THE PROBLEM OF DEBUGGING THE LARGE ON-LINE SYSTEM

Dr. K. I. McKenzie

Computer Analysts & Programmers Ltd.,
1, Station Rload,
Reading,
Berkshire.

Abstract:

Methods of organizing the de-bugging of large on-line programs
are discussed, with particular reference to a dedicated
commercial system.

ltapporteurs:

Mr. M. J. Elphick
Mr. D. Appleton

Dr. McKenzie started by remarking that he believed that a
solution to the problem of constructing a large system, completely free
of errors, was impossible at present. Cur objective should rather be
to define an acceptable level of reliability, and to develop techniques
for maintaining this level. He felt that the subject could not be
approached in &n academic way — it should be taught rather as engineering
practice is in other fields. Students should be taught, not only the
technical aspects of program testing, but also the management of such

projects —= how to create, plan and meet schedules.

The development of techniques for program testing in general had
lagged behind that of program construction, since 1955 at least, when the
two tasks were comparable in effort. Programmers currently adopted a
'head in the sand' attitude towards program testing: +the inexperienced
programmer is tempted to think that exhaustive testing is always possible
and when this proves impossible he goes to the other extreme of accepting
the results of a few test cases as proof of correctness. This approach

is clearly not adequate for the construction of large computer systems.

One problem has been found to be that of establishing a common
vocabulary in discussion between programmer and manager. The simple
question - 'does your program work?' -~ is not usefully answered with a
straightforward 'yes' or 'no'. It had been found useful to adopt working
definitions of a number of terms used in this context, of which the

following are examples:

coded - source code written;
assembled - syntactically correct and complete;
exercized - every instruction executed at least

once (can be quantified if not complete);
tested - works on agreed test data (not completely

proved) ;

tried - performs reliably in a simulated environment;
viable - performs reliably in the live environment.

The requirements of a satisfactory 'test bed' for a large system are:

- a suitable system structure (separation into modules, linkage
conventions, etec.), which must be developed with testing
requirements in mind;

- a linkage editing system (as provided under 0S/360);

H5

- an adequate and flexible macro language.
The features provided by such a system should include:

- incorporation of 'drivers' for programs;

- test data files;

- simulation of real system hardware;

- simulation of special actions (e.g. I/0 error conditions);

- easy transition to the real system.

The speaker estimated that 25% to 50% of the total effort might

go into producing code which would not be used in the final 'live' system.

The description of the construction of an actual system followed.
This was a dedicated commercial system (handling branch accounting transactions
for a bank), requiring the multiprogramming of a number of collaborating tasks.
Since the standard operating system used (0S/360-MPT) was not efficient in
this context and the alternative MVT version was expensive in its use of core
storage, the decision was taken to write a set of 'central service modules',
resident with the supervisor, which would provide the functions of work
scheduling, device handling, and an access method more efficient than 'indexed
sequential' for this application. The application programs involved some
60,000 lines of COBUL source text, while the control programs required between
15,000 and 20,000 lines of Assembler code, divided into approximately 50
functional components, each component comprising on average ten modules. The
design technique used was to define the system in a high-level language, and
translate by hand to Assembler code. Testing had to be carried out in a
batch environment via an operator service, until the final stage of system

testing.

The speaker discussed examples of the system structure. Figures
1-3 demonstrate the use of a set of macros. LEVEL (figure 1) is a typical
entry macro, providing parameter control of the test facilities included in
the system, while PASS and XSVC are for direct and indirect transfer of control
to routines. XSVC gives an indirect link via a permanent data area to central
service modules, each multiprogrammed task having a copy of this area in its

own partition.

For testing (figure 2), the special macro XTEST is used, again with
indirect linkage via the permanent data area to the appropriate one of two

routines. This permits the testing to switch between real and simulated

56

= —— = = e ————

hardware control routines, and is used in conjunction with the macros XFTND
and XSET to effect the changeover. This simple scheme goes some small way
towards permitting a flexible transition from the simulated to the real
system, but depends vitally on the system structure used. Among other
facilities of a similar nature, the USEREXIT macro (figure 3) gives the
option of calling by name special test routines not required in the live
systen. The SETUSER macro in the river program sets up a correspondence
in the 'User Exit List' between the name and the routine to be called

(A and RTN in the example). Once TRTN is checked, the SETUSLER macro call
is removed and USEREXIT A will then have no effect.

Another problem which the speaker felt was not yet solved was that
of inserting revised routines into the 'live' system in a safe way. The
method adopted in the system described was to provide a method of 'enhance-
ment control', to allow the orderly replacement of specified modules.

This is illustrated by figure 4, in which the second parameter of the LEVEL
macro allows replacement of one program module by another under control of
the corresponding bit in an 'enhancement mask'. The second module may

alternatively be used to augment the first, rather than bypass it.

This technique provides the ability to deliver a working system,
with a controlled way of inserting improvements (planned previously) at a
later date. Dr. McKenzie felt that it should not be too difficult to devise
a mechanism for inserting modifications which were not foreseen in the
original design: the difficulty was in providing such a facility without an

unacceptable drop in efficiency.

In planning for the construction and testing of such systems, the
methods C.A.P. used were not particularly advanced. llowever, they did have
a fairly rigid way of laying out a series of plans for testing, illustrated
by figure 5. This demonstrates the conventions used to distinguish between
testing plans, requirements (for carrying these out), and the targets to be
achieved. Although the terms used are not very precise, these plans enable
the progress of testing to be controlled. The speaker remarked that PLRT

techniques had not been found very successful here.

57

Notes on the Figures

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

a structure on which the testing
facility to be described can be

implemented. Note transfer via
address of routine stored in data

area.

an example showing the structure
of the test system. The routine
used (for example) to write
messages to the operator can
conveniently be changed as testing

proceeds.

a pass to TRTN will execute

normally unless the user has 1)

set the correspondence A, RTN in

the driver, and 2) included the
macro USER EXIT A in TRTN. In this
case, control is transferred to RTN,
which is a subroutine in the testing
facility, when the USER EXIT A macro

is encountered.

if the bit specified in RTN1 by ENH
(BIT, RTN2) is set from the console,
RTN2 is called. This feature may be
used either to include additional

modules or to replace existing ones.

sample scheme for testing constituent
routines of code in an efficient manner.
XI will have been the end circle of
01DM.

58

Ll

LEVEL REGISTER SAVING ETC.
+ TRACE AND TEST BED FACILITIES
MODULE
PASS DRTN | DIRECT TRANSFER OF CONTROL LEVEL
XSVC SRTN X TEST DISPLAY
2} INDIRECT TRANSFER T
EXIT OF CONTROL el
PEND PERM AREA
PERMANENT e s e i X TEST ADDR
DATA AREA |
I
N A X REAL X TEST
ADDR OF SRTN :
CENTRAL
SERVICE MODULE CTY RTN ADDR | [DISPLAY ADDR
(RE-ENTERABLE) |¢

X TEST X REAL

ISHTN
| X FIND X SET

Figure 1 AN EXAMPLE OF A SYSTEM STRUCTURE Figure 2 TEST SYSTEM STRUCTURE
DRIVER
SETUSER A, RTN sets up correspondence
between A & RTN in User Exit List
PASS TRTN
> RTN LEVEL ROUTINE UNDER

TEST
TRTN | LEVEL

EXIT
A

USER EXIT A

EXIT

—h-

USER EXIT LIST

A | rTN

Figure 3 THE USER EXIT FACILITY

ENHANCEMENT MASK
(SET FROM CONSOLE)

CALLING

(32 bits)

ROUTINE

N
|

BYPASS |AUGMENT

RETURN -lRETURN e

RTN1 LEVEL X, ENH (3, RTN2)

|
I RTN2
I |F BIT 3
| & - ——ExIT OF ENH
E— - - = = MASK IS SET
Figure4 ENHANCEMENT CONTROL
DMAA DMBB
TEST ALL
EATHSOP 3 EXERCISE Notation:
RTN 2
Al bmce o1DM S
COMPONE
EXERCISE XY
RTN 3 AVAILABLE
e XY DZ
TEST TEST
RTN 1 AND RTN 2 AND
RTN 2 RTN 3
Nz N

Figure 5

02DM
(TARGET 0)

PLAN DM

¢

REQUIREMENT >

DISCUSSION

Professor Coffman referred to Dijkstra's work (Dijkstra, 1968) on
the construction of programs guaranteed a priori to be error-free, rather

than on an a posteriori process of validation. Dr. Griffiths commented

that in trying to put some of these ideas into practice with intelligent
students the most important factor was 'making them write programs so that
it is obvious that they do what they are supposed to'. Dr. McKenzie agreed
that Dijkstra's work was very important, and that this more theoretical

approach definitely ought to be taught, as well as the engineering one.

Professor Dennis supggested that once a program became operative
the risk of loss of information or invalid results made the process of
piecemeal modification of the system undesirable. Une might get round this
by creating a new system, sharing with the current version those modules to
be retained and incorporating all new modules to be inserted. The problem
then becomes that of transferring control to the new system, and the solution
requires the concept of a 'mapping' of the current state of the old system
into an equivalent state of the new one. Dr. McKenzie replied that there
were in fact two problems - the actual transfer to the modified system, and
(more practically) the lack of the required hardware resources to run the

two systems concurrently.

Professor Hoare initiated a lively discussion of the relative
merits of linkage editors versus faster compilers in the process of system
modification. Dr. McKenzie Telt that for a given machine, the re-linking
of existing and newly compiled modules should always be more efficient than
recompiling the whole system, while Professor Dennis said that if one

followed his approach one would want to do this anyway.

In reply to a question from Dr. Scoins on the problems of communi-
cation between individuals in a team making alterations to a large system,
Dr. McKenzie admitted that on the project he had described only two people
in the team knew enough about the system to vet proposed changes. Although
this simplified the communication problem, it was a strain on the persons
concerned. What was really wanted for this was an on-line Management

Information System.

61

Reference

Dijkstra, E. W. (1968) 'The Structure of the "THE" Multiprogramming System'
Comm. ACM, Vol. 11, pp. 341-346,

62

