
.'

.,
.,

TIlE SOFTWARE CURRICULUH AT WARSAW UNIVERSITY

I NSTITUTE OF INFORHATICS

W. H. Turski

Rapporteur : Dr. T. Anderson

I woul d like to explain how we approached, designed , implemented

and failed in continuing to impl ement a COurse of software education

at Warsaw University.

.,

First, consider the overall structure of the uni..ve r si ty, which

caters for some 30,000 students, slightl y over a third being part­

time students. The university is composed of faculties, such as l aw,

physics and history. Each faculty in turn is composed of 'directions '.

The faculty of mathematics and (theoretical) mechanics contains four

directions and one of these, known a s Informatics, covers computer

science. Of 1,200 full-time stUdents in the faculty, 450 take the

informatics direction .

The first degree awarded is a Hasters degree which used to be

obtained after five years study, but now, as a resul t of economic

stringen cy, is awarded after 4! years . All informatics students

spend two years taking a common base course and then select one of

three speciailsations: theoretical studies , numerical analysis, and

software and systems applications . I will describe the l ast of these

and the common base. A syllabus for thi s combination is summarised

in the following table .

247

.,
.,

.,

Subjects

I II III IV

GENERAL 780

Philosophy, Economics
Poli tical science, Psychology
Pedagogics, Foreign lanugage

spread Over years 1,11,111

MATHEMATI CS 1 080

Logic , Set theory 60+60
Linear algebra, Geometry 90+90
Analysis 120+120 1 20+120
Numerical methods 60+60
Differential equations 30+30
Probability 60+60

INFORMATICS 930

Introduction 30+30
Programming 45+45 60+90 +60 +1 20
Computers and systems 60 30
Mathematical foundations 30+30 30+30
Dydactics of informatics 30+60 15+75

SPECIAL TOPICS 1050

Programming languages 60+60
Formal languages 30+30
Operating systems 60+60
Compiling techniques 30+30 30+30
DP systems 60+60
Digital simulation 30+30
Electives 90+90
Seminars 60 60

Syllabus : Common base , software and systems applications

Entries in the table represent hours of directly supervised

study in lectures and exercise classes. A value preceded by a +

denotes supervised class work . The entire course occupies a total

of 3 ,840 hours .

248

V

+60

60+60
30

Logic and set theory are taught as a single course for histor­

ical reasons. The large (50% of the mathematics component) course

on mathematical analysis deals mainly with continuous mathematics

from the calculus onwards . Students specialising in software

receive but a single course in numerical methods . The programming

course hours include time spent on projects organised in a similar

way to a physics laboratory course to form a programming laboratory.

Hardware topics are covered in the course on computers and systems .

In the mathematical foundations course we present the elements of

automata theory and other models of computability. The course on

dydactics is included with the aim that all our graduates should be

able to teach.

Courses in the special topics component are only attended by

the students specialising in software . All are obligatory, but , in

one course the student selects three highly specialised topics from

a set of 12 based on current research interests of the staff . The

research seminars are attended by small groups of students whose

topics for their Masters theses are in a common area.

Al most a third of the work load in the above syllabus is mathe­

matical, despite the view held by many of my colleagues, myself

included, that the study of mathematics is incidental to software

specialists. It would be very nice if fundamental notions such as

compl eteness and closure, which are directly relevant to system

design, could be taught within the framework of software subjects ,

but our own field has not yet progressed far enough to provide

sufficient examples as are needed to yield the required insight

mere definitions are certainly inadequate . Proofs of program

correctness are an essential ingredient of the thinking process

of the programmer, but an appreciation of proof-oriented techniques

is best developed in the mathematical disciplines and then imported

into computer subjects . Furthermore , mathematics is a marvellous way

of teaching the vital effort-saving techniques embodied in the use

of formal notation for conciseness of expression and to avoid sloppi­

ness. Finally, teaching adaptability is an aspiration of the entire

249

"'

univer~ity, and we believe this has been achieved to a greater extent

in the mathematics faculty than in the remainder of the university.

Since informatics is a part of the mathematics faculty we can draw on

a high standard of mathematicians to teach these courses and are

still able to bias the s l ant of the teaching so that it ful fils its

role in educating computing science undergraduates.

Mo st of our graduates find empl oyment in the software industry,

where they appear to be in great demand. Throughout the course the

students are re~uired to develop experience in programming, and they

graduate as programmers of four years standing. Proficiency in four

very different l angu ages and fami liarity with at least two distinct

environments is insisted upon (for example Algol60 , Fortran, Pascal ,

Cobol, Cybernet, OS/370, George) . An advantage of not possessing a

large computer installation of our own i s that w'e do not have, or

pass on, any bias towards a particular system. We have s ome small

computers, and easy access to a number of l arge machines.

The most important factor contribu ting to the student ' s practical

expo sure i s the pr ogramming laboratory which consists of about 20

p robl em 'nests'. The nests are partially ordered, and each contains

a number of probl ems. A student can select any problem from within

a nest, but must p ass through each one in a se~uence constrained by

t he partial ordering .

Information Retri eval File Handling Operating Systems

Matrix Operations Automata Compilers

A part of the network of 'nests ' indicating some constraints .

250

An advantage of this system for the staff i s that each nest has

a supervisor who i.s a specialist in the appropriate area, and thus

can discharge thi s . teaching l oad I without the necessity of super­

vising class-work on subj ects in which he is not expert .

Studen t s are sent ou t t o acquire experience in s oft ware houses

ei ther for si.x weeks full ·-time at t he end of the third year, or for

12 weeks half-time during the fourth year. Most prefer t he l atter

choice . At this stage in their training , the students are competent

p rogrammers. Projects are assigned to a sequence of groups of

s tudents , one group taking Over when t h e previ ou s gr oup have

completed their peri.od of industrial experi ence . This tea ch es the

i mportance of do cumentation and the need for staged design and

implementation . The second group makes a report which i n cludes

comment on the input received from t he i r predecessors. The f i rst

group is not graded until t he sec ond group have compl eted t hei r

stage . Professor Randell asked if t his p rocess was unending.

Pr ofessor Turski indicated that it must seem so to the groups,

s ince p roj ects usually ran for about two years . Mr . Laver asked

how the scheme was viewed by the empl oyers. Profess or Turski

explained that the employer was ask ed to regard the continuous flux

of groups of four or five students as if t hey were a permanent

group whose performance could be approximatel y that of two peopl e.

The extra work for the employer is compensated by the opportunity

he receives to market himself to futu re graduates.

A f u r t her contact wi.th industry is that many M. Sc . thesis t opi cs

origi nate in proposals from the software houses . Th e s tuden t who

sel ects such a topic receives dual s upervision, both acad emic and

industrial , and his industrial supervisor sits on t he examination

board . Often this approach leads to subsequent empl oyment, bu t

s om etimes provide s a warning to avoid a part i cular f i I'm (or a

part icular graduate) . Typical exampl e t opics are

251

(i) A mini FORTRAN cross compi l er running on aRIA]) 30 producing

code for a mini computer . (Direct programming .)

(ii) A model of a special purpose operating system (message

swi teher) for a mini eomputer, running on an IBM/370 .

machine but ca1.i brated to yield exact timing data.

(M.ode} designo)

(iii) A study of the effectiveness of the tape handling routine s

at a savings bank. (Study of an existing system.)

I now wish to identify a number of reasons for what amounts to

a gradual disintegration of the academic programme I have d e scribed.

These may be grouped under the general heading of 'fatigue' .

A great deal of effort has been put into the preparation of many

new courses, but although these have been very su ccessful, the effort

involved is not appr ec iated by 1:he university. Similarly, a lack

of suitable teaching aids has necessitated the production of 'home­

made ' aids , an activi.ty whi ch, of course , receives no recognition

at a l l. The resulting slow academic progress of the teaching staff

(especially junior) has 1 cd to dissatisfaction and. a rapid waning of

enthusiasm. Interaction 'wi th i ndustry , while excellent for the

students , had led to staff operating as unpaid consultants, something

which is very difficul t to prevent or place on a rational basis .

In some instances , heavy industrial involvement has l ed to probl ems

of identity for academi c staf:f . Student interest in the course i s

hi gh , but many feel unable to complete the heavy workload and as a

result receive no d egree whatsoever . A high rate of attrition

brings pressure from the university administration - was tage of funds -

and from the students - wastage of effo r t . The reduction of the

course length by half a year was achieved by simply d e l eting the las t

semester. Obviously the syl1 abu s should now be redesigned - just

when, for the first time , stabil ity had been reached with a full run

through of stUdents . Finally there is a lack of suffici ent facilities

for experim ental pur po ses o

252

., .,

I may have painted too black a picture , but my expectation is

that the programme will be fossilised , in that although it will be

maintained our future plans are now unlikely to be implemented.

Di scussion

Professor Page began by nostalgically reflecting on his own

undergraduate mathematics background but suggested that many of the

reasons advanced in support of teaching so much mathematics were

the same kind of reasons as those advanced for teaching latin.

Although these reasons do have some validity, the removal of latin

from the curriculum left time for other subjects wh;ch , it is hoped ,

achieve the same results and are thems·elves of some use . Similarly,

would not a shift from continuous to discrete mathematics be advan­

tageous in the context of what is essentially a discrete discipline .

Professor Turski "Probably, yes . But I had so many years of latin" .

It was agreed that a further advantage of a high proportion of

mathematics in the course is that someone else does the teaching .

Professor McKeeman asked what was known about students who special­

ised in theoretical studies and then went into industry. It waS

pointed out by Professor Turski that this rarely happens . Numbers

taking that specialisation are low in any case and most go on to

other universities . An industrial research laboratory would be an

acceptable alternative . Mr. Laver enquired as to the overall attri­

tion rate for students and wondered if it would not be preferable to

produc e more , if slightly less capable , graduates than just a few of

very high standard . Professor Turski expressed his personal opinion

that mediocracy would be the worst thing that could happen. In the

first year almost 50% of the students drop out , some switching to

mathematics . (A principal Cause is the first exposure of the students

to programming exercises set by Professor Turski !) In the second year

a further 25% of the remainder are unsuccessful . However , years

after the first can be repeated (almost indefinitely) . ProfessQ~

Griffiths felt that not enough emphasis was placed on applications .

Professor Turski replied that in addition to the elective course there

253

.,

•

. j

I

•

was also the course on D.P. systems. He conceded, however, that

engineering and science applications were only covered by the

numerical analysis specialisation. Professor Reynolds asked if the

universitie s produced the majority or only the elite of software

personnel. Professor Tur ski quantified the production of software

personnel by universities as being around 300 per annum, while other

higher educational establi shments produc ed roughl y 1200 per annum .

However, nearly half of Poland's computer manufacturer's programmers

are product s of the universities.

254

