A VIEW OF SOFTWARE PROBLEMS

V.M. Turski

Rapporteurs: Ms. D. Bowman
Mr, P, King

Abstract

Various aspects of software problems are addressed, with
particular emphasis on correctness and reliability. The view is
put forward that correctness is a relation between program text
and specifications whereas reliability is the property of an executing

program.

Part 1

No self respecting lecturer on computer programming these days
can avoid the notion of 'correctness'. I would like to show you
the first of three programs and ask 'How correct is this piece of
software?’

DO 100 I

DO 100 J

=1,
=1,
100 X (I,J) = (1/J3)

* = =

(3/1)

I's the second any better (more correct)?

Dd 100 I =1,N

D 100 J =1,N
100 X (I,d) = (T/Ty™(3/1)
Or the third?

DIMENSI@N X (100,100)

D 100 I = 1,100

D 100 J = 1,100
100 X (I,J) = (I/J)*(J/I)

229

These three examples indicate that when you do not know what
you are writing the program for, the problem of correctness is
meaningless. Incidentally, the examples are some of the correct
ways to initialise a unit matrix, remembering the peculiar round-
off characteristics of FORTRAN integer division. The product
(I/3)%(J/I) will be zero except where I equals J when it will be 1.

That is my first point, correctness is a relation defined on
a product space of problems and solutions, or, in software terms,

a relation between specifications and program texts.

Viewed in this way, correctness has a definite 'a posteriori'
flavour, since it can only be verified or refuted when one has both
elements of the constituent space, that is both the full specifi-
cation and the program text. One of the aspects of change that we
are witnessing now is an attempt to change this 'a posteriori' nature
of correctness. It is important to realise that, whether 'a posteriori’
or 'a priori', it is meaningless to analyse only the program text to

determine whether or not it is correct.

The classical methods of correctness analysis, the 'a posteriori'
methods, start with a complete specification and a program text
and try to discover whether the latter is correct. I include in
these methods the time honoured practice of debugging, which some
people feel is wrong because it does not pose sufficient intell-
ectual challenge or because it may 'show the presence but not the
absence of bugs'., Debugging plays the same role as proof reading
does in mathematical proofs. No mathematical proof is correct
unless it is correctly represented. Similarly, no program is correct
unless the text is correct. That is, unless the text is the correct
embodiment of the idea of the program. In this role debugging is
necessary. Other typical examples of the 'a posteriori' methods
are program verification, which attempts to decide whether the
point in the product space representing the given program text and
the given specification lies in the appropriate relation subset,
and testing. In problems which exhibit continuity, in some sense,

a combination of thorough testing and extrapolation is as satisfactory

230

a proof as any mathematical proof,

Unfortunately, these methods share one basic shortcoming: the
length of the proof text. You will find that the texts of all
'a posteriori' proofs are very long. Where this appears not to be
the case it is because some essential step has been omitted. This
applies very often to debugging. A thorough report of the debugging
performed is seldom seen, even if a large amount was done. If this
report were to be included, the text would not be any shorter than
that of one of the fancy mathematical proofs which might appear in
the literature. As a rule of thumb, the text of an 'a posteriori'
method of proof is between one and two orders of magnitude larger
than the text which is being proved. And although length is only
a poor measure of the effort involved in its construction, if the
proving and programming efforts are measured by the lengths of their
respective texts, we must come to the terrible conclusion that the
proof is an order of magnitude more effort-consuming than the

program itself.

Hence, it appears that we should treat the proof as the primary
and the program as a secondary by-product. We can see this approach
in the 'a priori' methods of establishing the correctness, which
attempt to make program texts correct by virtue of construction.

In these methods we try to formulate the problem in such a way that
it naturally leads to an 'a priori' proof of correctness. As before,
we start with a complete specification, but we also use the basic
axioms of correct transformations and we apply a schemata of correct
composition. These ingredients are also used in the 'a posteriori'
methods, but in the role of tools of analysis, whereas in the

"a priori' methods they are construction tools. The 'a priori’
methods are better suited to our abilities since they reverse the
positions of primary and secondary tasks. Unfortunately, while I
found only one shortcoming for the 'a posteriori' methods, viz. the
length of the proof text, I thought of three shortcomings for the

'a priori' methods: How does one guess proper schemata, how‘does

one direct one's design activity and how does one apply the method

231

to problemsof a non-transformational nature? These are shortcomings
of an entirely different nature., In the 'a posteriori' case, we
encounter a physical fact, 'the proof text is too long'. In the

‘a priori' case, the problems all start with the word 'how'.

Let me now explain what I mean by 'problems of a non-
transformational nature'. It has struck me as odd that whenever I
see a beautiful example of a well-composed program, the problem for
which it has been composed is extremely well defined as a transform-
ation. One can sense that the problem is a clear cut transformation
of the input state into the output state. It is very seldom, in my
experience, that real world software problems are so well defined
as transformations, and I dare to say that solving even the most
difficult transformational problem is trivial compared with the
effort required to produce a transformational specification for a
practical software problem. Moreover, the latter effort very often
involves a large amount of extra-programming knowledge. I shall
try to illustrate the amount of extra-programming knowledge which
is required to solve the exemplary problems which are published
and exhibited to teach us how to solve normal problems. Consider
for example 'Compute the largest prime factor of a given natural
(integer > 0) number'. Since most of us have some knowledge of
mathematics, we do not protest at being given such a specification,
but 'prime factor' is a purely technical term from another discipline
which no programmer has any business knowing. Some programmers
might ask 'what is a natural number'. Since there are different
schools of thought on the matter I included 'integer > O' in the
specification, Although there are many excellent examples of how
to solve this problem, they all rely on extra-programming inform-
ation., The beauty of the program-solution lies not in the prog-
ramming but in the use of several facts which are unrelated to
programming. A programmer who knows no number theory is likely to
ask ‘what is a prime?', 'what is a factor?' and even 'what is
"largest prime factor"?, but he will never know, nor ask for the

information, that the largest prime factor of an integer is not

232

greater than the square root of the integer, which gives an

extremely valuable hint on how to construct a solution,

Since one is not provided with transformational specifications
very often and they seem to be an essential ingredient of a method-
ological, disciplined approach, is there another guiding principle

which can be applied to programming as problem-solving?

Increasingly, I am coming to the belief that it is the problem
oriented analysis that should direct programming activities. This
gives rise to many practical decisions that must be made. First
of all, referring to the famous top-down versus bottom-up controv-
ersy, I find it helpful to do both, At the first NATO Software
Engineering Conference, Stan Gill argued that all implementation
was a mixture of top-down and bottom-up methods, but since the
religious wars broke out, such compromises have been forgotten.

I find it profitable to have different guiding principles when
doing the analytical (or top-down) part of the design and when
doing the synthetic (or bottom-up) part. In the analytical part, I
think as a user, that is, in terms of the problem, The gross
design and initial decisions seem to be done better if they are
not based on programming considerations, but on the basis of how
the program is to be used and what problem it has to solve. We
should not lose all programming aspects from the analytical reasoning,
though., I would like to do the problem analysis in such a way
that I have a chain of reasoning which has two basic properties.
The best way to describe these properties is by the mathematical
terms 'completeness' and 'consistency'. If we know how to make
the problem analysis in such a way that the solution remains
complete and consistent as development proceeds we would be much

closer to solving the basic problems of program construction.

233

I believe that we have some of the necessary tools in incomplete
specifications. Complete specifications never exist since a complete
specification would include the program text, the compiler text,
the operating system text, the engineering specifications of the
machine, the blood pressure of the operator and so on. All specifi-
cations are incomplete. I am not discussing all possible incomplete
specifications, but incomplete specifications such as Parnas' [1]
functional specification of a module (in terms of the observable
changes in the state vector), DeRemer and Krons' [2] hierarchical
decomposition and 'use' function, and Guttag and Hornings' [3]
syntactic (I/0 transformation), semantic (axioms of transformation)
and implementational constraints. Incomplete specifications are a
fact of life for managers, imposed by evolving specifications and
the 'staged payment contract'. These are variously viewed in the
profession as a curse and as a benefit. I hold the latter view.
Since fixed specifications are a myth, it is better to admit the
fact and follow the evolving specifications, which have obvious
user appeal. They equally appeal to the manager of the project who
is never more than one stage unfunded and can get the user 'hooked
on' the system gently, rather than hitting him on the head with
delivery of a complete system, which causes a natural rejection by
the user. Therefore, I suggest that incomplete specifications
should become a consciously applied tool in program development.
This presupposes bringing in the user at each stage of the design,
which is very unpleasant for our ego, since it is not any longer
the programmer who is in the driver's seat during the program design.
This is not the paradox it might seem because we should never program

for the sake of programming.

If this principle is consciously applied, we have corresponding
to the layers of program, layers of specification. These start
with the statement of the probiem which is successively decomposed
into a number of incomplete specifications. At each decomposition
stage I would try to obtain a proof of completeness and consistency
using the terms and relations of the level of specification reached.

An amazing amount of progress can be made by applying formal methods.

234

to informal objects. (It is a common misconception that one must
have formal objects to apply formal methods.) In the design of a
program we are translating from the user's, problem-oriented terms
to the program oriented terms. This transition is wvery difficult

unless you apply formal reasoning.

The design process is not program refinement, but the completion
"of the specification which invariably brings in extra-programming
knowledge. There is, of course, a limitation. If we have formal
reasoning with the objects treated formally, it is very difficult to
map the formal objects of one level into the formal objects at
lower levels. This difficulty is considerable if we treat formally
arbitrary objects. If we do that then the bringing together of
consecutive layers may prove to be rather difficult., I see a glimmer
of hope in the algebraic methods of describing programming objects

such as that developed by Guttag.

Recall that correctness is defined in terms of problems and
solutions. Now, the other highly abused term, 'reliability', is
defined in terms of objects and uses, rather than problems and
solutions. As soon as one realises this, one has no more doubts
that correctness and reliability are independent notions and they
do not in any way entail one another. You may also recall that in
programming terms correctness translates into the relation between
specifications and program texts, whereas reliability is the property
of a program in use. As long as we have just the program text, it
is rather meaningless to say whether it is reliable or unreliable,
except if we have uses for that text other than execution by such
an executing agent as the case may be. From this we conclude that
reliability cannot be established from analysis of program and
specifications texts alone. This is perhaps a very common and very
obvious statement. But, at least for my private use, I find it very
illuminating and instructive, and it saves me a lot of effort: I
don't read any attempts to establish the reliability of a piece of

program in its textual form. I have learned by hard experience not

235

to read any considerations of reliability based on the program text

alone,

Now, of course, 'reliability' is a very messy notion. To
someone whose natural language is not English, the notion of
reliability is extremely confusing. It appears by the properties of
English, that 'reliability' is the primitive notion and 'unreliability'
is the derivative notion. In some languages, Polish included, it
is the other way around. Somehow I think that ours is a more humble
mental attitude, and it helps us to understand that the primitive
notion is failure, and reliability is the lack of failure if you're

lucky:

I have many colleagues, especially at technical universities,
who believe that reliability is a statistical notion, and is a
number between O and 1. They take great delight in decomposing
objects and then attaching these numbers between O and 1 to the
'sub objects' obtained by decomposition. Then, they multiply these
numbers, obtaining successively smaller numbers. Somehow, I fail
to see the relevance of that sort of reasoning for our problem,
although this apparently charming approach is a good subject for
Ph.D, dissertations. The program can be decomposed into modules,
phe'modules into constituent parts, the constituent parts into
instructions, and the instructions into sequences of micro-
instructions. This goes down to the gate level and here, at last,
we reach the reliability as measured by technicians in numerical
terms. Since this is only a finite expansion, after only a finite
number of multiplications you will arrive at a numerical value of
the reliﬁbility of any piece of code (correct or incorrect). This
is a perfectly valid 'scientific' approach. However, an estimate
of program reliability obtained in this way will be too pessimistic
because of the tremendous number of components which may go wrong,
and yet would tell us nothing about the semantic aspects of failures.

For that reason I believe this is a totally wrong approach.

236

I always try to think of software failures as belonging to two
distinct classes. The first type is the failure of a program to
perform as specified. This may be caused, for example, by mismatched
data - data which is just slightly wrong and, if the specification
is vague enough, then one could argue that even with mismatched data
the program should perform in such and such a way. To the second
class belong failures to perform safely in unforseen circumstances.
Of course I am now committing the logical crime of replacing one
undefined term by another. You will be quite right in wondering what
I mean by 'safely'. However, I think that the use of the term
'safely' is a mental step forward because this term is so obviously
related to the user. Of course, very few programs physically blow
up the computer installation when executed. However, the user is
quite likely to describe what he considers is unsafe for him. A
violation of user safety is, for example, the destruction of master
files in a bank or in an insurance company: obliterating master
records is one thing your system should always avoid. Another example
is the destruction of data from a very expensive and unique experi-—
ment which you band to your assistant for processing. I just want
to stress that it is important to identify what is unsafe from the
user point of view., Our aim should be that under no circumstances
will a program that we deliver endanger the safety of the user.

This is a basic aspect of program reliability, as I see it.

How do you achieve program reliability? How do you eliminate
the failures from your system? Well, you don't - you cannot.
Nothing in this world (the world included) is perfect: even engineering
construction is not perfect, despite what some people say about
mechanical engineering feats and so on. A bridge in Vienna which
lasted since before the war, which stood through the bombing,
collapsed one night last month for no apparent reason. Nobody knows
where the bug was, and that wasn't even a mechanical censtruction -
it was a civil engineering construction., Since nothing is really
perfect; no program will ever be absolutely reliable, except when

it's specified to do nothing, in which case don't bother to switch

237

the computer on sc as to save electricity.

The techniques of defensive programming which provide alternate
courses of computation 1f something wrong is detected are an obvious,
although not necessarily economical, way out of the reliability
problems. It is difficult to say something interesting on recovery
blocks in Newcastle, but if you think in other terms about the
recovery block structure, you may discern that one uses the primary
block as the program aimed at achieving a desired result, whereas.
the alternatives are intended to be just acceptable. Now if we make
this distinction, then we have come across a totally new approach
to program design. Normally we are programming to achieve an objective
or a set of objectives. Sometimes it is advisable to be more humble,
and say ‘well if I can't get this or that, what are the things with
which I will be nevertheiess saptisfied or at least dissatisfied?'
Again, these things, 1n my opinion, should be stated at the very

beginning of the design stage.

Another aspect of relisgbility which has recently gained some
support amongst programmers is security, represented for instance by
capabilities (that's a nice misnomer, if I ever met one) in the
HYDRA project that Bill Wulf [47 is working on. Here you impose
restrictions not only on the things accessible, but also you admit
that the right to access may be a function of the execution process.
By deing this you enlarge the degree of safety control in your

program,

I will just briefly mention some less frequently considered
aspects of reliability. One of these is unreliability of software
which comes from poor user documentation. Insufficient user
documentation is an invitation to disaster. Another aspect of
unreliability which 1s not frequently discussed is the by-product
of ready-made software packages, which have been my personal enemy
ever since I started programming. T wasted a tremendous amount of
time by using pre-packaged universal solutions rather than designing

specific solutions from scratch, One time I was doing a lot of

ro
LY
(0 s]

numerical computations in astronomy which, of course, require many
trigonometric series expansions. I was using the simplest of the
packages: the sine and cosine routines, which calculated the sine
and cosine functions to the full precision of the computer, even
though I had only three digits worth of coefficients., I would have
been quite happy with three-digit accuracy which can be obtained
from a small table with simple interpolation; this speeds up the
program about fifteen times. That's not unreliability, but it
explains why I do not like packages. Packages are unreliable
because they are given to users who will seldom consider whether
it is applicable to use a given package or not., If you give the
user a numerical integration package, he will integrate strongly
discontinuous functions to his heart's content, and he will believe

the numbers that he gets because they came out of the computer.

At this point Professor I.C. Pyle raised a question over this

integration example. He wanted to know which definition of failure
did it satisfy? Professor Pyle was of the opinion that the program
had performed safely and it had performed as specified. He

suggested that it was not consistent with Professor Turski's
definition of reliability and that perhaps an even broader definition

of what was wanted from reliability is needed. Professor Turski

maintained that the program did not perform as specified because
the specification would probably mention that the package is not
to be used for strongly discontinuous functions and so these
specifications should be carried out in the program and therefore
an attempt to use the package for such application should result
in a rejection. Besides, producing a 'reasonably' looking, yet

meaningless output certainly endangers the user's safety.

n
W
O

Part 2

In the second part of this talk, I intend to cover only two
topics. One topic is the software programmer's inventiveness of
creativity. This is one of the biggest vices a programmer may have
in an industrial environment. I hasten to add that I consider
creativity to be one of the fundamental virtues we should instil in
a programmer when educating him. (That's a beautiful contradiction
which is just life itself.) lNow, what do I mean by a programmer's
creativity or inventiveness? In an industrial environment it is
a preoccupation with self-pcsed and self-feeding problems. It is
the programmer's arrogance to give preference to the programmer's
very own insignificant problems over the problems of his clients
and customers., I do admit that it might come from the very fast
development of our profession and that it might be partially due
to the fact that the programmer considers himself as the high priest
of new religion in the industrial environment and therefore, of
course, his occupation is the most important., However, we will be
much better off if the programmers who do the commercial programming
realise that they are performing a service, and this it is the

client's problems that are important.

A programmer who is inventive will take the client's problem
and spend six months thinking how this problem may be re-formulated
in order that a new programming technique may be applied. This
attitude has to be cured. Another effect of programmers' invent-
iveness is the blank rejection of imported software (which is
everything not done by the programmer and his colleagues). Speaking
now from under my managerial cap, the problem of 'a priori
rejection' of imported software is a part of the inventiveness
syndrome. Another symptom of this syndrome is all those 'wouldn't
it be nice if' programs. FEach programming establishment that I
know abounds in such programs which lack applications. A further
reflection of the programmer's creativity is his dislike of menial

maintenance jobs.

By this criticism of creativity and inventiveness I put
myself in an untenable position, so I hasten to add that I do see
the beauty of creativity. Now I can safely proceed to list the
cures for the programmer's inventiveness. Most of all, we must
teach problem oriented thinking. We must insist that our programmers
think in terms of the problems they are solving, not in terms of
the programming techniques they are applying. Another cure is to
let the programmer know the global objectives of the program he is
working on, even if he is doing only a small portion of it. He
will apply this knowledge in his attitude towards what he is doing.
For example, if he were working on a banking system then he would
raise an alarm if he discovered anything that could destroy the
master files. If he were just given a module to program he may

not react to things like that.

Thirdly, I am in favour of the technique of staff 'brain-
storming' sessions where all the people on a project gather period-
ically to have a burst of controlled inventiveness. The ideas are
frozen after the session is over. This session allows the programmer
to display his inventiveness among his peers (which is a very good
thing). In addition, it helps to bring the global objectives down

to the level of each programmer.

Yet another cure for arrogant inventiveness is persistent
documentation. The necessity of providing full documentation has a

curbing effect on the unbridled inventiveness.

Another managerial tool in which I happen to believe very
strongly is evolving specifications and staged payment contracts.
These blend the programmers and the users represented by managers
or others. I would like to mention Professor Barron's letter in
Computing (I believe in January) in which he insisted that staged
payment is the best protection against the incompetence of software
producers. I would like to add that it is also the best protection
that software developers have against the users who change their mind

twice a week. An additional technique which is clearly didactical

241

is to instil the responsibility for one's product.

I believe the dull jobs should be given to the best programmers
and the most attractive assignments should be given to the novices.
Giving a novice a maintenance job is one of the best ways of
encouraging the inventiveness that we have been talking about.

The immaturity of our profession shows in the dislike of the main-

tenance jobs.

The programmer's inventiveness should be taught in an academic
environment. Inventiveness is needed because we do face a great
many problems for which solutions have to be invented. How can you
teach inventiveness at university or in a programming course?
Uﬂfortunately it cannot be done by showing examples of somebody
else's inventions; however, it is useful because it helps the
person acquire a 'taste' for inventiveness. It is very difficult
to be creative without the appreciation of the beauty of other

people's programs.

Here are a few ideas which I think are useful in trying to
encourage the development of inventiveness. First of all, vaguely
specified problems from outside computer science should be given
very early in the course (even before standard techniques are
taught). Universities have an atrocious habit in giving problems
with terribly exact specifications. I believe this is wrong:
primarily because in real life the students will not meet such
specifications and secondly because such complete specification

is only just short of describing how to solve the problem,

Universities have the bad habit of extremely good researchers
giving courses, and a researcher giving a course on his subject
will, in general, explain his particular approach which is not
necessarily the only approach or even the best approach. Hence,
we should insist that critical surveys be presented with the

relative merits discussed.

242

All sorts of games and competitions in programming should be
encouraged during the programmer's education. For example, they
could be organised like Jim Horning's software huts which are great
fun and teach a lot. A technique which I like very much is to have
the students review other student's assignments. Creativity is
developed by requiring complete documentation but allowing consider-
able latitude in practice. For example, I do not say what 'complete’
means and then I ask the student to convince me that his document-

ation is in fact complete.

(Note: at this point time was running out for the session so
Professor Turski quickly showed his last two slides on buying

software. The following is a summary of his ideas on this subject,)

Existing software can be either inherited or purchased. In
either case it has to be maintained, adapted in the latter case,

and extended sooner or later.

1. Somebody must identify himself with an existing system, treat
it as his own, and be the 'in-house' expert. Invent a job to
achieve it (translate I/0 messages, diagnostics etc; balance

and tune: to preferred hardware/documents).
2. Never let it rust (purging from library).

3. Even if modifications are reasonably small try to re-edit user

documentation (periodically).
4, If possible, test for reliability by overloading.
5. Never let junior programmers maintain existing software.

6. Be cost-effective conscious: investment in existing software
and routines is large but not always worth maintaining forever,

A small revolution may be cheaper in the long run.

7. Carefully analyse alternatives.

243

Buying: 1. Turn-key contracts including evolving specifications,

staged payments.,

2. Insist on proper education including your programmers

in development team.

3. Insist on full access to documentation (you will not

get it, but observe where the line is drawn).
4. Buy problem solutions, not particular techniques!
When buying is advisable:

1. As a part and parcel of complete system delivery (not
a computer system, but e.g. a factory) if contract

specific on system goals.

2. For a well-defined application (preferably from a user,

or a copy of user's version).

3. VWhen standards of quality are reasonably well-

established (e.g. a compiler).
When buying is inadvisable:

1. When the documentation is clearly insufficient to permit
in-house modifications and the software is for an

evolving problem (examples: data bases, telecomputing).

2. Very general packages (they are unreliable).

Discussion

Professor I.C. Pyle opened the discussion by inquiring what

Professor Turski meant by a 'very general' package? He maintained
that packages and libraries were very useful and cited SPSS and the

NAG library as examples. Professor Turski responded that by 'very

general' he meant a package which was aimed at a totality of
problems, You would just give the problem to the package, and it

would decide what to do next. Professor Pyle asked for an illustr-

ation, whereupon Professor E.S. Page stated that there were quite

a number of general statistical packages which provide a negative

244

estimate of variance for suitably chosen input data and users are
not warned about the choice of input data. At this point
Miss E.D. Barraclough came to the defence of Professor Turski,

She thought he meant that if the package does too much for one,
then the user doesn't have to understand what he is doing, but that
if the package does too little then the user has got to understand

it before he can use it. Professor Turski agreed that this was

indeed a clear statement of what he had meant.

References

[1] Parnas, D.L. A technique for software module specifications

with examples. CACM 15 No. 5 (May 1972).

(27 DeRemer, F., Kron, H. Programming-in-the-large versus
programming-in-the-small. Proc, of the International Conf.
on Reliable Software April, 1975.

[37 Guttag, J.V. The specification and application to programming
of abstraet data types. (Ph.D. thesis). U. of Toronto,
Department of Computer Science, 1975.

[47 Wulf, W.A. Reliable hardware-software architecture. Proc.
of the International Conf. on Reliable Software, April, 1975.

245

¥

