MULTI-PROCESSING SYSTEMS

Professor B. W. Arden

Computing Center,
University of Michigan,
North University Building,
Ann Arbor,
Michigan, 48104,

Abstract:

This paper outlines the computing system available at the
University of Michigan concentrating primarily on the M.T.S.
hardware and software structure and the measurement of system
performance. In this context the computer science courses
offered at Michigan are described in some detail.

Rapporteurs:

Mrs, N, Newman
Mr, J. S, Clowes

Introduction

Professor Arden began by saving that he felt it would be meaning-
less to talk about the teaching of systems design in Michigan without
describing briefly the environment in which the teaching took place. ile
therefore proposed to outline the computing system available at Michigen,
and to go on to talk about the educational process, which was closely
connected with the system environment.

—-—=Historical Development

The system in use at Michigan is commonly known by the name of
one of its sub=-systems, the Michigan Terminal System. The Michigan System
involves the use of a multi-processing supervisor controlling a number of
sub-systems, and currently operates on a two-processor I,B.M. 360/67 computer.
The use of multi-processing came about for two main reasons; firstly at the
time when it was introduced at Michigan it seemed likely that the development
of single-processor systems was nearing a technological barrier, and secondly
there are considerable advantages in centralization, notably increased relia-
bility, the sharing of data and programs, possibilities of load adjustment
and improvements in facilities for system development.

Up to 1964 Michigan had had a series of I.B.M. machines, a 650, a
704 and then a 7090, all of which were sequential buffered I/0 systems of
increasing complexity. In that year Michigan's users gave the University a
mandate to install a multi-processing, multi-programming system with batch
and terminal support. After discussions with manufacturers it was decided
to buy an unsupported I.B.M. machine, the 360/66M, which eventually became
the Model 67. It was originally hoped that a suitable system for meeting
Michigan's commitments would be available for the 360. When it became
apparent that this would not be the case, work was started on the development
of a terminal system derived from a small program written at Lincoln Labor-
atories for multi-programming of I/0 units and graphical I/0 devices. This
system, not originally intended for the 360/67, was developed for this purpose
and in mid-1966 it was extended to include a file handling, command and account-
ing sub-system for terminal support, the Michigan Terminal System. To begin
with this system operated with real memory, and had a maximum capacity of eight
to ten terminals. Late in 1966 the change was made to virtual memory and
paging drum management was added. This immediately resulted in an improvement

to 25-30 terminals.

-——M,T.S5., Hardware Structure

The structure is svmmetric, in that all the I/0 devices, disk
drives, etc. can be linked to a single processor by means of configuration
switches. A diagrammatic representation of the M.T.S. hardware structure

is pgiven in Figure 1,

-==-M.T.S, Software Structure

The software structure consists of a resident multi-programming
supervisor, which controls a system of jobs which are instances (usually
multiple) of job programs currently being multi-programmed. lixamples of
job programs are M.T.S. itself with its file, command and accounting
facilities; wunit check recovery routines; disk file support routines;
terminal support routines; the paging drum processor; the monitoring
statistics ccllection routine; +the batch job scheduler and unit operation
routines. These programs are normally re-entrant. Currently, the super-
visor and job programs occupy segment zero ol the virtual address range,
whereas user programs occupy segment one. Scheduling is basically
sequential with two exceptions; jobs returning from I/(operations are
given preference in the CPU queue, and the jobs with an excessive page
requirement receive special treatment, so that, where a job needs, for
example, more than 48 pages, its time slice in each cycle is increased and

only three such jobs are given a time-slice in each cycle.

A diagrammatic representation of the M.T.S. software structure is

given in Figure 2.

e e

—pe—ere

by

DIAGRAMMATIC REPRESENTATION OF M.T.S. SOFTWARE

STRUCTURE

Job list table;

This contains an inventory of resident program with lettering require-

ments etc.

Device List:
This contains an inventory of devices

Saved 1/0 Queue:

This takes care of the ‘pushing down’ of 1/0 requests because e.g. of

recovery from errors.

' HASP ,

ENTRIES

SEGMENT

it

PAGING

FILE AND DEVICE

JOB STORAGE INCL.

CONTROL

SUB STORAGE CONTROL

FILE/DEVICE |:;L-—-
LOGICAL
USAGE BLOCK DEVICE

TABLE

\

FILE
CONTROL
BLOCK] | N

RECORD

INDEX

and SVCs

UMMPS

y

QUEUES

RETURNS VIA PROCESSOR ASSIGNMENT
ALGORITHM

PHOCESSOR,DEVICEQV/AND STORAGE MANAGEMENT TABLES

MTS
DEVICE TABLE

JOB LIST
TABLE

JOB TABLE (CONTAINS STATE OF JOB)

PAGE CONTROL
BLOCKS

CURRENT
. DEVICE DEVICE
b TABLE LIST

7
QUEUE
STRUCTURE
IS HELD AS
A LINKED
LIST

JOB JOB WAIT 1/0

CPU Q Q QUEUE 1/0 Q

SAVED

SYSTEM CPU Q
(NEXT JOB TABLE)

Figure 2

Performance Measurement

Professor Arden believed that it was essential that any complicated
system should have facilities for monitoring its performance. Data collected
by monitoring a system while it is running enables one to assess the efficiency
of different parts of the system and thus to identify areas which require
further development. Analysis of such data is also an important and education-
ally useful student activity.

Two monitors are in use at Michigan collecting information from
different levels of activity of the system.

—==The Job=level monitor

This monitor provides information about jobs, its software is an
integral part of the M.T.S. system and it is always active. Data recorded by
this monitor forms the basis for the accounting system. Items recorded for
each job include:

CPU time;

Elapsed time;

CPU space-time;
Waiting space-time;
File storage.

The meaning of the terms CPU space-time and waiting space-time is best
explained by reference to figure 3, which shows a plot of the virtual storage

assigned to some job at each instant of time during its period of activity.
0

virtual
storage

(pages) /V

s

1
e !
i

P L [

—
time (minutes or hours)

CPU active Job waiting

Figure 3. To illustrate space=time measure.

The area under the graph is the total space-time measure for the job, While
the job is active there will be periods during which the CPU is actually

executing the job, such periods are hatched in the diagram. During the rest
of the time the job will be waiting for some reason. The sum of the areas
of the hatched portions of the diagram is the CPU space-time measure for the

job, the area of the remaining portions is the waiting space-time measure.

10

-==The Event Recording Monitor

The second monitor operates at a lower level in the system and

records events, such as, when a job is assigned a CPU, or, when a job
joins one of the queues internal to the M.T.S. system. This monitor is
implemented as a job program and is activated when required, like any
other job program. The data collected is used for fine tuning of the
system.

—-—=Ixamples of the use of monitor information

As an example of an application of the second monitor Professor
Arden described its use to record a history of interrupts during a period
of 15 hours continuous running of the system. In this time there were
approximately 19x10%interrupts (including SVC's) evenly distributed
between the two CPU's. Analysis of the data yielded the following
statistics:

Breakdown of interrupts by type.

External (i.e. timer) 5%
Ssve TC%
Program (e.g. overflow) 3%
/0 22%

{Each I/0 interrupt is matched by an SVC which iz included
in the 70%)

average time per interrupt 775 micro=-seconds

average number of interrupts per second370

average time between interrupts 2.7 milli-seconds

CPU utilization (averaged) 44%

Professor Arden remarked that, since the proportion of timer
interrupts was so small and the average time between interrupts was also
small, one might be led by these results to consider whether time-slicing
hardware was really necessary. Instead, one might compute the time for
vhich a job had been running whenever any interrupt occurred. Such a
technique would only be effective for suitable hardware configurations
(more than two CPU's would be required) and an appropriate mix of jobs,
but this was an example of the way in which performance measurement could
suggest developments in system design.

As an example of the use of the job-level monitor for performance
snalysis, Professor Arden presented a load point analysis of the Michigan
System. The data base in this case was the output of the monitor for all
jobs run in a period of one month, a total of about 56,000 jobs with a
retio of batch to terminal jobs of 2:1, The hardware configuration was

two CPU's and 300 pages of core available to the jobs (the remaining 84

11

- = e —————

pages were used by the system programs). From the data collected the

following means were computed:

Mean: Batch: Terminal:
CPU time - 0.5 min. 0.5 min.
Holding time (admit-complete) 2 min. 14 min,
Wait space-time (page mins.) 55 208
CPU space-time (page mins.) 18 12
Storage (derived) ~36 ~16

These figures were used to obtain the CPU saturation line and the paging

line shown in figure 4,

8 .
ET\\\R
, C saturation line.
number of ;
batch jobs | 3
! \?aging line
P -
2)» T
H + i \\‘ L
9 19 56

number of terminal jobs

Figure 4. Load point analysis.

In figure 4, the number of terminal jobs is plotted as abscissa and
the number of active batch jobs as ordinate. Since an average batch job
requires 0.5 mins. of CPU time and is active for two minutes, two CPU's could
handle eight batch jobs if there were no terminal jobs present. This gives
the intercept of the CPU saturation line on the batch job axis. The inter-
cept on the terminal job axis is computed similarly and hence the CPU
saturation line. The paging line is obtained in an analogous manner,
remembering that there are 300 pages of core available. Its significance
is that no paging is necessary for any combination of average batch and term-
inal jobs represented by a point below this line.

The average load, obtained by considering the measured load to be
distributed uniformly over all days of the month, is approximately two batch
and nine terminal jobs. This load, represented by P, lies well below both
the paging and CPU saturation lines, In practice the load varies with time
and the actual load point makes excursions within some region determined by

the loading algorithm.

12

L e i

s

If the load consisted of the maximum number of 56 terminal jobs
approximately 900 pages of store would be required, giving a ratio of
virtual to real store of 3:1. Loads corresponding to other points on the
CPU saturation line require lower paging ratios. Other experiments
indicate that the system can run with such a paging ratio without signif-
icant degradation. Thus the 44% CPU utilization observed during the
previously described experiment suggests that the system was underloaded.
-—=Bench Mark Tests

Another method of examining system performance is by bench mark

runs. Professor Arden presented the results of eight test runs involving
15 standard Fortran programs using different compilers and different system
configurations. The results of these tests and specifications of the
system configurations used are given in Table 1 together with Professor
Arden’s comments. The threshold and decrement referred to in runs five and
six are scheduling algorithm parameters. If the store requirement of a job
exceeds the threshold then it becomes a candidate for consideration as a
‘privileged’ job receiving larger time slices; as additional larger page-
demand jobs are encountered, the threshold is reduced by the decrement.

Computer Science Education at Michigan

The University of Michigan has two degree programmes involving
computer science. One of these, entitled Computer, Information and Control
Engineering,.is run by an engineering department, the other is the responsib-
ility of Professor Arden’s own Department of Computer and Communication
Sciences (CCS).

As its name implies, the interests of the CCS faculty are not
confined to what may strictly be called computer science. Principle subject
areas are:

1. Computing (primarily systems design).

2, Automata Theory.

3. Linguistics (formal and natural).

4, Natural Systems (the main interest here is in modelling,

e.g. there are physiologists concerned

with cell models).
Students intending to major in CCS take courses in all these areas as a 'core'
syllabus; however, Professor Arden described only the 'computing’ courses.,
Although some of the courses offered by the CCS department include instruction
in numerical methods, formal numerical analysis courses are given by the

Mathematics Department.

13

TABLE I

Results of Fortran bench Mark run in M.T.S.

Description CPU Elapsed Drum Cost Total % Billable
of run Time Time Reads Time CPU Time.
1. 1=15 H, 1339.,659 4269.424 9026 146,60 783 85.6
4 CB, 2 CPU
2., 1-10 G, 11=-15 H 1189,989 3279.848 814 118,97 666 89.3
6 CB, 2 CPU
3. 1=8, 10 G 1123.349 3238.326 1104 116.97 629 89.3
6 CB, 2 CPU
4, 1=8, 10 G 1094.129 6152.908 1044 114,28 1180 92T
6 CB, 1 CPU
5. 1-8, 10 G 1085.572 6577.185 25358 114,65 1319 82.3
3 CB, 1 CPU
Threshold = 48,
Decrement = 16,
6. 1=8, 10 G 1065.555 6183,435 12088 111.92 1190 89.5
3 CB, 1 CPU
Threshold = 16,
Decrement = 0.
Te 1:2;3,5;6,T,10 920.346 2131.782 1690 100.60 948 96.4

in Watfor, rest H,
4 CB, 1 CPU, 3 streams

8. 1,2,3,5,6,7,10 996.365 2570.124 1920 107.29 540 92.2
in Watfor; 4,8 in G;
9,11=15 in H;
2 CPU, 6 CB, 9 streams,

Comments:

1. Tests 1 to 6 were run with two input streams. H stands for the FORTRAN H
compiler, G for FORTRAN G.

2, Comparison of 3 and 4 indicates an interference between CPU's of at most
2.5%.

3. Since all jobs were small by current standards (<100k), the benefits of
pooling storage between multiple CPU's did not appear strongly.

4. Comparison of 4 and 6 shows that the size of main storage is not a critical
factor, since all jobs are small,

5. Comparison of 5 and 6 shows the critical importance of the parameters that
control the paging algorithm.

6. Comparison of 4 and 6 shows that neither the cost nor the total time needs
to increase when paging increases. Paging can be completely overlapped,
even for this small set of jobs.

7. Tests 1 through 4 were run with 2 drums, the rest with 1 drum.

14

-==Courses in Compnter Science offered by CCS

The following two courses CCS 273 and CCS 274 are intended to provide
an introduction to computing for second year undergraduates.

CCS 273. Elementary Numerical Computing 3 hours per week,

A course in calculus is a pre-requisite for this. Students are
taught to program in FORTRAN and some elementary numerical
methods., Exercises involve writing programs to solve numerical
problems.

CCS 274. Illementary Computer Methods 3 hours per week.

A knowledge of mathematics is not a pre-requisite for this course
which is primarily a service course for students from areas where
formal mathematics is not heavily used. At least one procedure-~
oriented language (usually FORTRAN) is taught and through this
students are introduced to algorithms, programs, subroutines,
various data structures and some elementary statistical and symbol
manipulation techniques. Ilxercises run on the computer involve
searching, sorting and file handling. A special purpose language
usually SNOBOL) is introduced and students learn to use terminal
facilities through some language such as PIL, BASIC or SPC (a
subset of PL/1).
The two courses CCS 473 and CCS 475, are designed for senior under-
graduates or first year graduate students.

CCS 473. Introduction to Digital Computing 3 hours per week.

This course serves both as an introductory course to the computing
area and also as a terminal course for students interested only in
specific applications. Some mathematics is assumed (first year
college calculus) but no computing.

Students learn at least three high-level languages. Assembly
language is introduced but students are not required to do programs
in this language although they are examined on the material
presented.

A major portion of the lecture time is devoted to numerical
techniques. Beginning with a consideration of round-off errors
and the effect of approximate arithmetic operations, methods for
function approximation are introduced and this leads on to quad-
rature and integration of differential equations. This last topic
is of particular importance to students interested in modelling

natural systems.

15

The remainder of the lecture material is devoted to non-
numerical aspects. Topics covered here include symbol
manipulation, tree structures and sentence parsing. Recent
problems include parsing, line justification, maze traversing
and flow chart production.

The practical work of the course consists of four or five
problems, at least two of them are numerical and at least one
non-numerical.

CCS 475 Digital Computers and Computation 3 hours per week.

This course is intended only for CCS students, prerequisites are:
course 274 or 273 and one year of college calculus. The course
has two main objectives. One is to broaden the student's know-
ledge in the computer science area, the other is to draw together
material presented in more formal CCS courses (Automata Theory,
Linguistics etec.) and relate it to practical aspects of computing.
The first purpose is accomplished by having the students
implement a variety of algorithms using several different programming
languages. These exercises are intended to illustrate the following
topics:

Recursive formulation

Logical operations

String processing

Symbol manipulation

Simulation of a machine

Function approximation

Integration of differential equations

The second objective is achieved mainly through appropriate choice
of example problems.
Examples

1. In the lecture course a simple minimal machine, called
a k-machine, is introduced. This is equivalent to a
Wang machine. Students are required to simulate this
and to write and run programs for it.

2. The relationship between string manipulation algorithms
and Markov normal algorithms is covered. Students are
required to do an exercise in theorem proving.

The two courses CCS 573 and CCS 673, are for fifth and sixth year
postgraduate students. Students taking these courses usually intend to take

employment in the computer science field and are seeking experience of system

16

programming. These courses occupy about one third of a student's time.

CCS 573

Automatic Programming

Students taking this course must previously have taken either
course 473 or 475. The object of the course is to introduce
students to systems program construction as distinct from
application programming. As course work they are required
to write and develop typical systems program components in
assembly language. The content of the course varies as
equipment changes and techniques evolve; the current course
includes the following topics:
1. Machine Organization and Assembly Language.
Functional machine description (System 360);
Data types and storage representations;
Instruction types and assembly format;
and Assembler Language.
2. Data and Storage Structures.
Distinction between data and storage structures;
Standard compiler structures;
Accessing techniques;
Allocation time;
Access tables;
Types of references;
Storage management;
and Comparison of list processing languages.
3. Compiler techniques.
General word problem;
Trees and stacks as natural elements;
Parsing and roll back;
Functional compiler structure;
Formal definitions;
Language types;
Specialized grammars;
Grammar transformationj
and Optimization algorithms,
4, Internal M.T.S.
Problems set to students require then to write macros and, for
example, the parsing part of a compiler and a storage management

routine.

17

T — — — e - —————

CCS 673

Advanced System Programming

This is effectively a continuation of the previous course into the
hardware dependent level and covers such topics as, dynamic storage
allocation and relocation, interaction between central and
peripheral units, design of system debugging and measurement tools
and the design of new sub-systems capable of operating under or in
parallel with the current system. Additionally, the course is
intended to give students experience in functioning as part of a
group in the specification and implementation of a substantial sub-
system, including not only the programming aspect but also the
management of the group itself.

These two objectives are achieved by getting the class to
implement a group project. In order to keep the task of super—
vising the group within manageable proportions the class is limited
to about 20 students. Some formal lectures on relevant parts of
the system are given during the first two or three weeks of the
term and during this time the students select their project. There-
after, the function of the responsible faculty member is to act as
advisor to the class, and to ensure that continuous progress is made
with the project and that group objectives remain reasonable.

The students themselves choose the subject of their project.
Usually, the staff suggest two or three possible subjects but the
students may suggest other subjects as they wish. To date, CCS 673
has been presented twice and the projects chosen were MOMS (Michigan
On-line Mathematical System) and BASIC II. MOMS is a display driven
graphical mathematics system similar to the Culler-Fried system and
BASIC II is the BASIC terminal system. BASIC II was implemented
and debugged under M.T.S. but the final product runs external and
in parallel with M.T.S.

When the project has been chosen the class draw up a precise
system specification. After this specification has received the
approval of the staff the class partitions the project into sub-
projects with specification of interfaces and common internal tables.
The class is then broken into sub-groups and each sub-group assigned
a sub-=project. The projects mentioned above were broken down into
components as follows:

MOMS
Numerical routines
Command scanning

Sub=routine definition

18

Light pen processing

Display buffer pushdown and management

Initialization

BASIC II

Lexical scan to postfix

Symbol table

Command Language

File routines

Interface to system

Numerical routines

Compiler

System de-bugging

User de-bugging

In addition to the groups assigned to specific sub-projects
there is also a group responsible for the integration of these
components into a complete system, A work-book is maintained in
which the current status, and specification, of each sub=project
is recorded. Usually, the integration group is responsible for
the accuracy of this book.
At the end of the course each group must submit full document-

ation and current source decks for its components. Each student
must also submit answers to a set of questions which ensure that

he understands not only his own component but also the total system.

19

