
Abstract: 

HIGH PERFORMANCE DESIGN TECHNIQUE 

Dr. C. J . Conti 

IBN Corporation, 
1000 Westchester Avenue, 

Whi te Plains, 
New York, 10604, 

U. S .A. 

This paper discusses the trends in C.P.U . and storage design , 
illustrated by reference to the IBH 360/195, and predicts 
some of the future trends . 

Rapporteurs: 

Hr. J. G. Givens 
Hr. I. Hi trani 





The talk presented by Mr. Conti was divided into three parts. 

Firstly, the trends in technology in C.P.U. and storage design up to the 

present time; secondly, an illustration of the present day state of the 

art using the IBM Model 360/195 as the example, and thirdly, some predicted 

future trends in terms of specific design techniques and ideas. 

Mr. Conti commenced by illustrating (figure 1) the trend in 

technology during the past few years in the reduction of circuit delay, and · 

continued by showing (figure 2) that the improvement in performance in 

memory has been equally impressive. At present the tendency is to move 

away from film memories towards solid state monolithic memory although these 

are as yet very expensive. The· Model 195 has a conventional ferrite core 

memory but the buffer store is solid state monolithic which has a cycle time 

of 54 nanoseconds. 

The normalized C.P.U. performance in a mix of jobs plotted against 

improvements in performance is shown in figure 3, and this plot raises 

questions concerning the direction the designers must go. It would appear 

that two ways are possible, the first being the parallel processor and the 

other the higher overlapped single instruction counter and one of the diff

erences between these two approaches was demonstrated in figure 4. 

The theoretical limit of parallelism is a straight line which is 

not true of the single instruction counter in which a stage can be reached 

when additional components produce no further improvements. Thus a point is 

reached when, to achieve improvements, the system must be made parallel at 

least in part. 

One of the main advantages of parallelism is that smaller repetitious 

elements are used, which in turn produces easier maintenance, simplified field 

stacking and the ability to produce modular constructions. 

One significant disadvantage is the programming difficulty. 

problems do not appear to lend themselves to parallel processing and for those 

that are capable of being processed in a parallel fashion there is as yet no 

generalized algorithm for translating programming thought from sequential to 

parallel mode. 

The problem to be faced in any form of parallel machine when attempt

ing a single problem was represented by the dilution curve shown in figure 5. 

85 



This was a specific exampl e since there is n different curve for 

every parall e l machine depending upon the degre e of parallelism. A choice 

of N=32 was taken here where N is the number of repetitious e l ements. The 

achievement of maximum performance i s related to the percentage of the 

problem whi ch may be done f ully in parallel. 

If 90% of the problem can be attacked in parallel the performanc e 

is approximately 70% of maximum. If N was greater than 32 the performanc e 

would drop below 70%. (Here comment was made from a number of members of 

the audi ence upon the definition of parallelism and that the dilution curve 

is purely theoretical and depends upon the definitions us ed). 

The classic forms of parallelism are sh"own in figure 6. The 

single instruction counter pipelined approach was then discussed. 

Economically there is considerable waste in this type of system. 

Th e instruction phases can ideally be completely overlapped (figure 7) and 

can be regarded as a crude pipeline. In practice, however , not all instru-

ctions are of equal length and the 'diameter' of the pipelin~ changes. To 

clear this bottleneck a scheme (figure 8) was illustrated. The replication 

of some elements is due to further bottlenecks having to be overcome. 

Problems still remain since the clearing of one bottleneck merely creates 

others. Storage conflict will still remain, mainly due to storage access 

time being longer than basic machine time. There will be a unit conflict 

simply because there may not be enough units to achieve all possible combin

ations. For example, if three adds occur together and only one adder exists 

then unit conflict occurs. Data dependence is a serious bottleneck. If we 

wish to add 2 to 2 and divide the result by 2, the divide cannot be done 

before the addition has been completed. There are severe penalities which 

must be recognized due to branch on condition instructions. The branch turns 

out to be the singly most important problem occurring as it does about once in 

every three instructions in many types of programs. 

There are two possible methods of attack. The first, is to use a 

buffer memory and the second to use a condition mode solution (figure 9). 

Instructions are stacked following a branch but, no data if fetched on the 

assumption that in half the cases the branch will not be taken. Additionally, 

the instruction pointed to by the branch is stacked. Upon verification of the 

condition either patch can be executed from the stack as illustrated in figure 

10. 

86 



At this point a question was posed from the audience as to the 

feasibility.of stacking more than one instruction from the 'yes' path, and 

Mr. Conti replied that he considered this to be a problem of expensive 

complexity though entirely possible. 

The first part of the lecture was concluded by showing (figure 

11) a diagram of the storage hierarchy of the Nodel 195. 

The lecture was resumed with a detailed description of the C.P.U. 

organization of the Nodel 195 (figure 12) and Mr. Conti shows step by step 

how a set of instructions are manipulated by the C.P.U. to enable sets of 

instructions to be concurrently dealt with although within a set they must 

be consecutive. 

Out-of-sequence operations produce their own problems, an example 

of which is termed 'imprecise interrupt' which occur because some processes 

are internal to the machine and not precisely defined as to when they are to 

be processed. 

Nr. Conti then examined the method of defining a struc·ture when 

evaluating the effectiveness of a given proposed C.P.U. design. The method 

employed is to take a job and run it on a 360 processor under a trace program 

which records on magnetic tape the step by step work of the C.P.U. together 

with all other relevant information. 

This tape is run on a timing program which is a precise cycle by 

cycle model of the way in which a proposed C.P.U. would execute a series of 

instructions. 

The result of such a program was shown (figure 13) using 17 tapes 

for C.P.U. comparisons nomalized to Model 360/65. 

The speaker then turned his attention to the possibilities that 

existed for future improvements, and the potential applications of the single 

instruction counter machine were then described using the statistics accum

ulated from the trace programs previously mentioned. If a branch in one 

direction has been taken then it turns out that with a probability of about 

80% that same branch if executed again will be taken in the same direction. 

Thus, a branch bias table which keeps track of branch instructions will 

enable up to 80% of correct guesses to be made as to the direction of the 

next branch. Por such a table to be useful it must contain a large number 

of entries (e.g. 128). 

87 



This idea has been discussed for some years but only with the recent 

technology in monolithic circuitry does it become a practical proposition. 

Some time was now spent in describing the existing storage organ

ization in the Model 360/85 and other organizations such as direct mapping, 

fully associative and set associative which provide better buffer utilities 

were illustrated (figures 14,15,16,17,18 and 19). 

The set associative system is approximately implemented in Model 

195. 

The speaker then pointed out that there are further considerations 

which arise once a basic buffer algorithm has been decided upon, one example 

of which is the problem of 'store through' versus 'swapping'. Store through 

is a term used to indicate that every time a store occurs it is performed in 

backing store as well as buffer storage. 

This produces integrity of backing store. There is, however, a 

performance advantage to swapping. A further consideration is the possibility 

of fetch anticipation. If a block has just been called it would seem likely 

that the next sequential block will be needed soon, and so this is anticipated 

and the block is fetched. This method tends to slow down processing. 

Mr. Conti suggested that a future product of buffer use would be the 

inclusion of a checkpoint re-try (figure 20). This gives a number of advantages. 

88 



Figure 8 

Figure 9 



n+3 n+l 

Figure 7 (part 1) 

Figure 7 (part 2) 



Figure 6 (part 1) 

Figure 6 (part 2) 



Figure 5 



Figure 3 

Figure 4 



Figure 1 

Fi gure 2 



Figure 10 

Figure 11 



Fi gure 12 

Figure 13 



Figure 14 

Figure 15 



Fi gu re 16 

Figure 17 



Figure 18 

Figure 19 



Fi gure 20 

Fi gure 21 


