
Al,stract:

SYSTEMS EVALUATION

Mr. A. B. Cleaver

Large Systems l1arketing,
IBM United Kingdom Ltd.,
)89, Chiswick High Road,

London, W. 4.

Some methods of evaluating the performance of computer systems
are studied, and their respective merits and shortcomings are
discussed.

Ilapporteurs:

Mr . L. Waller
Mr. D. Appleton

Introduction

Hany of the techniques developed and used in the past few years

in order to evaluate the performance of computer system are l arge ly

irrelevant to the real problem, and it is essential that better approaches

be found. It must be acknowledged that the method used will depend on

the reasons for carrying out the evaluation, and a l so on the tools avail-

able to the investigator. For instance, simulation design studies may

be useful to a manufacturer designing new sys tems, but since the ratio of

real time to model time may be of the order of 104 , such methods are

unacceptable in a University environment.

System Selection Criteria

When a prospective customer considers a g iven sys tem, some of

the points to which he gives pre-eminence are as follows.

Firstly, he must know within reasonable limits the function to which

the system is to be put. The performance of a system is closely bound in

with its work-load profile - the frequency of the different types of job

which it must process. (It would greatly benefit future des ign if customers

would specify accurately their current work-load profile.)

Secondly, the reliability of the system is important. Even if one

system is faster in all respects than another, it does not follow that the

first is better, for if it lacks reliability its increased speed may be wasted

by periods spent 'down'.

Thirdly, operability must be taken into account. In the real world

this aspect is important as the system performance can be materially lowered

by difficulty encountered by those who have to deal directly with the machine.

It follows from the interdependence of performance, function,

reliability and operability that we cannot hope to measure an 'absolute

performance' for there is no such thing. In addition to the above, growth

potential, supporting services and other similar aspects of a system must

be considered in its evaluation, for performance is also dependent on these

criteria. Table 1, which was produced by an American consultancy firm, shows

·an attempted breakdown into, and weighting of, a number of factors. (The

figures are not necessarily a reflection of the views of the author.)

23

Factors affecting performance

The major f actors affecting performance may be listed as follows:

CPU power, storage capacity,

channel/device power,

operating system efficiency,

compiler efficiency,

work-load profil e ,

system reliability,

programmer competence, and

operator competence.

The term 'CPU power' is used in preference to mere 'CPU speed' as

it embraces important related factors such as the size of the instruction set.

Storage capacity is an increasingly important factor with the advent

of multiprogramming, and this is one of the places where cost is liable to

influence performance considerably. Many UK installations have only about

50% of the storage capacity r equired for optimal performance, largely because

of the cost factor.

Channel/device power considerations are covered in the paper by

Clark elsewhere in this document.

Very little work has been done in the evaluation of the efficiency

of operating systems, and it would appe~r that the Universities could con-

tribute materially to this side of performance evaluation. The factors

acting have not yet been adequately investigated, or even comprehensively

listed .

Some work has been done on the problem of comparing the efficiency

of the code produced by various compilers for the same source program (Atlas
I

Laboratory, Chilton), and this attacks one part of the problem, but here too

there is scope for research.

System reliability has been mentioned previously, and work-load

profile will be discussed more fully in the context of benchmarking.

Programmer and operator efficiency is more difficult to quantify, but some

beginnings have been mane to this end, Rnd it 1S liKely that more W1ll be

done as interest develops 1n time-snar1ng and mUlti-access systems.

24

Hethods of comparing systems

Tradition"l methods of comparing the performanc e of different systems

include comparison of add-times or cycle-times. Tables 2 nnd 3 show thnt

both of these methods are of doubtful value since large fluctuations are

app"rent between the various times, and results would probably be much

worse for systems which, unlike those used in the examples, are not fully

compatible.

An extension of these techniques is the Gibson mix . Tabl e 4 shows

the 'Gibson mix III', one of the e ight mixes derived by Gibson with different

commercial/scientific weighting. The method originated with Sweeney in 1955

and was employed on the IBH 650 and IBM 104 systems. The system architecture,

the power of the instruction set and the ability to overlap instructions

(which makes execution time depend on context in the instruction stream) are

not taken into account by the Gibson mix, and this means that this device

has very limited use for modern machines. Even on the basis of instruction

frequencies problems ar ise as recent analysis of programs on System/360 has

shown. (Tabl e 5.)

Other mixes have been developed, but even if these were completely

accurate they would only be measuring CPU power and would take no account of

I /O or storage capacity.

Software comparisons

The foregoing techniques are very largely measures of hardware

performance, but it is like ly that it is software which today plays the

leading role; consequently attempts are frequently made to compare compilation

times. Tabl e 6 shows compilation times for two Fortran source programs

using different compilers on identical System/360 configurations. This,

however, is less than half the story, as t hese compilers differ dramatically

both in language features supported and efficiency of the code produced.

Similarly, figure 1 indicates the variation in object code efficiency

produced by different compilers on the Same system, and the variation across

different configurations.

25

Another possible analysis is of the number of instructions

executed in running a program. The ratio between the least efficient

compiler and the most efficient, on this basis, for the program of

figure 1 is a factor of 5.

Fortran Object-Code Analysis

Instruction Storage ~pace (Bits)

2.0

1 .8

1 • b

1 .4

1.2
x C1

x B
1.0 x------------__________________________ __

A1

A letter refers to a particular configuration, and a
number to a particular compiler on that machine.

Figure 1

Such a software approach may be valuable if the amount and type

of work being done on available compilers is known, and since it is economic

on machine time, though not in total time, it may appeal to British systems

analysts.

Benchmarking

Benchmarking is defined as 'actually running representative user

jobs on the proposed configuration, using the software suggested in the

normal environment'. To obtain accuracy of results there must be one

official co-ordinator who sets a completion deadline and gives all the

necessary rules in writing. Nearly all large systems recently installed

in the United Kingdom have used some sort of benchmarking, and advantages

of the method include its relatively economic use of machine time and the

26

opportunity it offers of becoming acquainted with a new system before

deciding to have it installed. Unlike the methods discussed previously,

benchmarking is capable of taking into account most of the factors

contributing to performance. This is shown schematically in Table 7.

What constitutes a representative stream of jobs can be

determined from the operating system or -accounting routine employed.

This imposes little overhead on the system, and the· following statistics

on the work-load profile should be easily obtained:

elapsed time and CPU time for all system jobs and programs,

storage and device requirements for jobs,

total time and frequency of use of programs.

Benchmarking must be regarded as the best tool available in

system performance evaluation at the present time.

Other methods

Some manufacturers and software houses now provide packages

which may be useful in calculating performance, but although the use of

such packages is to be encouraged, care must be taken not to collect more

data than can be analysed. It should also be noted that overheads on the

system are high, and the running of such additional programs may substantially

alter the system load.

Hardware devices, which do not affect the system under investigation

are also available. These are more accurate than software packages, giving

a resolution of 1 ~sec., and combinations of different system states can be

considered. It has been possible to use such devices to obtain interesting

results on I/O efficiency.

So far it has been assumed that the system to be investigated

actually exists, at least in prototype, but it is important to be able to

estimate a system's likely performance before it is operable. A trace timer

approach is advocated. Table M shows some of the statistics used in the

design of the IBM 360/85. The analysis of data is unfortunately very time­

consuming, the figures in Table 8 being derived from a mere quarter of a

million instructions.

27

Other types of simulation to compare systems are possible, but

with the problem of gathering relevant data on the hardware, and more especially

the software, of each system, combined with the complexity of the overall

problem, and the amount of work involved, the method is, on the whole,

economically non-viable.

Time-sharing systems

Whereas in most batch-oriented systems the idea of a 'good performance'

is fairly intuitive, this is not the case in time-sharing systems. One

possible measurement is response-time, but it is difficult to know how to

weight the response-times to trivial commands, non-trivial commands and run

commands to give a useful mean. Another approach is the measurement Of user

satisfaction, or 'the smile factor', but this cannot easily be quantified.

Perhaps it will be possible to devise a good method of evaluating multi-access

systems by building on the procedure adopted by IBM in developing TSS. 'l'his

involved the definition of a standard task and the determination of the number

of such tasks which could operate simultaneously under the given system

without saturating it. This is also an expensive approach and needs a great

deal of development if it is to become worthwhile.

Summary

It was demonstrated that system performance is closely related to

the function, reliability and operability of the system as well as depending

on such aspects as CPU power, storage capacity and computer efficiency.

Work-load profile was ascribed major importance, and the possibility of

calculating an absolute value for performance was rejected.

Traditional methods of performance evaluation, such as the Gibson

mix, were discussed and shown to be unsatisfactory. The inherent difficulties

in mensuring compiler efficiency were stresseu.

Bencnmark1ng was recommended as the best availaole method for

performance evaluation, and attention was drawn to the possibility of using a

software package . of hardware device.

The basis of a method of evaluating time-snaring systems was

suggestea.

28

VENDOR EVALUATION AND SELECTION CRITERION

SUMMARY POINTS

I (20%) Hardware

A. Vendor Recommended System (50%)
B. Total Vendor Capability and Expandability (50%)

II (20%) Programming Systems

A. Vendor Recommended System (50%)
B. Range of Operating System Environments (30%)
C. Total Vendor Programming Systems Capability (20%)

III (10%) System and Programming Interrelation and Design

A. System Balance (50%)
B. Software Compatibility to Other Systems (25%)
C. System Complexity and Reliability (25%)

IV (15%) Benchmark Performance

V (15%) Vendor Capability and Support

A. Conversion Assistance (25%)
B. Maintenance (25%)
C. System Design Assistance (15%)
D. Education (10%)
E. General Vendor Capability (25%)

VI (20%) Direct Total Cost

A. Recommended System (30%)
B. Additional Equipment (10%)
C. Personnel (10%)
D. Conversion (20%)
E. Maintenance and Extra Shift (10%)
F. Other Cost Considerations (20%)

Table 1

29

ADD-TIME COMPARISON

INSTRUCTION SYSTEM/36Q".MODEL

AU

A

AP

ADR

AR

65

2.57

2.85

3.48

4.55

5.00

75

6.88

5. 71

3.65

9.22

8.12

ALL FACTORS ARE RATIOS TO MODEL 50

MAIN STORAGE CYCLE

DATA PATH WIDTH (BYTES)

DEGREE OP INTERLEAVING

BASIC MACHINE CYCLE

Ta.ble 2

CYCLE-TIME COMPARISON

SYSTEML360 MODEL

50 65 75 -
2us 750ns 750ns

4 8 8

0 2 2-4

500ns 200ns 200ns

Ta.ble 3

30

85

7.96

10.25

16.91

26.13

40.62

.!!2.
1040ns

16

2-4

80ns

756ns

8

8-16

54ns

GIBSON MIX III

CONPAIlE 3.8

CONDITIONAL BRANCH 16 .6

FIXED-POINT ADD/ SUB 6.1

FIXED-POINT DIVIDE 0 .2

FIXED-POINT MULTIPLY 0.6

FLOATING-POINT ADD/SUB 6.9

FLOATING-POINT DIVIDE 1.5

FLOATING- POINT MULTIPLY 3.8

INDEXING 18.0

LOAD/STORE REGISTER 31. 2

LOGICAL OPERATIONS 1.6

UNCONDITIONAL BRANCH 5.3

SHIFT 4.4

100.0

Table 4

31

Sample Job .!!!!
Segment

6. Matrix 11.9
Inversion

10. Integral 11.8
Evaluation

INSTRUCTIONS FREQUENCIES

CLASS OF INSTRUCTIONS

C-L-S 1...S M-C-E C-IO

3.4 47.0 0 . 7 0 . 1

3.5 57.8 1.7 0.0

11 • Curve Fitting 11.9 16.2 45.7 1.5 0.0

12. Program 28.6% 16.0% 44.0% 4.4% 0.6%
Compiling

BR = branches

L-S = lOads/stores

M-C-E = move, compare, edit (characters)

C-1...S = compares, logical instructions, shifts.

Table 5

32

FxPt FIPt- FIPt-
Long . Short

22.5 13.6 0.8

2.2 17.6 5.4

15.4 0.5 8.9

6.4% 0.0% 0.0%

FORTRAN COHPILE-TIME COHPARISON

PROGRAH 1 PROGRA}l 2

FORTRAN H OPT=;,: 155 74

FORTRAN H OPT=O 84 58

FORTRAN G 73 32

FORTRAN E n 40

WATFOR 9 4

COHPILATION TIMES IN SECONDS ON ID)"'NTICAL CONFIGURA1'ION.

'fable /)

COHPARISON OF METHODS

CPU STORAGE I/O OPERA'rING COHPILER 1I'0Il.KLOAD
POWER CAPACITY FOlfEU SYSTEH EFFICIENCY PROFILE

ADD 'fIHE ?

CYCLE TIME ?

GIBSON HIX ?

COHPILE TIME ? ?

CODE ANALYSIS X

BENCHHAII.KING X X X X X

Table 7

33

Configuration with
Main Store only.

Sector Oriented
wi thout Fetch
Anticipation.

Sector Oriented
with Fetch
Anticipation.

SYSTEM/360 MODEL 85 DESIGN STUDY

TIME RESULTS FROM ONE TAPE

Number of Instructions
Number of Start I/Os
Number of Fetches
Number of Stores

4 way Interleave
Single 80ns

8K, 8 Sectors,64b/bl,4 way
16K, 16 It It It It

32K, 32 It It It It

8K, 8 Sectors 16b/bl,4 way

16K, 16 It It It It

Table 8

34

236,288
188

361,000
40,957

if CYCLES

1,091,309
93,387

1 ,413 ,654
1,025,972

985,353

1,391,617

1,026,010

if BLOCKS
BROUGHT if REMAPS

.lli

27,836 7110
4,556 952
2,127 257

82,250 7110

14,689 952

PERFORMANCE EVALUATION

- A SHonT BIBLIOGRAPHY -

1. Gosden, J. A. and :lisson, n. L.
Standardlzed Comparisons of Computer Performance.
Information Processing \IPIP b2J pp. 57 - 61.

2. naichelson, E. and Collins, G.
A Method for Comparing the Internal Operating Speeds of Computers.
Communications of the ACM. Vol. 7/No. 5, May 1964 pp. 309 - 310.

3. Whi te, P.
Relative Effects of Central Processor and Input-Output Speeds upon
Throughput of the Large Computer.
Communications of the ACM. Vol. 7/No. 12, December 1964 pp. 711 - 714.

4. Arbuckle, R. A.
Computer Analysis and Thruput Evaluation.
Computers and Automation, January 1966 pp. 12 - 19.

5. Solomon, M. B.
Economics of Scale and the IBM System/360.
Communications of the ACM. Vol. 9/No. 6, June 1966 pp. 435 - 440.

6. Calingaert, P.
System Performance Evaluation: Survey and Appraisal.
Communications of the ACM. Vol. 10/No. 1, January 1967.

7. Kerry, D. W.
Choosing Computers for the Post Office.
Computer Bulletin, March 1967 pp. 12 - 16.

8. Katz, J. H.
An Experimental Model of System/360.
Communications of the ACM. Vol. 10/No. 11, November 1967 pp. 694 - 702.

9. Ihrer, P. C.
SCEnT - Systems and Computers Evaluation and Review Technique.
Presentation at GUIDE 26, June 13th 1968, 17p.

10. Sackman, H., et al.
Exploratory Experimental Studies Comparing Online and Offline Programming
Performance.
Communications of the ACM. Vol. 11/No. 1, January 1968 pp. 3 - 11.

11. Smith, J. M.
A Review and Comparison of Certain Methods of Computer Performance
Evaluation.
Computer Bulletin. Vol. 12/No. 1, May 1968 pp. 13 - 18.

35

Performance Evaluation - BibliographY (continued)

12. Conti, C. J., et al.
Structural Aspects of
IBM Systems Journal.

the System/360 Model 85.
Vol. 7/No. 1, 1968 pp. 9 - 13.

13. Ashley, D. W.
A Methodology for Large Systems Performance Prediction.
IBM Systems Development Division report - 1968, 45p.

14. Gold, M. M.
Time-Sharing and Batch-Precessing: An Experimental Comparison of their
Values in a Problem-Solving Situation.
Communications of the ACM. Vol. 12/No. 5, May 1969 pp. 249 - 259.

36

