
Abstract:

DATA MANAGEMENT AND I/O

Mr. W. A. Clark

Department))88 , Luilding 931 ,
IBM Corporation,

Poughkeepsie,
New York, 12602 .

The various proLlems encountered in the design of general data
management and I/O systems are surveyed and tools which are
useful in solving the problems are discussed. An approach to
teaching this material is presented which emphasises consideration
of alternative solutions .

Itllpporteurs:

Dr. J. Eve
Mr. P. Henderson

1. Course Prereguisi tes

Hr . Cl a rk indicated t h at a course in data man agame n ·\' sys\'ems woul,1

requi re among i t s prerequisites :

1 . Communic ation The ory, in orde r to provide an intuitive grllsp of

c onc ept s r e l a ted t o sys t e m bal a nc e ;

2 . Graph Theory , to a ss i s t in formulating a no cl a rifyin g i,h o1lghts ;

3 . Queue ing The ory , which c an be applied to bo t h c ommun icn.t i on s a spec\'s

and effic ient use of stor ag e wi thin the datn manage ment syst!!m

(famili arity wi t h both simul a tion a nd analy ti c techniqu es is impor\,nn\');

ilnel 4 . J\ progr nmming l anguage which i s convenient for formulnting comhinn.torinl

p robl ems (APL i s a good example) , sinc e , in con sidering pa\'h finding

a l gor i t hm s and proble ms i n networl{s, n. comb i ne d stntisticAl and

determini stic approach is oft e n need ed.

2. Course Ou t line

A course d e s cription was s ugg e sted, formulate d as n lis t of general

topic s , s ome of which are treated in more deta il below; unfor tunate l y , t h e r !! is

no t exthool{ available at present which covers this mat e ria l.

2. 1 Struc t ure of Data Hnnagement Sy stems

Presenting a historical view of how data management systems h a d been

cons t ructed was, in the speaker' s view, not a good nppro nch , i t being better to

concentrnt e upon and empha sise the a lternatives avail a bl e in a data mnnagement

sys t em.

2.1.1 A data management system may deal directly with I /O devices, or manage

them inoirectly through a storage mnnagement system which deal s exclusively wi t h

the handling of data flow among devices (perhaps even including ma in memory) .

The complexity of current systems is a strong argument in fnvour o f t h e i nd i r ect

approach. At the very least the alternative of sepa r a tin g storage mnnn gemon t and

ontn management should be made apparent.

2 .1.2 The concept of implicit I/O, embodied in virtua l me mory sys t ems , s hould

b e c ontra sted with the more usuo.l concept of explicit I /O a s s een in ' GI'~T ' a nd

'PUT' t y pe statements. Virtua l memory, which is usually vi e wed as n means of

providing II lnrge main memory space for the user's convenience in or gani sing his

data, necessarily contains much of the management formerl y handl e(l explici t l y by

GET and PUT statements, and from this viewpoint, it is not difficult t o im <lgine a

65

completely hierarchical storage system extending right out to the shelf which is

entirely implicitly managed. In discussion of this topic, the distinction between

linear address space and segmented spaces should be emphasised.

2.1 .3 Data management systems are concerned with binding of various kinds.

The opportunities to effect binding should be emphasised and contrasted, and, while

potentially the number of items to be bound is very large, the problems may usefully

be discussed in terms of four classes of item, namely devices, data, access

language and code.

Data management systems bind devices to programs. Formerly this was

done at compile time, but now can be done at the time at which a job is scheduled,

or indeed more dynamically. In general, the more dynamically the devices are

assigned, the more useful the system and thus a clear statement of the binding

choices available is important.

Usually it makes little sense to consider a time other than compile time

in choice of an access method; however, at times, the choice of specific functions

used in managing a particular collection of data may be arranged in a more dynamic

fashion than a pre-specified choice at 'open' time. The choice of subroutines

to effect transfer of information between elements of the data base can be made as

early as compile time or postponed until a macro or command is interpreted.

2.1 .4 In designing a data management system an interesting choice in the

construction of directories is the decision whether to orient them to data or to

storage. Typically, directories are regurded us directories to data, in that a

directory is generally entered with a symbol related to the data r equired and the

whereabouts (volume, track, etc.) of the required data is obtained from the

directory. Other organisations which will occur more frequently in storage

management or implicit I/O systems will be storage oriented, in that the directories

will display the contents of a memory device. Consider the eight associative

registers of the 360/67 which are used to reduce the number of page and segment

table accesses: these form a storage oriented directory and may be contrasted

with the page tables which are data oriented. If one attempts to build systems

which are entirely hierarchical, including two or three levels of memory (core,

film and monolithic) as well as such storage devices as drums and discs, it is

probably more appropriate to consider storage oriented directories at all levels

except the most extensive.

66

2.2 Tools needed in information systems

2 . 2. 1 Some tren.tment of inverted files and the motivn.tion for these must he

given. 'rho spcnker believed that, in the future, motivation 'Woul(l lie not. so

much in the need for efficient random access to nrbi trn..rily dis Lributeil dOl La, as

in the consequences of data being shared by many users, it thus becoming inCl'f)tIS

ingly important to obtain unique representn.tions of data parmi tting a nn:Lum, which

is changccl by one user f to be immediately available to other users. It is

convenient, therefore, that such n datum should a.ppear onl,Y once in the do La hnse.

Logical structures which define records and files will thus hnvc La he come truly

structural, ns opposed to the multiple copies of information currently in USe to

represent different logical structures.

2.2.2 Itedundancy and recovery systems will be increasingly importnnt, and the

speaker stressed the necessity to go fnr beyond ensuring the existence of n

'back-up' copy of the prnvious generation of information. For audit trails,

idenlly, H. time ordered journn.l of changes to the da'La bas e is clesirllble;

however, the cost of current memory devices precludes this. In the future holo

graphic devices may n.chieve costs as low as 10-
6

cents/bit - one Lenth of the

cost of paper - such A. low cost virtually eliminating t he purge problem.

solving the indexing problem to such vast amounts of information will be of

paramount importance.

lIowever,

2.2.3 The choice of an nppropriate indexing -technique, from the number of

techniques known and under investigation, must be understood. Por cxnrnplp, the>

IIlN 23 11 Rnd 2314 discs permit an associative hn.rdware senrch involving Lhe reading

of idem Lifiers of successive records as they pass the reniling hfHlds (In<l Lransfcrrillg

that record with an identifier matching n key. !Iowcvcr, the use of this apparentl)"

pOl<erful feAture, to locate portions of the index itself, has the effect of

utilizing 'Lhe main memory, the channel, the contro ller and the device for, on

average, half a disc revolution per record rend. A hetter scheme would clearly

be n. straightforward blocking of the index entries, thereby freeing I,hese components

during the 'latency ' period.

2.2.4 The speaker also noted that an understanding of the accessibility of remoLe

dntn wns required. For example, large information systems will contain the ... hole

'\o,?nrehousing problem with its nssocintp.d problems of minimising inVf'11 t.ory costs,

transport costs, etc . In addition, large, dispersed firms will h,we requiremenLs

for dispersod data, bu t with the data used most often loc ally eva.il"hle; however,

since information will tend to be uniquely represented, it must also he availuhle

67

to remote parts of the system, thus requiring decisions as to which information

should be remote, which should be local and indeed how to address any of it.

Mr. Clark suggested that this was an area of study in its own right.

2.2.5 An important and usually forgotten topic in the development of information

systems is that of conversion. It was suggested that the two main types of

conversion problem which should be considered were:

1. In going from batch to information systems, the need to obtain

valid data in a representation which is suitable for random retrieval;

and 2. Conversion of the type needed to go from one generation of a

computing system to another.

Probably the most important tool for conversion is a good system of

descriptors, as the handling of descriptive systems requires that another level of

description is available. Mr. Clark pointed out that much time has been spent

recently devising standards for disc and tape labels and suggested that some of the

items, included in these labels, should not be so rigorously treated as they were

part of a more extensive system which eo far has not been specified. It therefore

seemed likely that these standards would be entirely inappropriate to the real needs.

If this assertion is true, it follows that the only standardization tenable at

present is that of a representation of the description of descriptors!

2.2.6 The problems of interlocks, although they are not specifically problems

of data management, are important in these systems and some understanding of them

is a necessary background to data management. In order to maintain the integrity

of data, interlocks must be provided by the system and the effect of these inter-

locks on the rest of the system can be profound. A number of papers on the problems

of deadlock have been published recently by the ACM, mostly in relation to device

assignment. More interesting in the present context, in addition to the logical

problems of preventing deadlock, are the problems of information interlocking;

reducing the contention that arises when an interlock is set, immediately reduces

the order of the multiprogramming needed to achieve a given volume of throughput.

2.3 Communications

The teaching of communications, both digital and analogue, has typically

been left to departments of electrical engineering rather than computer science

departments, and the speaker suggested that this might be changed with advantage.

68

2.3.1 In his view, the foremost topic was that of denling with terminals,

where one must give attention to:

1 . the propnr use of terminals from the human viewpoint;

2. effective use of the line facilities available;

and 3. the problems of attempting to maintai n compatibility among

n variety of terminals.

It was pointed out that, while 3. is almost impossible in general, something

could be achieved with the key entry terminals (including simple Cnl' terminals),

by a classification of their methods of control, buffering schemes, polling

methods and line control schemes.

2.3.2 Some discussion is needed on A.vailnble tariffs, line concentration nnd

the various teclm;ques one can use to reduce the cost of communication. The most

difficult parts of I /O systems to construct nre those concerned with communication,

which are not reAlly part of a da.ta management system, but have come to be

implemented together simply bec ause they interface with control hardware which is

itse lf shared by the data management system. It was suggested thnt very few

people understood the control of all kinds of termina l sufficiently well to be

able to optimize it.

2.3 . 3 ~lr. Clark indicated that the use of unreliable asynchronous channels is

not understood at all by the average system designer, and that the practical

application of results in communication theory is becoming increasingly important.

Communication networks between computers have introduced the need for high band

width channels, and the equipment currently in use tends to exploit mul ti-level

codes . However, since error rates are very high, it is necessnry to be able to

handle these systematically.

2.3.4 l'inally, Mr. Clark mentioned the topic of communication security and

noted that very little of the work done in this area has been discussed in the

context of computer science.

2.4 Subsystems or Central Control

Hr. Cl ark suggested t hat one of t he major problems in the design of

data management systems l ay i n dec i ding whether t he control of a set of tasks

shoul d be delegated to a subsystem or retained by t he main system. He took,

as an exampl e, t he regenerat i on of i nformat i on on a gr aphi c disp l a.y terminal and

po i nted out t hat t hi s could take place from ma in memor y, f rom the memory of a

69

private computer or from a controller which does not execute instructions but

simply caters for regeneration. Architecturally there is considerable freedom

of choice, (e.g. in the IBM 360/25 there is apparently a channel, a controller

and a device; the actual implementation uses only the CPU and a device), and the

problem of selection is important. However, the advantages and disadvantages

of subsystem versus central control are not well understood.

2.4.1 There are two primary reasons for partitioning a system into sUbsystems:

1. the increased responsiveness one obtains from a subsystem,

(it is difficult to imagine a large scale system such as an

IBM 360/75 tracking 100 light pens);

and 2. the boundedness arising from building a subsystem which manifests

itself in many ways of which perhaps the reduction in context is

most important.

The speaker considered the example of a system in which a processor is

dedicated to a single graphic terminal such that, if an interrupt occurred it

could only have arisen for one of very few reasons and for which - the required

action is fairly obvious, it not even being necessary to save the entire state of

the processor. He contrasted this situation with the complex interruption

handling in a large scale system in which the entire state of the task in

execution almost certainly had to be preserved and for which considerable analysis

may be needed to determine what to do following an interrupt.

The effect of boundedness both in restricting the problems of implement

ation of a system and in simplifying communication between the people involved in

the implementation should also be noted. For example, an information retrieval

subsystem, handling the problems of indexing and re -Lrieval of records, might be

designed and implemented without any concern about the details of manipulating the

I/O devices.

2.4.2 There are also disadvantages in the subsystem design approach, the most

important of which is an intercommunication problem. Particularly when SUbsystems

have overlapping scopes or duplicate capabilities the number of inter-connect~ons,

needed to obtain efficient operation, begins to increase. Mr. Clark considered

a subsystem, the function of which was to manage information on a d~sc system,

consisting of a controller and a number of drives. He pointed out that, in a

system containing two such subsystems, an interesting problem arises when there is

a requirement to build an index, interpreted by one subsystem, to information

70

residing in the other. A special connection between the subsystems must be

provided to permit this or alternatively the subsystem must reply that wanted

information is not present, in which case the other can be tried.

A second disadvantage is the specialization of 'componentry' which can

result by designing SUbsystems. For example, a number of identical CPU's in

a multi-processor pool might be a better solution to the design of a particular

system, providing some of the advantages of restricted context without the

disadvantages of several pieces of specialized hardware to control specific

operations.

2.5 Hardware alternatives in I/O systems design

The speaker indicated that, in his view, this material should not be

presented only to those interested in the engineering aspects of system design.

Programmers, being closer to the users' view of systems, will be increasingly

involved in the specification of the architecture of future systems.

2.5 . 1 The variety of channel designs available may be made apparent by a

hierarchical presentation of:

1 . the simplest channel which is simply a port to memory, permitting

the transfer of one byte from a device;

2. channels which can assemble bytes into a word;

3. channels that can increment memory addresses and thus store

messages;

and 4. at the highest level, the intelligent channel or I/O processor

which can execute a whole sequence of commands.

Intelligent channels may be sub-divided into two classes, those having

their own memory to act as a data buffer and those which simply exert control over

main memory.

two classes.

Cost attributes and the methods of use are quite different for these

A sufficient variety of channels have been constructed so that there

should be adequate criteria for choice of type; however this point has not been

developed.

The speaker suggested that, in presenting hardware alternatives, one

should emphasize the embarrassing situations which can arise if only part of the

technology is considered. It is easy to build almost any logical structure into

a machine, particularly when one considers micro-programmable machines which permit

execution of long instruction sequences very cheaply, so that relatively inexpensive

71

machines can support quite complex channel capability. Large, fast machines

present a very different picture as, relative to the cost of the machine, one

would like to reduce channel costs since more of them are needed. This is

impractical partly because the width of the memory bus is increased and partly

because architecturally defined long control sequences have to be implemented in

pure hardware.

2.5.2 Mr. Clark pointed out that the value of switching systems should be

demonstrated; in particular it should be stressed that, by using large scale

integrated circuits, switching will be inexpensive, the cost being determined

mainly by programming support and the cost of the electrical connections that the

switch implies.

2 . 5.3 It was suggested that, in a University course, a discussion of classes

of devices, particularly drums and discs in the direct access storage device

class, rather than individual devices is appropriate, particularly as there are

now sufficient designs in the field to illustrate the different properties

provided by different methods of control. An interesting, purely technological,

distinction is in the recording format - whether record lengths are physically

determined or recorded on the disc surface with the record. This difference has

some important consequences. For example, scheduling algorithms appropriate to

one may not be appropriate for the other; similarly, problems of channel utiliz

ation may occur in one situation but not in the other. We arrive at the latter

method as the cheaper design by considering information density on the surface

and the lower overheads between blocks when lengths are explicitly recorded . It

does, however, require an intelligent controller looking at the surface of the

disc for a period longer than is needed to read the record.

2.5.4 Problems inherent in the nature of electrical signals in relation to

the initiation or termination of I/O operations and in relation to the achievement

pf high data rates are important but not usually very well understood. For example,

the START I/O instruction in IBM S/360 machines involves communication with a device

which returns a status code before completion of the instruction. On a very fast

machine, communication with a device 100 ft. away would block the execution of

some thousands of instructions. The START I/O instruction would consequently

increase the cost of I/O scheduling out of all proportion; nevertheless, to

maintain high I/O throughput,_ it is necessary to arrange close communication between

devices and the CPU in order that the CPU can reflect its requirements.

72

The point was made that, with increasing record densities, r ecord

lengths will soon become so short that the time to read information from a

disc may become less than the propagation time a long the wire from the device.

As a result, physical displacement of devices from the CPU may become more

important in determining system throughput than the displacement of components

in t he CPU itself. The speaker noted that the present state of the art was

close to this situation now.

2.6 I/O Scheduling

Al though I/O scheduling is usually a small pllrt of an operating system,

Nr. Clark pointed out that it was quite complex when the problems of error

recovery, pathfinding and the interactions arising in priority scheduling schemes

using both I/O and CPU priorities were considered. He noted that I/O schedulers

became quite different in the presence of hardware pathfinding, and suggested that

it would be interesting to try and characterize the cost/performance 'trade-offs'

of hardware versus software pathfinding in order to assist in making an appropriate

choice.

3. System Balance

In this section the speaker discussed the problems of system balance in

greater detail, suggesting that it would serve as an example of how the previous

topics could be expanded for more detailed treatment. He suggested that system

balance was a subject of much current interest with CPU performance outstripping

that of I/O. The fact that I/O equipment costs outweigh those of the CPU in a

system emphasises the importance of the understanding of data and I /O management.

He pointed out that it could be shown that it is really I/O that prescribes large

main memories and that the cost must be included with I/O costs.

3.1 Environment

In looking at memory requirements relative to CPU rates, several

assumptions were made by the speaker, some implicit but fairly obvious. Statistics

obtained from past programs on several machines were used; however, Mr. Clark

indicated that these might not be valid in future. Indeed he would prefer some of

them not to be! The system chosen by the speaker to be analyzed was:

1. a multi-programming system with a high order of multi-programming,

using fast CPU's to provide an instruction rate of 109 instructions

per second, which, by projection, would be practical within 15 years;

73

2. a partly interactive system, implying that I/O demands would

increase faster than CPU power increases: (for example,

extracting a 'record' from an inverted file may require 10-20

accesses. It was suggested that the computer's capability as

a monitoring device would be more fully utilized by then, which

would also increase access rates);

and 3. a system using direct access devices the speed of which may change

in the future, although their general characteristics are likely

to remain the same.

3.2 CPU vs. I/O speed

From the above assumptions it is clear that the CPU speed will far

outstrip I/O performance; thus, a program loop in which, in say 1960, all I/O

was fully overlapped by CPU processing will on such a machine provide negligible

CPU activity per I/O request.

3.3 The System Model

The model to be considered views main memory as a buffer to handle

access delays, rather than as a logical unit. Since I/O is so slow there will

be a queue, conceptually between memory and the direct access storage.

One can assume:

1. a large enough order of multi-programming;

2. an infinite memory;

and 3. an infinite number of I/O devices with realistic access times

and costs.

These assumptions give a rate of insertion into the queue limited by the

CPU and a holding time appropriate to the I/O device. The objective is to

determine the proportion of memory needed by the system to hold inactive programs

and their data which will completely buffer the CPU utilisation during an I/O

access in the originally active program. Alternatively, one might fix the memory

size, which would determine the queue size (assuming perhaps that all programs are

of the same size), and determine the optimum CPU rate.

Development of analyses along these lines would be a very valuable part

of a course and with suitable assumptions and parameterizations should not be too

difficult to achieve.

74

3. 4 The Queue Elements

Each queue entry represent s an are a of store awa iting an I / O r eque s t.

The context of t he I /O request c omprise s:

1 . t he program awai t ing the r equest which will occupy not l es s than

about 2K bytes (poss ibly a l l owance should be made fo r having t h i s

shared by several users);

2. workspace fo r t he I/O r equest which can vary from zero fo r non r e

enterable code s t o more t han 2K by t es;

and 3. some informati on showing t he r elation of t he pr ogr am t o t he system

which will occupy negligibl e space .

A l ower bound of 4K by t e s f or the context in t he queue is va lid -- t he

American Ai r l ines SABRE system approxima.tes thi s. For an upper bound , a f airly

arbi trary choi ce may be made. The speaker suggested tha t 256)(byte s would be

reasonable for Fortran II , and, in t ime-sharing syst ems , t hat f igures in t he range

64-128K bytes would be a cceptable.

3.) n" l ation between CPU r a t e s and I/O demand

The r atio :

executed instruction bits
accessed I/O bits

has been measured, by program tr ac ing , over many programs from different application

ar eas and on machines of widel y differ ent architecture . These measurements lie on

a d i stribution peaking at about 40 and be coming in s i gnific ant a t about 20 and 400;

t hus the fi gure 40 forms a good

design point, imply ing that a

machine with a 20 bit ins truction

require s about half a bit of I / O per 40 4 a
instruction executed . Mr . Clark stressed that these figures were relevant only to

direct access I/O with programs efficiently utilising the r e sources of the system,

and noted in passing that, in economic terms, an in- core compiler was usually not

the most effective in a system with an extensive storage hierarchy .

He stressed that the figure of about 40 seemed very widespread and

suggested that if it was possible to build larger systems, without loss of

efficiency, then the variations from this figure would be reduced as the population

of jobs increased ; however, he felt that this l ast point was essentially a topic for

r esearch.

75

3.6 Relation between CPU rate and access rate

There is much less relevant information available for consideration of

the ratio:

executed instruction bits
number of accesses

particularly as some of the programs analysed used data structures which are no

longer appropriate: (e.g. a preponderence of 80 character records is no longer

prevalent). It is not known whether results valid on IBM 360 obtain on other

machines, and therefore it is perhaps only safe to say that the ratio is

greater than 20K bytes/access! (i.e. on IBM 360 one is not likely to get below

about 600 instructions per access, which is not surprising since I/O supervisor

instructions are involved). A good design point would be in the region of

40K bytes, even though there are wide variations, and a system designed to work

n,t that level should be a good interactive system.

3.7 Computing the memory needed for buffering

Given values for these two ratios, the previous data on pr'ogram size,

instruction execution rates and also some value for the queue holding time it is

possible to compute the fraction of an infinite memory required as a buffer to

keep the CPU busy. From the access frequency the order of multi-programming Cfin

be deduced which, with program sizes, allows computation of the memory require-

ments. This type of computation is not really valid since everything is made a

simple function of everything else, but treating the various quantities as

parameters and choosing them independently provides some insight.

Using current I/O equipment characteristics, a 2314 disc for example,

this type of analysis suggests that about 2M bytes of buffer memory are needed

per million instructions per second, a result which should be fairly easily

reduced, possibly by paging. The problem of 'thrashing ' in a paged memory

system may be considered from the present viewpoint; then the context space

assigned to each program in such a system i s less than its natural value and the

additional I/O which is induced in turn requires more buffering in, order to

utilise the CPU. Under such conditions there must be an optimum memory size

relative to cost, which hopefully would be much less than the 2M bytes figure

quoted. It is not immediately obvious that paging is beneficial, when one

includes the overheads of paging and page tables in memory.

76

3.8 Determinat i on of access times

Hr. Clark dealt with t he parameters de te rmining a ccess time as follows :

3.8. 1 Device characteristic s .

The seek t ime can be adjusted considerabl y by different strategies but

it was contended that this is not as important a factor as is the period of

rot"tion. Another factor is t h e fraction of the total number of tracks cover ed

by heads - t he 'coverage fraction' - nnd it should be noted that data transfer

rates have re l at ive l y li tt l e effect , compared to that of rota tional l atency ,

since mo st records are short.

3.8.2 The nature of the request.

In an I/O context this would be a re ad or a write and t heir times are

equivalent , but in an informat i on system one should consider both the r ec ord

l ength and the indexing involved which may generate addi t i ona l accesses or even

cause volume changes.

3.8.3

3.8.4

The despatching strategy.

Various alternatives are avail abl e, ~Ir. Clark mentioned specifically:

1 . FIFO, which l eads to an unstabl e queue; since two requests take

about twice as long as one, it is clearly unsatisfactory;

2. order ing seeks, where the object is to despatch so that arm

motion is minimised;

and 3. in positional queueing, where the known angular position of a

record relative to a referenc e point on the direct access device

surface is used to r educe rotational de lays. This strategy is

interesting since for the first time it permits access times

commensurate with data rates; its main application so far has

been in paging drum designs and it is not yet in widespread use

with discs.

Address distribution to the external device.

It was suggested that the parameters of interest would be the distribution

of addresses over channels, controllers, devices, cylinders and tracks. In this

context the known exponential distribution of popularity of addresses (after re

l abelling) is relevant.

Mr . Clark pointed out the feasibility of constructing a simulation model

here . After tracing sufficient programs one would choose a multi - programming

str ategy to merge addresses and look at the way the system behaves. The only

difficulty in the simulation might lie in accommodating the access paths available.

77

3.8.5 Access paths available.

,One might have an access matrix which attaches any device to any

controller to any channel and while this can still be simulated, it makes the

results more difficult to analyse .

This simple approach to system balance is valid and can be rendered

in exact form, the parameters needed to obtain results being either known or

determinable.

3.9 Factors related to system design

Finally the speaker discussed a number of system design features

which affect system balance.

3.9.1

3.9.2

The cost of an access is determined by:

1. The cost of the I/O equipment . Here the cost of storage

associated with the I/O operation is excluded and one considers

only the cost of the data flow components, controllers and .the

time they are used, switches, ports, etc.

and 2 . The context space-holding time product. The component of memory

utilised by· the CPU in any interval when it is connected to one

program is very small. The rest is really I/O buffering and

should be considered . as such.

The context space-holding time product can be reduced by writing programs

so that as many accesses are exposed as early as possible permitting techniques

like positional queueing to be effective; hiatorically this represents a complete

reversal of former practice when, due to lack of parallelism in I/O devices, the

motivation was to distribute accesses through a program.

3.9.3 Contention and other factors which tend to decrease efficiency with

increasing order of multi-programming.

Contention need not be a problem if it is taken into account in the

system design. For example, a good queueing and despatching system together

with an elaborate switching system may yield very little if the address distribution

is biased so that the same device, same controller and same channel are selected,

which is precisely what happens in most current operating systems. Distributing

data over devices deals with this adverse address distribution but it does not

attack the problem of the biased popularity of addresses which requires the use

of memory as a buffer holding data (as opposed to context) as is done with the

78

IBM 360/85. In this situation, the number of true accesses drops and so,

cons~quently, does the number of context cells needed which in turn implies

a decrease in memory size. Clearly there is an optimum.

Discussion

Following a remark by Dr. Browning concerning the alternatives of

intelligent channel or CPU control, Mr. Clark pointed out that if the channel

had private memory situated physically very close to the I/O device, there

were access algorithms available which would take advantage of this known

short distance. He cited the example of the positioning of records

constituting successive levels of an index on a disc in such a way that, when

they were accessed in sequence, there was minimal delay. He pointed out also

that the insertion of the 'memory' of such a controller in the data path raised

problems when attempting to maintain a continuous flow of data from the I/O

devices. Similarly, there was the problem of the issue, by the CPU, of a

further READ statement to the controller whilst it was passing an already

retrieved record from its private m~mory to the main memory. Hr. Clark

pointed out that this was only one of the problems occurring when two asynchronous

controls co-operated and stressed that any attempts to increase the capability of

the channel would increase the need for communication with the CPU giving rise to

t he necessity for multi-programming in that channel.

Professor Dennis pointed out that it was difficult for the designer of

the logical data management system, in an implicit I/O environment to work without

a knowl~dge of I/O devices and Professor Randell suggested that, by using explicit

I/O, the user supplied the system with much more implicit information, and

indicated that the control would need to be achieved in a rather different way

as I / O became more implicit. In reply the comment was made that, to balance

the exponential rate of improvement in CPU performance with a linear improvement

of device performance in time, it would be necessary for the system to take full

control of data organizations on direct access devices and that physical sequential

data organizations could no longer be tolerated.

Techniques which could be applied to offset the merely linear improvement

in device performance were discussed and in particular a technique was described,

based on the observation, in disc address tracing that, over intervals of about one

minute, systems with a large enough population of jobs exhibited a frequency of

access to a population of disc addresses which was di~tributed exponentially (after

79

suitable relabelling of addresses) thus giving rise to the possibility of the

reduction of accesses made to the disc for the frequently used addresses, given

a sufficiently large buffer area.

The use of the ratio of real to vir·iual memory in paging systems as

a system performance parameter was raised as opposed to the relation between CPU

speed and the real memory available to it. It appeared that the former was

used more in estimating paging requirements (e.g. the possibility of exceeding

paging drum capacity) than as a parameter in balancing a system.

Dr. McKenzie raised the problem of data management schemes in the small

system.

The data management schemes discussed in the talk were just feasible on

systems comparable with the IBM 360/65 and apply well only to larger systems.

Below this level the following recommendations were made regarding future small

systems:

1- Use of a very limited ~o=t of buffering to reduce accesses;

2. The need for simplicity must be emphasised;

3 . The use of late binding, rather than complete pre-specification,

since it is needed for interactive systems and typically costs

nothing;

4. The use of table driven and interpretive techniques for binding

(e.g. at OPEN time). The conventional macro system provided

today in large systems is too expensive on small machines; e.g.

the fetching of library routines at OPEN time in as is too costly

on small machines. In consequence, everything is opened only

once and data base management must be =dertaken as the price.

The elimination of pre-specification should extend not only to details

of what has to be done but also to the data the structures used to contain this

information. Although this information must be kept in the system, it is not

always necessary to involve the user in it.

Professor Randell requested more details of the material to be presented

on I/O interrupt handling - in particular on alternatives. The general comment

was made that particularly during a high flux of I/O interrupts, there are a

number which do not need immediate CPU attention, others are not particularly

appropriate to CPU processing because of requirements that the CPU does not

provide. A queueing system and some treatment of them in the I/O area itself

80

would be an . uttractive alt~rnative.

The techniques for processing interrupts can be presented hierarchically

as follows.

1. A trap system. Almost no context of the CPU is saved.

A simple branch to a fixed location occurs.

2. Consider a PSW scheme where some but not all of the context

is stored. In this category one can include schemes which

branch to a different location depending on interrupt type.

3. Finally, a scheme in which the entire soatus of a ·task is

queued auoomatically and another started automatically.

There is also a need for the ability to enqueue items without the

overhead of task sWitching. The locking of the queue during the change implies

that it must be done by the system, but a simpler mechanism than those currently

in use should be available for this.

81

