
A VIEW OF SOFTWARE PROBLEMS

W.M. Turski

~app.Q.Ete~x.2.' Ms. D. Bowman
Mr. P . Ki ng

Various aspec t s of s oftware probl ems a r e addressed, with

particular emphasis on correctness and reliability. The view is

put forward that correctness i s a relation be tween program text

and specifications wher ea s rel iabili ty is the property of an executing

program .

No self r especting l ecturer on compute r p rogramming these days

can avoid the notion of ' correctness'. I woul d like to show you

~he f l. rst of three program s and ask' How correct is this piece of

software?l

100

DO 100
DO 100
X (I,J)

I = 1,N
J = 1 , N

= (I/J)*(J/1)

Is the second any bet ter (more correct)?

D~ 100 I = 1 , N
D~ 100 J = 1,N

100 X. (I,J) =. (I/J)*(J/I)

Or the third?

DIHENS1~N X (100,100)
D~ 100 1 = 1 , 100
D~ 100 J = 1 , 100

100 X (I, J) = (I/J)*(J / 1)

229

., ., -,

These three examples indicate that when you do not know what

you are writing the program for, the probl em of correctness is

meaningless . Inci dentally , the exampl es are some of the correct

ways to initialise a unit matrix, remembering t he peculiar round-·

off characteristics of FORTRAt'l integer division. The product

(I/J)*(J/ I) will be zero except where I equal s J when it will be 1 .

That is my first point, correctness is a rel ation defined on

a product space of probl ems and solutions , or, in software terms ,

a relation between specifications and program texts .

Vie,,,ed in this way , c orrectness ha s a definite I a po ster i ori r

flavou r, s ince it can only be verified or r efuted when one has both

elements of the constituent space, that is both the full specifi

cation and the program text. One of the aspects of change that we

are witnes s ing now is an attempt to change this ' a posteriori' nature

of correctness . It is important to realise that , whether 'a po steriori'

or ' a priori' , it is meaningless to analyse only the p rogram t ext to

determine whether or not it is correct .

The classical methods of correctness analysi s , the 'a po steriori '

methods , start with a compl ete specification and a program t ext

and try to di scover whether t he latter is correct. I inc lude in

the se methods the tim e honoured practice of debugging, which some

peopl e fe el is wrong because it doe s not pose sufficient intell

ectual challenge or because it may 'show the presenc e but not the

absence of bugs' . Debugging plays the same role as proof reading

do es in mathematical proofs . No mathematical proof is correct

unl ess it i s correctly represented. Similarly , no p rogram is correct

unle ss the text i s correct. That is , unle ss the text is the correct

embodiment of the idea of the program . In thi s role debuggi ng is

necessary . Other typical examples of the ' a posteriori ' methods

are pro gram verification , which attempts to decide whether the

point in th e product spac e representing the given program text and

the given specification l ies in the appropriate relation subset ,

and testing . In p r oblems which exhibit continuity, in some sense ,

a combination of thorough testing and extrapolati on is as satisfactory

230

.,

a proof as any mathematical proof.

Unfortunately, these methods share one basic shortcoming: the

length of the proof text . You will find that the texts of all

' a posteriori' proofs are very long . Wh ere. this appears not to be

the case it is because some essential s tep has been omitted . Thi s

applies very often to debugging . A thorough report of the debugging

performed is seldom seen , even if a large amount was done . If thi s

report were to be included , the text would not be any shorter than

that of one of the fancy mathematical proofs which might appear in

the literature . As a rule of thumb , the text of an 'a posteriori'

method of proof is between one and two orders of magnitude larger

than the text which is heing proved . And al though length is only

a poor measure of the effort involved in its construction, if the

proving and programming efforts are measured by the lengths of their

respective texts, we must come to the terrible conclusion that the

p r oof is an order of magnitude more effort-consuming than the

program itself .

Hence , it appears that we should treat the proof as the primary

and the program as a secondary by-product . We can see this approach

in the 'a priori' methods of establishing the correctness, which

attempt to ma.ke program texts correct by virtue of construction.

In these methods we try to formulat e the problem in such a way that

it naturally leads to an 'a priori ' proof of correctness . As before,

we start with a complete specification , but we also use the basi c

axioms of correct transformations and we apply a schemata of correct

composi tion . The se ingredients are al so used in the I a posteriori I

methods , but in the role of tools of analysis, whereas in the

' a prion. ' methods they are construction tools . The' a priori '

methods are bett e r su ited to our abilities since they reverse the

positions of primary and secondary tasks . Unfortunately , while I

found only one shortc omi n g for the 'a posteriori' methods, viz . the

l ength of the proof text, I thought of three shortcoming s for the

' a priori ' methods: How doe s one guess proper s chemata, how does

one direct one's design activity and how doe s one apply the method

231

"'

"'

to problemsof a non-transformational nature? These are shortcomings

of an entirely different nature . In the ' a posteriori' case, we

encounter a physical fact, ' the proof text is too long '. In the

' a priori ' case , the problems all start with the word 'how'.

Let me now explain what I mean by 'problem s of a non

transformational nature' . It has struck me as odd that whenever I

see a beautiful example of a well-composed program, the p robl em for

which it has been composed is extremely well defined as a transform

ation . One can sense that the problem is a clear cut transformation

of the input state into the output state . It is very seldom , in my

experience , that real world software problems are so well defined

as transformations, and I dare to say that solving even the most

difficult transformational problem is trivial compared with the

effort required to produce a transformational specification for a

practical software problem . Moreover , the latter effort very often

involves a large amount of extra-programming knowledge. I shall

try to illustrate the amount of extra-programming knowledge which

is requi red to solve the exemplary problems which are published

and exhi bited to teach us how to solve normal problems . Consider

for example 'Compute the largest prime factor of a given natural

(integer> 0) number' . Since most of us have some knowledge of

mathematics , we do not protest at being given such a specification,

but 'prjme factor' is a purely technical term from another discipline

which no programmer has any business kno,dng. Some programmers

mi ght ask ' what i s a natural number '. Since there are different

schools of thought on the matter I included ' integer> 0' in the

specification. Although there are many excellent examples of how

to solve this problem , they ~ll rely on extra-programming inform

ation. The beauty of t he program-solution lies not in the prog

ramming but in the use of several facts which are unre l ated to

programming . A programmer who knows no number theory is likely to

ask ' what is a prime?' ~ 'what is a factor?' and even 'what is

"larges t prime factor"?', but he will never know, nor ask for the

information , that the largest prime factor of an integer is not

232

greater than the square root of the integer , which gives an

extremely valuable hint on how to construct a s olution.

Since one is not p rovided with transformational specifications

very often and they seem to be an essential ingredient of a method

ological , di sciplined approach , is there another guiding principle

which Can be appli ed to programming as problem-s olving?

Increasingly, I am coming to the belief that it is the p robl em

oriented analysis that shou.ld direct programming ac tivities. This

gives rise to many practical decisions t hat mus t be made . First

of all. , referring to the famou s top-down versus bottom-up controv

er sy , I find it h elpful to do both. At the first NATO Software

Engineering Conference , Stan Gill argued that all i mpl ementation

. 'as a mixture of top-d own and bottom-up methods, but since the

religious wars broke out , such compromi ses have been forgotten .

I find it profitable to h ave different guiding p r inciple s when

doing the analytical (or top-down) part of t he design and when

do i n g the synthetic (or bottom- up) part . In the analytical part, I

think as a user , that is, in terms of the problem. The g ro ss

design and initial deci s ions seem to be done better if they are

not based on programming considerations , but on the basis of how

the p rogram is to be u sed and what problem it has to s olve. We

should not lose all programming aspects from the analytical reasoning,

though. I would like to do the problem analysi s in such a way

that I have a chain of reas oning which has two basic p rop erties.

The best way to describe these properties is by the mathematical

terms I completeness! and ' consistency'o If we know how to make

the pro blem analysi s in su ch a way that the solution remains

complete and consistent as development proceed s we would be much

closer to s olving the basic problem s of pro·gram construction.

233

I believe that we have some of the necessary tools in incompl ete

specifications . Complete specifications never exist since a complete

specifi cation would include the program text , the compiler text,

the operating system text , the engineering specifications of the

machine, the blood pressure of the operator and so on . All specifi

cations are incomplete . I am not discussing all possible incomplete

specifications , but incompl ete specifications such as Parnas' [1J

functional specification of a module (in terms of the observable

changes in the stat.e vect.or), DeRemer and Krons' [2.] hierarchical

decomposition and 'use' funct.ion , and Guttag and Hornings' [3J

syntactic (I / O transformation), semantic (a.'doms of transformat.ion)

ruld implementational constraints . Incomplete specifications are a

fact of life for managers, imposed by evolving specifications and

the 'staged payment contract'. These are variously viewed in the

profe ssion as a curse and as a beneri t . I hold the latter view.

Since fixed specifications are a myth , it is better to admit the

fact and follow the evolving specifications , which have obvious

u ser appeal . They equally appeal to the manager of the project who

is never more than one stage unfunded and can get the user 'hooked

on' the system gently, rather than hitting him on the head with

delivery of a compl ete system , which causes a natural rejection by

the user . Therefore , I suggest that incomplete specifications

should become a consciously applied tool in program development .

This pre suppo ses bringing in the u ser at each stage of the design ,

which is very unpleasant. for our ego , since it is not any longer

the programmer who is in the driver's seat during the program design.

This is not the paradox it might seem because we should never program

for the sake of programming .

If this principle is consciously applied , we have corresponding

to the layers of program , layers of specification. These start

wi th the statement of the problem ·which is successively decomposed

into a number of incomplete specifications . At each decomposition

stage I would try to obtain a proof of completeness and consistency

using the terms and relations of the level of specification reached.

An amazing amount of progress can be made by applying formal methods .

234

•

to informal objects . (It is a common misconception that one must

have formal objects to apply formal methods.) In th e design of a

program we are translating from the user' s, problem-oriented terms

to the program oriented terms. This transition is very difficult

unl ess you apply formal reasoning .

The design process is not program refinement, but the compl etion

' of the specification which invariably brings in extra-programming

knowledge . There is , of course , a limitation. If we have formal

reasoning with the objects treated formally, it is very difficult to

map the formal objects of one level into the formal objects at

lower l eve l s. This difficulty i s considerabl e if we treat formally

arbitrary objects . If we do that then the bringing together of

con secutive layers may prove to be rather difficult. I see a glimmer

of hope in the algebraic methods of describing programming objects

such as that developed by Guttag.

Recall that correctness is defined in terms of probl ems and

solutions. Now, the other highly abu sed term , ' reli ability', is

defined in terms of nbjects and use s, rather than problems and

s olutions . As soon as one realises this, one has no more doubts

that correctness and reliability are independent notions and they

do not in any way entail one another . You may a l so recall that in

programming terms correctness trans l ates into the re l ation between

specifi cations 'and prog ram texts , whereas reliability i s the p rop erty

of a program in~. As long as we have just the p rogram text , it

i s rathe r meaningless to say whether it is rel iable or unreliable,

exc ept if we have uses for that text other than execution by such

an executing agent as the Case may be . From this we conclude that

reliabili ty cannot be established from analysis of program and

sp ec i f i cati ons t exts alone. Thi s is perhap s a very common and very

obvi ous statement . But , at l eas t for my private u se , I find it very

illuminating and instructive, and it saves me a lot of effort: I

don't read any attempts to establish the reliability of a piece of

program in its t extual form . I have learned by hard experi ence not

235

., .,

to read any considerations of reliabi lity based on the p rogram text

a lone.

Now, of course , ' reliability' is a very messy notion . To

s om eone whose natural language is not English, the notion of

reliabili ty i s extremel y confusing . It appears by the properties of

Engli sh, that 'reliabili ty ' is the primitive notion and 'unreliability'

i s the derivative notion . In some languages, Poli sh included, it

is the other way around. Somehow I think that ours is a more humble

mental attitude , and it helps u s to understand that the primitive

notion is failure , and reliability is the lack of failure if you're

lucky!

I have many colleagues , esp ecially at t echnical univers ities,

who believe that reliabil.ity i s a stati stical notion, and is a

number between 0 and 1 . They take great del ight in decomposing

objects and then attaching these numbers between 0 and 1 to the

'sub obj ects ' obtained by decomposition. Then , they multiply these

numbers, obtaining succe ssively smaller numbers. Somehow, I fail

to see the rel evance of that sor t of reasoning for our problem,

although this apparentl y charming approach is a good subj ect for

Ph. D. dissertation s . The program can be decomposed into modules,

~he modules into constitu ent parts , the constituent parts into

instructions, and the instructions into sequences of micro

instructions . Thi s goes down to the gate level and here, at last,

we reach the reliabi lity as measured by technicians in numerical

terms . Sinc e thi s is only a finite expansion, after only a finite

number of multiplications you will arrive at a numerical value of

the reliability of any piece of code (correct or incorrect). This

is a perfectl y valid ' scientific' appr oach . However, an estimate

of prog ram reliability obtained in this way will be too pessimistic

because of the tremendous number of components which may go wrong,

and yet would tell us nothing about the semantic aspects of failures.

For that reaSon I believe this is a total l y wrong approach.

236

., .,

I always try to think of so ftware failures as bel onging to two

distinct cl asses . The first type is the failure of a program to

perform as specified. This may be caused, for exrunple , by mismatched

data - data 'which is just slightly wrong and , if the specification

is vague enough, then one could argue that even with mismatched data

the program should perform in such and such a way. To t h e second

class belong f ailures to p erform safel y in unforoeen circumstances .

Of cours e I am now committing the logical crime of replacing one

undefined term by another . You will be quite right in wondering what

I mean by 'safely' . However, I think that the us e of the term

'safel y' i s a mental step forward because this term is s o obviously

related to the u ser. Of course, very few programs physically blow

up the computer installation when executed. However, the u ser is

quite likely to describe what he considers is unsafe for him. A

violation of user safety is , for example, the destruction of master

fil es in a bank or in an insurance company: obliterating mas ter

records i s one thing your system should always avoid. Another example

is the destruction of data from a very expensive and unique experi

ment which you hand to your assistant for processing . I jus t want

to stress that it j.s important to identi fy what is unsafe from the

user point of view. Our aim should be that under no circumstances

will a program that we deliver endanger the safety of the u ser .

Thi s is a basic aspect of program reliability, as I see it.

How do you achi eve program reliabili ty? Ho" do you eliminate

the failure s from your system? Well , you don ' t .- you cannot.

Nothing in thi s wo rld (the world included) is pe rfect: even engineering

construction is not perfect , despite what some p eople say about

mechanical engineering feats and so on. A bridge i n Vi enna which

lasted since before the war , which stood throllgh t h e bombing ,

collapsed one night last month for no apparent reason . Nobody knows

where the bug was, and that wasn't even a mechanical con struction

it was a civil engineering construction o Since nothing is really

perfec t, no program will ever be absolute l y reliabl e, except "hen

it's specifi ed to do n ot hing , in " hich case don't bother to switch

237

the computer on se as to save e l ectr.i ci tyo

The techn iques of defensi v'e p rogramm i ng vhich provide alternate

course s of ~omputat i on). f something wrong 15 detected are an obvious,

although not necessarily economic al , way out of the reliabili ty

probl ems .. I t 'i s dlff;'(;u!.t to say s om ething interesting on recovery

blo ck s I n Ne\;castle, but if you think in other term s about the

recovery block strllct'ue , you may di sc ern that one u s es the primary

blo ck as the prog,:,arr, aImed at achieving a desi red r esult , where as ·s

the al ternat.ives at'e intend ed to be just acceptabl e . Now if we make

this distinction , then \;e have come across a totally new approach

to prograrr, design " Normally ,re are programming to achieve an objective

or a set of obJ€c\.ives . Someti.mes it is advisable to be more humble ,

and say . we]} if J can I t . get thi s or that , what are t he things with

which I wil l be neverthe:"ess sa.t isfied or at least di ssatisfied?'

Ag ain , t h ese t.h ~ngs ,]. n my opinion , s hould be s tated at the very

begi nning of thp deSIgn stage.

Ano ther aspe c t of reI J.abil.i ty which h as r ec ently gained some

support amongst programmers i .s security , repre sented for instance by

capabi liti"s (that's a 11] ce mi s llomer , i f I ever met one) in the

HYDRA p roject t·hat Bi ~l Wulf [4 J is working on. Here you impose

restrictions not only on the thi.ngs accessible , but also you admit

that t.he r ight to access may be a f unction of the execution process.

By doing t his ,Yo'] enlarge 'the d egre e of safety control in your

p rogr am.

I "ill just br~efly mention s om e less frequently cons idered

aspects of rel.tabi 11 ty. One of t he se is unreliabil i ty of software

which comes from p00r user documentation .. Insufficient user

do cumentat1.on is an -l.nv.i tation to disaster" Another aspect of

unreliabi.l.l ty wh.ich). s not frequently dis cu ssed i s the by- product

of ready-mad.e soft,ware packages , which haV'e be en my personal enemy

ever SJnce I started programming . I wast ed a tremendous amount of

t i me by using pre··packaged universal s olutions rather than designing

specific so lutions from scratch. One time I was do ing a lot of

238

I

numerical computations in astronomy 1.,hi ch , of course , requi re many

trig onometric se r ies expansi ons . I was u s ing the s i mplest of the

p ackages: the sine and cosine routine s , which calculated the s ine

and co sine functions to t he full preci sion of the computer, even

though I had only three digi ts worth of coeff i cients . I would have

be en qui t e happy with three-digit accuracy which can be obtained

from a small table with simpl e interpolation; this speed s up t he

p rogram about fift een times . That ' s not unreliabil ity , but it

expl ains why I do not like packages . Packages are unreliable

becau se they a re given to users wh o will se ldom consider whether

it i s applicable to use a given p ackage or not . If you give the

u se r a numerical i ntegration package, he will integrate strongly

di scontinuous functions t o his heart ' s conten t , and he will believe

the numbers that he gets becau se they came out of the computer.

At this point Professo r I . C. Py~ raised a question over this

integration example . He wanted to know which definition of failure

did it satisfy? Professor Py l e was of the opinion that the program

had performed safely and it had performed as specified. He

suggested that it was not consistent with Professor Turski ' s

definition of reliability and that perhaps an even b roader definition

of ,,,hat was wanted from r el iabi lity is needed. Professor Tu rski

maintained that the program did. not perform as specified becau se

the sp ecification would p robably mention t hat the package is not

to be used for strongly disc ontinuous functions and s o these

specifications should be carried. out i n the program and therefore

an attempt to u se the package for such application should resul t

in a rej ec tion. Besides, producing a 'reasonably' looking, yet

meaningl ess output certainly endangers the user ' s saf ety.

239

-, -,

Part 2

In the second part of thi s talk, I intend to cover only two

topics . One topic i s the software programmer 's inventiveness of

creativity. This is one of the biggest vices a programmer may have

in an industrial environment. I hasten to add that I consider

creativity to be one of the fundamental virtues we should instil in

a p rogrammer when educati ng him . (That ' s a beautiful contradiction

which is just life itself.) IIou , what do I mean by a programmer 's

creativity or inventiveness? In an industrial environment it is

a preoccupation with self-posed and self-feeding problems . It is

the programmer's arrogance to give preference to the programmer's

very own insignificant problems Over the problem s of his clients

and cu stomers. I do admit that it might come from the very fast

development of our profession ~ld that it might be partially due

to the fact that the programmer considers himself as the high priest

of new religion in the industrial environment and therefore , of

course , his occupation is the most important. However, we will be

much better off if the programmers who do the commercial programming

reali se that they are performing a service, and this it is the

client's probl ems that are important .

A programmer who is inventive will take the cl ient' s problem

and spend six months thinking how this problem may be re-formulated

in order that a n ew programming techlljque may be appli ed. Thi s

attitude has to be cured. Another effect of programmers' invent

iveness is the blank rejection of imported software (which is

everything not done by t he programmer and hi s colleagues) . Speaking

now from under my managerial cap , the problem of ' a priori

rejection' of imported software is a part of the inventiveness

syndrome. Another symptom of this syndrome is all those 'wouldn't

it be nice if ' programs . Each programming establishment that I

know abounds in such programs which lack applications . A further

refl ection of the programmer's creativity is his di slike of menial

maintenance jobs.

240

By thi s criticism of creativity and i nventiveness I put

myself in an untenable po sition , so I hasten to add that I do see

the beauty of creativity. Now I can safely proc eed to l ist the

cures for the programme r' s i nventiveness . Mo st of all, we must

teach problem oriented thinking . We must i nsi st that our p r ogrammers

think in terms of the problem s they are so lvi ng , not in terms of

the programming techniqu es they are applying. Another cure is to

l et the programmer know t h e global objectives of t he p rogram he is

working on , even if he is doing only a small po rtion of it . He

will apply t hi s knowl edge in his attitude towards what he is doing.

For example , if he were working on a banking system then he would

rai se an alarm if he discovered anything that could de stroy the

master file s. If h e were j u st given a module to pr ogram he may

not react to things like that.

Thirdly, I am in favour of the technique of staff ' brai n

storming' sessions where all the people on a proj ec t gather period

ically to have a burst of controlled inventiveness . The ideas are

froz en after the session is over . Thi s session allows the programmer

to di splay his inventiveness among his peers (whi ch is a very good

thing) . In addition , it help s to bring the global obj ectives down

to the level of each programmer .

Yet another cure for arrogant inventiveness i s persi stent

documentation. The necessity of providing full do cumentation has a

curbing effect on the unbridled inventiveness.

Another managerial tool in which I happ en to believe very

strongl y is evolving specificati.on s and s taged payment contracts.

These blend the programmers and the u se rs represented by managers

or others. I would like to mention Professor Barron ' s l etter i n

Computing (I believe in January) i n which h e insisted that staged

payment i s the best protection against the i n competence of software

producers. I would like to add that it is also the best protection

that software developers have against the users who change their mind

twice a week. An additional techniqu e which i s clearl y didactical

241

I

-I

., ., -,

is to instil the re sponsibility for one 's product .

I believe the dull jobs should be given to the best programmers

and the most attractive assignments should be given to the novices .

Giving a novice a maintenance job is one of the be s t ways of

encouraging the inventiveness that we have been talking about .

The immaturity of our profession shows in the dislike of the main

tenance jobs .

The programmer's inventiveness should be taught in an academic

environment. Inventiveness is needed becaus e we do face a great

many problems for which solutions have to be invented. How can you

teach inventiveness at universiiy or in a programming course?

Unfortunatel y it cannot be done by showing exampl es of somebody

el se ' s inventions; however, it is useful because it helps the

per son acqui re a 'taste' for inventiveness . It is very difficult

to be creative without the appreciation of t h e beauty of other

people's programs .

Here are a few i deas which I . think are useful in trying to

encourage the development of inventiveness . First of all, vaguely

specified problem s from outside computer ccience should be given

very early in the course (even before standard techniques are

taught). Universities have an atrocious habit in giving problems

with terribly exact specifi cations . I believe this is wrong:

primarily becau se in real l ife the students will not meet su ch

spec ifications and secondly because such compl ete specification

is only just short of describing how t o s olve the problem.

Universities have the bad habit of extremel y good re s earchers

giving courses, and a researcher giving a course on his subject

will, in general, expl ain his particular approach which is not

necessarily the only approach or even the best approach. Hence,

we should insist that critical survey s be presented with the

relative merits di scussed.

242

.,

All sorts of games and competitions in programming should be

encouraged during t h e programmer' s education. For example, they

could be organised like Jim Horning's software huts which are great

fun and teach a lot. A technique which I like very much is to have

the students review other student' s assignments. Creativity is

developed by requiring complete documentation but a llowing consider

able latitude in practice . Fo r example, I do not say what 'complete '

means and then I ask the student to convince me that hi s document

ation i s in fact compl ete.

(Note : at this point time was running out for the session so

Professor Turski quickly showed .his last t wo s lide s on buying

s oftware. The following i .s a summary of his ideas on thi s subj ect.)

Exi sting software can be either inherited or purchased. In

either case it has to be maintained, adapted in the latter case,

and extended sooner or . later.

1. Somebody must identify himself with an existing system, trea.t

it as his own, and be the 'in-house' expert. Invent a job to

achieve it (translate I/O messages, diagnostics etc; balance

and tune ' to preferred hardware/documents).

2. Never l et it rust (purging from library).

3. Even if modifications are reasonably small try to re-edit user

documentation (periodical ly) .

4. If possible, test for reliability by overloading .

5. Never let junior p rogrammers maintain existing software .

6. Be cost- effective conscious: investment in existing software

and routines i s large but not always worth maintaining forever .

A small revolution may be cheaper in the long run.

7. Carefully anal yse alternatives.

243

Buying: 1 . Turn-key contracts including evolving specifications,

staged payments.

2. Insist on proper education including your programmers

in development team.

3. Insist on full access to documentation (you will not

get it, but observe where the line is drawn).

4. Buy problem solutions , not particular techniques!

When buying is advisable:

1. As a part and parcel of complete system delivery (not

a computer system, but e.g. a factory) if contract

specific on system goals.

2. For a well-defined application (preferably from a user,

or a copy of user's version).

3. When standards of quality are reasonably well

established (e . g. a compiler).

When buying is inadvisable:

1 . When the documentation is clearly insufficient to permit

in-house modifications and the software is for an

evolving probl em (exampl es : data bases, telecomputing) .

2. Very general packages (they are unreliable).

Discussion

Professor I.e. Pyl e opened the discussion by inquiring what

Professor Turski meant by a 'very general' package? He maintained

that packages and libraries were very u seful and cited SPSS and the

NAG library as examples . Professor Turski responded that by 'very

general' he meant a package which was aimed at a totality of

probl ems. You would ju st give the problem to the package , and it

would decide what to do next. Professor Pyle asked for an illustr

ation, whereupon Professor E.S. Page stated that there were quite

a number of general statistical packages which provide a negative

244

estimate of variance for suitably chosen input data and users are

not warned about the choice of input data. At this point

Miss E . D. Barraclough came to the defenc e of Professor Turski.

She thought he meant that if the package does too much for one,

then the user do esn 't have to understand what he is doing, but that

if the package does too little then the user has got to unders tand

it before he can u se it. Professor Turski agreed that thi s was

indeed a clear statement of what he had meant .

References

[1 J Parnas, D. L. A technique for software module specifications

with examples. CACH 12 No. 5 (May 1972).

[2J DeRemer, F ., Kron , H. Programming-in-the-l arge versu s

programming-in-the-small . Proc. of the International Conf.

on Re l iable Software Apri l , 1975.

•

[3J Gut tag , J.V. The specificati on and application to programming

of abstraet data types. (Ph. D. thesis) . U. of Toronto,

Department of Computer Science, 1975.

[4j Wulf, W. A. Reliable hardware- so ftware architecture. Proc .

of the International Conf . on Reliable Software, April , 1975 .

245

"' "'

