remote terminals and by the whole system being under the control of 

a corporate entity (e . g. the airline). 

Dedicated Information Systems 

This next type of system, which uses much the same technology as 

the Transaction System, is characterized by offering some kind of 

information service to clients outside the organization running the 

service, (for example a credit bureau service or stock quotation 

service). 

The systems which are man/computer interactive in the development 

of programs were considered by the speaker to be of a different class 

to the two types above. 

Dedicated Interactive System 

This type of information system, provides a fixed language service 

to a large set of users, the best known example of which is perhaps JOSS . 
\ 

(Johniac Open Shop System). 

General Purpose Interactive Systems 

In this type of system a user may write programs in several high­

level languages and perhaps an assembly language as well. theDe 

programs can be edited, tested and run from a remote terminal. An 

example of such a system is the Dartmouth System (G.E.265). 

Extensible Systems 

An extensible system is a system in which ·the set of lanauages 

available to the user may be extended by the USer himself sitting at a 

remote terminal. The first such system was the· Compatible Time-Sharing 

121 



An information structure may be represented by a di rected graph 

in whic h eac h node may be reached by a directed path from a parti cular 

node call ed t he root. Under each node t he branches are labelled by 

unique identifiers . This means t hat no two branches descending from 

and node may have the same identifier 

although the same identifier may be 

used elsewhere in the s t ructure . 

Some nodes may be reached by more 

than one path henc e allowing shared 

sub-structures; however, no directed 

cyc l e s are allowed. Any node defines 

a new information struc ture , namely 

those nodes and branc hes t hat can be 

reached from that n ode . Matrices, 

arrays, lists, etc. are a ll inform­

ation structures and it is useful to 

consider every object in a computer 

system as an information structure. 

The Universe is an information structure containing representati ons 

of a ll the objects in the system. Any information structure in the system can 

be considered as a sub-structure of this universe . With the l eaf nodes of 

the structure are associated values which have conventional data types such 

as real, integer, t ruth v a lue , string and so on. 

A procedure may be thought of as defining a function whose domain 

is a class of information structures, and whose range is al so a class of 

information structures in that both the input to and the ou tput from a 

procedure are information structures , even if the procedure has more t han 

one argument. 

The system may be considered as containing the primitive operations 

on the basic data types , such as the arithmetic and logical operators, and 

also a set of operations on the structures themse lves. To permit t hi s , a 

new data type is introduced, the type ' pointer ' . The value of a data item 

of type pointer selects a unique node in t he universe. 

The operations on structures are: 

The select operation which has two arguments, a pointer p and an 

1 25 



identifier n. The pointer p defines a structure and the identifier n 

defines one of the components or branches from the point defined by p . 

The result of t he select operation is a pointer q which is the pointer 

defining the structure at the node joined to the branch n. 

p---.. 

/ 
q 

n 

I' 
I \ 
I \ 
I 
1 

\ 

The fetch operation which also has two arguments p and n; however , 

the component n at the node p must be a leaf. The result of a fe tch 

operation is the value of the data item held at the point defined by p 

and n. 
p 

v 

The assign operati on which is t he reverse operation to 'fetch '. 

It has t hree arguments, p, n and v, and its function is to place the 

value v at the leaf defined by the pointer p and the identifier n. 

So far these operations do not modify t he information structure , 

i.e. t he graph stays the same. The procedures are used to get 

information about the structure or to modify the values at t he 

leaves. It would be more useful to allow these functions to 

modify the structure itself and implicitly to create new sub­

structures in the universe. 

The next primitive operation is the delete operation which has 

two arguments p and n, and i ts effect is to delete the branch n below 

the node p. If by this operation, a structure becomes disconnected 

from the main structure, it is removed from the structure completely. 

Because of multiple paths, however , it may be that the structure would 

not completely disappear but only part of i t would be erased. 

126 



The final primitive, the link operation, has three arguments p, 

nand q, and has t he effect of inserting a branch in between the points 

defined by the pointers p and q such that q is not below p. This 

operat i on must not be allowed to take place if a lo op would be formed, 

but exactly h ow t he loop is to be prevented is not yet cl ear. 

A procedure, made up of t hese primitive operations, can only get 

at information 'downwards '; thus, if the procedure is allowed to operate 

on a structure, it can only affect data items within t hat structure and 

only elements within the structure can be altered by the procedure. This 

is the same as saying t hat all data items affected by the procedure must be 

passed as arguments of t he procedure, that is, there must be no side-effects. 

I t is necessary now to discov~ what limitations must be imposed 

on programs so that the use of these programs concurrently by several 

processes does not lead to non-determinacy. A procedure is a partial 

ordering of operations, where these operations may be any of t he primitive 

operations of the application of another procedure. The conditions under 

which a procedure, defined in this way, will lead to a deterministic 

computation must be established for these structure operations, as the 

answer is already known for procedures which do no t involve t hem. Any 

number of processes may concurrently read a structure, but if a ny process 

is modifying the structure, then all other processes must be denied all 

access to that structure. The conjecture is that a theory may be developed 

from this which shows that this is a necessary and sufficient condition for 

a computation to be deterministic. 

This presents rather an attractive view of a procedure, since it 

gives a general model of an information structure and it includes a way of 

representing the sharing of information. The suggestion was made that one 

mi ght take this model and use it to examine implementations in terms of , 
computer systems, and also to assist in the formal definition of programming 

languages as, in fact, the Vienna group are already doing for PL/1 . They 

have used t he class of objects which is essentially the same as the inform­

ation structure, without sharing, formally to define the language PL/1, and 

have used it both as a representation of the program in abstract form and 

also as a representation of the states of an abstract machine which defines 

the actual execution of the program. 

127 



place on programming languages. 

we ne ed in the systems.' 

'Programs must also bring in the parallelism 

However, if processor time is going to be negligible with respect 

to I/O and parallelism in the system is mainly a function of the processor 

Professor Arden wondered whether parallelism would really gain us very much. 

Professor Dennis believed that: 'We must increase parallelism in handling 

I/O requests as well so we can get a more than linear increase of speed here. 

This may make core memory obsolete because it can only handle single requests 

which would not be true of semi-conductor memories .' 

2. Computer System Architecture 

Professor Piloty pointed out that, the Vienna Group had not only 

worked on PL/1 , but that the first part of their work was general for any 

programming language and they had used it to define ALGOL 60 . Professor 

Dennis agreed but pointed out that what they had not done was to use an 

abstract representation of a program which could provide a common semantic 

base for two different programming languages. ' If you look at their 

abstract machine for defining PL/1 , it is not the same as that used to 

define Algol. What would be interesting is to use the ir techniques to 

reduce two programming languages or more to a common semantic base. The 

model for information structures may be a key to doing this. ' 

Prufessor Wedekind asked whether Professor Dennis would consider 

generalising the ' select downwards ' operation concept to include a ' select 

upwards ' as well; to which Professor Dennis replied that he would not want 

to provide a select upwards operation, because this would allow a procedure 

to work outside the context provided for it. 

Professor Piloty pointed out that, from the set theoretic point 

of view, 'Universe' was not such a good name to use. Professor Dennis said 

that he had earlier used the word ' Environment ' , but fouQd t hat it had 

a l ready been used in a more restricted sense . III Universe ' is, I agree, 

not used in the set theory sense but at pre s ent I cannot think of a better 

word. II 

130 



3. Some Educational Issues 

In r ep l y to a question from Prof essor Piloty, Prof essor Dennis 

said that he did not think that algebra was ~ ~ e spec ially important 

to work in compute r systems. 'Whilst a compute r scientist will need some 

algebra for e xample the no tion of a s emi-group, properti es of integers, 

etc . - a deep t reatment of algebra seems unnecessary.' Prof essor Piloty 

pointed out, however, that: 'In a l gebra you are defining operations and 

giving i t structure in much the same way as your abstraction of an 

information system wi t h its primi t ive operations ', to whi ch Professor 

Denni s replied t hat, 'In the development of abstractions, the required 

mathematics is deduced from the probl em rather t han f orc ing t he problem 

into algebra . This latter approach is one I deplore, I have not found 

modern algebra very useful in computer system work . The on l y part I 

can think of is distributive lattice theory which is not general l y taught .' 

Dr. Ollongren asked t he speaker whether he t hought t hat the 

approach u sed by Knuth in his f i rs t book on the abstract and concrete 

algorithm was valuable. Professor Dennis agreed that it was ve ry valuable 

but felt that Knut h took t he Von Neuman architecture much more for granted 

than he was prepared to do. 

Dr. Neeaham noted tha t the speaker had started by saying that 

computer science was an engineering subject, but what he taught seemed 

very abstract. Professor Dennis replied t hat : 'Al though one may object 

t hat we are go ing too fast wi t h this, at some stage i t is better to give 

students t he abstractions you have found useful rathe r t han l et them find 

abstractions for themse lves through practical programming; ' Professor 

Dennis also mentioned that , apart fr om t he formal teaching, his students 

had unusual opportunities to get informal experience, either from proj ects 

at M.I.T., with consul ting houses , vacation jobs and, of course, at high 

school. 

Professor Page noted t hat: 'In many universi t ies one finds 

applied mathematicians are purer than the pure mathematicians. This 

happens when they get very far from the practical problems and get 

abstractions of abstractions', and wonde red whether this danger was a ls o 

here as one got mo r e into abstractions. Profe ssor Dennis saw this as a 

131. 



danger. 'Some groups have become concerned with their own abstractions 

and become ingrown. This is not the same as making abstractions of 

practical systems. Also students in computer science are motivated to 

do and build things rather than abstractions.' Professor Page asked 

whether this was also true of professors, to which Professor Dennis 

replied that: 

'the danger is greater with them, particularly as the 

more practical they are the more likely they are to 

be snapped up by industry!' 

Professor Randell asked whether more emphasis was given to 

teaching why rather than how, to which Professor Dennis replied: 

'Yes, but they need to know the how otherwise they will 

not appreciate the why.' 

Dr . Browning asked the speaker whether he saw the software houses 

taking over a lot of the system programming. Professor Dennis replied 

that, in his view, this would not happen for experimental systems. 'These 

are much too difficult to specify. If you can make a precise specification 

then you can hand it out to a software house.' 

Professor Dennis was asked by several people about how he taught 

some of the ideas he introduced in his talk. 

Professor Dennis: 

'There are several ways to teach these ideas. You can compare the 

features of several programming languages in order to understand their 

meaning and relations, then show how the features are obtained by the standard 

Von Neumann architecture and, where this is unsatisfactory, how this architecture 

can be extended. However, at M.I.T. a more abstract approach has been used, 

teaching the notion of algorithm in terms of the abstraction of 1 - calculus. 

A later course develops an abstract model for representing computation for 

both hardware and program. We use this model to describe computer systems. 

The ideas of parallelism can be introduced through Dijkstra semaphors and 

primitives (see his paper on co-operating sequential processes*) and this leads 

to representing procedures in pure form and also some practical ideas on 

operating systems.' 

132 



We have found A - calculus perhaps a bit too abstract but we are 

unlike l y to l et it go compl ete l y. We want to teach programming languages 

instead of from the point of view of doing a computation, so that s tudents 

understand the reasons for features in the language and how meaning is given 

to them - f or exampl e ~ the noti ons of i teration, recursion, t he communication 

of parameters to a procedure . We are not educating peopl e to be programmers. " 

~ Dijkstra, E. W. (1965) : ' Co-operating Sequential Processes ' . 

Report EWD 123, Mathematical Depart ment, Technological University , 

Eindhoven. (Reprinted in F . Genuys (ed . ), ' Programming Languages ' , 

1968, London, Academic Pre ss.) 

D3 




