
Abstract:

THE PROBLEM OF DEBUGGING THE LARGE ON-LINE SYSTEM

Computer

Dr. K. I. ,McKenzie

Analysts & Programmers
1, Station Road,

Uearling ,
Berkshire .

Ltd. ,

I
f

I
./

Methods of organ1z1ng the de-bugging of large on-line programs
are discussed, with particular reference to a dedicated
commercial system.

UlLpporteurs:

Mr. M. J. Blphick
Hr. D. Appleton

. , ••

Dr. Hc.Kenzie starteu by remarking that he believed that a

solution to the problem of constructing n large system, completely free

of errors, was impossible at present. Our objective should rather be

to define an ncceptable level of reliability, and to ,levelop techniqu es

for maintltining this level. He felt that the subject could not be

approached in c..r. n.caucmic wny - it should be tnught rather as engineering

practice is in other fields. Students should be taught, not only the

technical aspects of program testing, but also th~ management of such

proj eets - how to create, plan and meet schedules.

The development of techniques for program testing in general had

lagged behind that of program construction, since 1955 nt least, when the

two tasks were c omparable in effort. Programmers currently adopted a

'head in the snnd' a.tti tude towards progrltm testing: the inexperienced

programmer is tempted to think that exhaustive testing is Itlways possible

and when this proves impossible he goes to the other extreme of accepting

the results of R few test cases ns proof of correctness. This approach

is clearly not adequate for the construction of large computer systems.

One problem has been found to be that of establishing n connon

v ocabulary in di scussion betweon programmer and manager. ~rh e simple

qU0stion - 'does your program work? t - is not usefully answered with a

straightforward 'yes' or 'no'. It had beHt' found useful to adopt working

dGfinitions of It number of terms used in this context, of which the

following are examples:

coded

assembled

exercized

tested

tried

viable

source cod e written;

syntactically correct and complete;

Avory instruction executed at l e ~st

once (can b e quantifi ed if not complete);

works on agreed test datA. (not completely

proved) ;

pp.rforms reliably in a simulated environment;

performs reliably in the live environment.

The requirements of a satisfactory 'test bed I for [l. large system are :

a suitahl e system structure (separation into modules, linkage

conventions, etc.), which ~ be ueveloped with testing

requirements in mind;

a linkage editing system (as provided under OS/360);

)5

an adequate and flexible macro language .

The features provided by such a system should include :

incorporation of tdrivers t for programs;

t est data fi l es;

simulation of real system hardware;

simulation of special actions (e.g. I/O error conditions);

easy transition to the real system.

'fhe speaker estimat ed that 25% to 50% of the total effort might

go into producing code which would not be used in the final 'live' system.

The description of the construction of an actual system followed.

This was a dedicated commercia l system (handling branch accounting transactions

for a bank), requiring the multiprogramming of a number of collaborating tasks.

Since th e standard operating system used (OS/360-MFT) was not eff ici ent in

this context and the alternative MVT version was expensive in its use of core

storage, the decision was taken to w ri te a set of ' central service modules' ,

resident with the supervisor, which would provide the functions of work

scheduling, device handling, and an access method more efficient than 'indexed

sequential' for this application. The application programs involved s ome

60 ,000 lines of COBOL source text, while the control programs required between

15,000 and 20,000 lines of Assembler code, divided into approximately 50

functional components, each component comprising on average t en modules. The

design technique used was to define the system in a high-level language, and

translate by hand to Assembler code. Testing had to be carried out in a

batch environment via an operator service, until the final stage of system

testing .

The speaker discussed exampl es of the system structure. Figures

1-3 demonstrate the use of a set of macros. LEV}~ (figure 1) is a typical

entry macro, providing parameter control of the test facilities included in

the syst em, while PASS and XSVC are for direct and indirect transfer of control

to routines. XSVC gives an indirec t link via a permanent data area to central

service modules , each multiprogrammed task having a copy of this area in its

own partition.

For testing (figure 2), the spec ial macro XTEST is used, again with

indirect linkage via the permanent data area to the appropriate one of two

routines. This permits the testing to switch between real and simulated

56

hardware control routines, and is uscrl in conjunction with the macros XFTm)

and XSET to effect the changeover . This simple scheme goes some small way

towards permitting a flexible transition from the simulated to the real

system, but depends vi tally on the system structure usee!. Among other

facilities of a similar nature, the USr.llEXIT macro (figure 3) gives th"

option of calling by name specin.l test routines not requirc(l in the] ive

syste,;} . The SETUSEll macro in the driver program sets up a correspondence

in the 'User Exit List' between the name and the routine to be called

(A ane! ltTN in the example). Once 'rllTN is checked, the SETUSEll macro call

is removed and USEllr.XIT A will then have no effect.

Another problem which the speaker felt WA,S not yet solved WitS thut

of inserting revised routines into the l live 1 system in n safe way. The

method adopted in the system describec! was to provide a method of ' enhance­

ment control', to allow the orderly replacement of specified modules.

'l'his is illustrated by figure 4, in which the second pnrameter of the LEVEL

macro allows replacement of one program module by another under control of

the corresponding bit in an I enhancement mask'. The second module may

alternatively be used to augment the first, rather than bypass it.

This technique provides the ability to deliver a worldng system,

with a controlled way of inserting improv"ments '(plann ed previously) at a

later date. Dr. McKenzie felt that it should not be too difficult to devise

a mechanism for inserting modifications which were not foreseen in the

original design, the clifficul ty was in providing such " fac ili ty without an

unacceptable drop in efficiency.

In planning for the construction and testing of such systems, t he

methods C.A.P. used were not pltrticularly advanced. However, they did have

a fairly rigid way of laying out a series of plans for testing, illustrated

by figure 5. This demonstrates the conventions used to distinguish betwe en

testing plaDs, requirements (for carrying these out), and the targets to be

achieved. Although the terms used are not very precise, these plans enable

the progress of testing to be controlled. The speaker remarked that PEItT

techniques had not been found very successful h ere.

57

Notes on the Figures

Figure 1: a structure on which the testing

facility to be described can be

implemented. Note transfer via

address of routine stored in data

area.

Figure 2: an example showing the structure

of the t .est system. The routine

used (for example) to write

messages to the operator can

conveniently be changed as testing

proceeds.

Figure 3: a pass to TRTN will execute

normally unless the user has 1)

set the correspondence A, RTN in

the driver, and 2) included the

macro USER F~IT A in TRTN. In this

case, control is transferred to RTN,

which is a subroutine in the testing

facility, when the USER J~IT A macro

is encountered.

Figure 4: if the bit specified in RTN1 by ENH

(BIT, RTN2) is set from the console,

RTN2 is called. This feature may be

used either to include additional

modules or to replace existing ones.

Figure 5: sample scheme for testing constituent

routines of code in an efficient manner.

XY will have been the end circle of

OlDM.

58

MODULE
LEi

EL

PASS DRTN

I
XSVC SRTN

I
EXIT

I
PEND

CENTRA L

SERV ICE MODULE

REG ISTER SAV ING ETC.
+ T RACE AND TEST BED FAC I LITIES

DIRECT TRANSFER OF CONTROL

r3 INDIRECT TRANSFER

OF CONTROL

PERMANENT

DATA AREA

Y ADDR OF SRTN --?
r------\

(RE·ENTE Rr:-A:.:B:.:L;:E:..I -l't.-~-------------'
I SRTN

Figure 1 AN EXAMPLE OF A SYSTEM STRUCT U RE

DRIVER

SETUSER A, RTN

LEVEL

I
X TEST DISPLAY

I
EXIT

PEND

, It PERM AREA

r - - - - - - - - -r- X TEST ADDR

I
I .\it X REAL

CTY RTN ADDR DISPLAY ADDR

X TEST X REAL

X FIND X SET

Figure 2 TEST SYST EM STRUCTUR E

sets up correspondence

between A & RTN in User Exit List
PASS TRTN H

~RTN LEVEL ROUTINE UNDER

TEST

~ T RTN LEVEL

EXIT ,
,

USER EXIT A

, EX IT ,

USER EXIT LIST

A I RTN

Figure 3 THE USER EX IT FACILITY

DMAA

TEST ALL

PATHS OF

RTN 1

RTN l DMOl
AND

RT N 211
CHECKED

-.:r DMDD

TEST

RTN 1 AND

RTN 2

11--=:-:-:-====--:-_ 1 (32 bitsl
ENHANCEMENT MASK

(SET FROM CONSOLE 1

CALLING

ROUTI NE

l' rl ,
BYPASS I AUGMENT
RETURN - RETURN - -'

I ,
I ,

I

RTNl LEVEL X, ENH (3, RTN21

RTN2
I , I IF BIT 3

'"",-- - _~_:_ EX IT OF ENH
...... ='-'--------' MASK IS SET

Figure 4 ENHANCEMENT CONTROL

DMBB

'" 1 EXERCISE
RTN 2

Notation:

I

~

-.v DMCC
01DM

EXERC ISE -< COMPONENT

XY

RTN 3 AVA I LAB LE
~--7r.~~D~M~E~E XYDZ

TEST

RTN 2 AND

RTN 3

RTNl 02DM
RT N2)
RTN3 (TARGET 01

CHECKED

8
< REQUIREMENT>

Figure 5 PLAN DM

l11SCUSSION

Professor Coffman referred to llijkstra's work (Dijkstra, 1968) on

the construction of programs gunranteed n priori to be error-free, rather

than on an n, posteriori process of validation. Dr. Griffiths commented

that in tryinr, to put some of these ideas into practice with intelligent

students the most important factor was 'making them write programs so that

it is obvious that they do what they are supposed to'. Dr. HcKenzie ar,reed

tho. t Dijkstro. ' s work was very import,mt, aml that this more theoretical

fLpproach definitely ought to be taught, as well as the engineering one.

Professor J)ennis suggested that once n. program became operative

the risk of loss of information or invalid results made the process of

piecemeal modification of the system undesirable. One might get round this

hy creating n new system, sharing with the current vers ion those modules to

be retaineu and incorporating all new modules to he inserted. The problem

thfm hecomes that of transferring control to the new s,Ystf!m, and the so] ution

re~\lires the concept of a 'mappinr,' of the current state of the old system

into an equivalent state of the new one. Dr. HcKcnzie replied that there

were in fact two problems - the actual transfer to the modifi ed system, and

(more practically) the lack of the required hnr(h;nre resources to run the

two systems concurrently.

Professor Hoare initiated a lively discussion of the relative

merits of linkage editors versus faster compilers in the proc0ss of system

modification. Dr. NcKenzie felt that for n given machine, the re-linl{ing

of existing and newly compiled modules should always be more efficient than

recompiling the whole system, while Professor Dennis sai,l that if one

followed his approach one would want to do this anyway.

In reply to a question from llr. Scoins on the problems of communi­

cation between individuals in a team makinr, alterations to a large system,

llr. HcKenzie admitted that on the project he had described only two people

in the team 1mew enough about the system to vet proposed changes. Al though

this simplified the communication problem, it was a strain on the persons

concerned. What was really wanted for this was an on-line Hanall'ement

Information System.

61

Ref8rencc

Di jkstra, E. W. (1968) 'The Structure of the "THE" Multiprogramming System'

Comm. ACM, Yolo 11, pp. 341-346.

62

