
Abstract: 

MULTI-PROCESSING SYSTEMS 

Professor B. W. Arden 

Computing Center, 
University of Michigan, 

North University Building, 
Ann Arbor, 

Michigan, 48104. 

U~!VERSiTY CF 

r9~,:mJN9 

l.1S';'4TUllY 

.f;W/;''ASTlfUPOM r\~\ 

'fhis ,paper outlines the computing system available at the 
University of Michigan concentrating primarily on the M.T.S. 
hardware and software structu're and the measurement of system 
performance. In this context the computer science courses 
offered at Michigan are described in some detail. 

napporteurs: 

Mrs. N. Newman 
Mr. J. S. Clowes 

* 





Introduction 

Professor Al'den began by saying that he felt it would be meaning­

less to talk about the teaching of systems design in Hichigan without 

describing briefly the environment .in which the teaching took place. a" 
therefore proposed to outline the computing l!I~stem available at Hichigal\, 

and to go on to talk about the educational process, which was closely 

connected with the system environment. 

---Historical Development 

The system in ll S~ a.t Mi chigan is commonly known by the name of 

one of its sub-systems, the Michigan Tenninal System . The Michigan System 

involves the use of a multi- processing supervisor controlling a number of 

sub-systems, and currently operates on a two-processor I .B.M . 360/67 computer. 

The use of multi-processing came about for two main reasons; firstly at the 

time when it was introduced at Michigan it seemed like ly that the development 

of single-processor systems was nearing a t echnological barrier, and secondly 

there are considerable advantages in centralization, notably increased relia­

bility, the sharing of data and programs, possibilities of load adjustment 

and improvement s in facilities for system development. 

Up to 1964 Michigan had had a series of I .B.M. machines, a 650, a 

704 and then a 7090, all of which were sequential buffered I/O systems of 

increasing complexity. In that year Michigan's users gave the University a 

mandate to install a multi-processing, multi-programming system with batch 

and tenninal support. After discussions with manufacturers it was decided 

to buy an unsupported I.B.M. machine, the 360/66M, which eventually became 

the Model 67. It was originally hoped that a suitable system for meeting 

Michigan's commitments would be available for the 360. When it became 

apparent that this would not be the case, work was started on the development 

of a terminal system derived from a small program written at Lincoln Labor­

atories for multi-programming of I/O units and graphical I/O devices. This 

system, not originally intended for the 360/67, was developed for this purpose 

and in mid- 1966 it was extended to include a file handling, command and account-

ing SUb-system for terminal support, the Michigan Terminal System . To begin 

with this system operated with real memory, and had a maximum capacity of eight 

to ten terminals . Late in 1966 the change was made to virtual memory and 

paging drum management was added. 

to 25-30 terminals. 

This immediately resulted in an improvement 

5 



r 

--II. T. 8. lIA.r<.lware Struc t ure 

The structure is symmetric, in that all the I /O de';i " es, disk 

dri ves, etc. can be linked to a singlf' processor by means of configuration 

switchns. A diagrammatic representation of the H.T.S. hardware structure 

is given in Figure 1 . 

---H.T.S. Software ~tructure 

The software strur.ture consists of a. resident multi-programming 

supervisor, 1fhi t..: h controls a system of jobs which nrc instances (usually 

mul t iple) of job programs currently being multi-prngrammed. I';xamples of 

,;ob programs a re H.T.S. itself with its file, command and accounting 

facilities; unit cheek recovery routines; disk filp support routines; 

terminal support routines; the paging drum processor; the monitoring 

stutistics cr,llection routille; the batch job schoduler and unit operation 

routines. 'fhese programs ar(~ normnlly re-entrnnt. Currently, the super-

visor and job programs occupy segment zp.rn or the virtual address range, 

whe r eas user programs occupy segment o n ~. Sch edu ling is basi cally 

sequential with two excp.ption s ; jobs returrdn g f r om I/L operations are 

given prefer(~nce i n the CPU queue, and the johs with an excessive puge 

requirement r ece ive special treatment, so that, where a job needs, for 

example, more than 48 pA.ges, its time slice i n each cycle is increased and 

only three such jobs are given n time-slice in each cyclH. 

A diagrammatic ropresentntion of the N.T. S. software structure is 

given ill Figure 2. 

8 



DIAGRAMMAT IC REPRESENTATION OF M.T.S. SOFTWARE 
ST RUCTURE FILE AND DE V ICE 

JOB STORAGE INCL. CONTROL 

Job list table; SUB STORAGE CONTRO L 

Th is conta ins an inventory of resident program with lettering requ ire' 
ments et c. 

Device List : 
This conta ins an inventory of devices 

Saved I/ O Queue: 
This takes care of the 'pushing down' of I/O requests because e.g. of 
recovery f rom errors. 

SEGMENT 
a 

PAGING 
OUEUES 

HASP 

UMMPS 

SEG, 

RETURNS VIA PROCESSOR ASSIGNMENT 
ALGORITHM 

PROCESSOR,DEV ICE AND STORAGE MANAGEMENT TABLES 

FILE /DEV ICE 
SAGE BLOCK 

roM 
LOGICA L 

E OEVIC 
TABLE 

1 FILE I 

MTS 
DEVICE TABLE 

JOB TABLE (CONTAINS STATE OF JOBI 
JOB LI ST 
'tA BLE 

PAGE CONTROL 
SLaCKS 

SYSTEM CPU 0 
(NEXT JOB TABLEI 

Figure 2 

CURRENT 
DEV ICE 
TABLE 

DEVICE 
LIST 

F===l~ 
'J,t 

I / O 
OUEUE 

SAVED 
1/00 

OUEUE 
STRUCTURE 
IS HELD AS 
A LINKED 
LIST 



Performance Measurement 

Professor Arden believed that it was essential that any complicated 

system should have facilities for monitoring its performance. Data collected 

by monitoring a system while it is running enabl es one to assess the effic i ency 

of different parts of the system and thus to identify areas which require 

further development. Analysis of su ch data is a l so an important and education-

ally useful student activity. 

Two monitors are in us e at Mi chi gan coll ec ting information from 

different levels of activity of the system. 

---The Job-level monitor 

Thi s monitor provides information about jobs, its software is an 

int egral part of the H.T. S. system and it is always act i ve. Data recorded by 

this monitor forms the basis for the accounting system. 

each job include: 

CPU time; 

Elapsed time; 

CPU space-time; 

Wait ing space-time; 

File storage. 

Items recorded for 

The meaning of the t erms CPU s pace-time and waiting space-t ime is best 

explained by referenc e to f igure 3, which shows a plot of the virtual storage 

ass i gned to some job at each instant of time during its period of activity. 

virtual 
storage 
(pages) 

CPU active 

Figure 3. To illustrate space-time measure. 

time (minutes or hours) 

The a rea under the graph is the total space-time measure for the job. Whil e 

the job is active there will be p eriods during whi ch the CPU is actually 

executing the job, such periods are hatched in the diagram. During the rest 

of the time the job will be waiting for some reason. Th e sum of the areas 

of the hatched portions of the diagram is the CPU space-time measure for the 

job, the area of the remaining portions is the waiting space-time measure. 

10 



---!~~~ecording Monitor 

The second monitor operates at a lower level in the system and 

recor ds events, such as, when a job is assigned a CPU, or, when a job 

joins one of the queues internal to the M. T. S. system. This ",onitor is 

implemented as a job program and is activated when required, like any 

other job program. The data collected iii' used. for fine tuning of the 

system. 

---.Examples of the use of monitor information 

As an example of an application of the 3econd monitor Professor 

Arden described its use to record a history of interrupts during a period 

of 15 hours continuous running of the system. In this time there were 

approximately 19x1()6 interrupts (including SVC I s) evenly distributed 

between the two CPU' s. Analysis of the data yielded the following 

statistics, 

Breakdown of interrupts by type. 

External (i.e . timer) 

SVC 

Program (e.g. overflow) 

~/'0 

5% 

70% 

3% 

22% 
(Each I/O interrupt is match9d by an SVC which is included 

in the 70%) 

average time per interrupt 775 micro-seconds 

average number of interrupts per second370 

average time bet.ween interrupt.s 

CPU utilization (averaged) 

2.7 milli-seconds 

44% 

Professor Arden remarked that, since the proportion of timer 

interrupt.s was so small and the average time between interrupts was also 

small, one might be led by these results to consider whether time-slicing 

hardware was really necessary . Instead, one might compute the time f'lr 

which a job had been running whenever any interrupt occurred. Such a 

technique would only be effective for suitable hardware configurations 

(more than two CPU's would be required) and an appropriate lIix of jobs, 

bu'o this was an example of the way in which performance measurement could 

suggest developments in system design. 

As an example of the use of the job-level monitor for perf'lrmance 

a.1l.e.lysis, ProfesGor Arden presented a load point analysis of the Michigan 

System. The data base in this case was the output of the monitor for all 

jobs run in a period of one month, a total of about 56,000 jobs with a 

r e,tio of batch to terminal jobs of 2: 1. The hardware configura-tion was 

two CPU' s and 300 pages of core available to the jobs (the remaining 84 

11 



pages were us ed by the sys t em programs). 

followinr, means were comput ed: 

From the data co ll ected the 

Mean : 

CPU time 

Holding t i me (admit-complete) 

Wait space-t ime (page mins.) 

CPU space-time (page mins.) 

Storage (derived) 

Batch: 

0.5 min. 

2 min. 

55 

18 

-)6 

Terminal: 

0.5 min. 

14 min. 

208 

12 

_16 

These figur es were used to obtain the CPU saturation line and the paging 

line shown in figure 4. 

8 

C saturat i on line. 
number of ' 
batch jobs 

\ raging line , 

2t 
P 

" -
-, 

I I 

9 19 

number of terminal jobs 

Figure 4. Load point analysis. 

" 
'''-- I ~ 

56 

In figure 4, the number of terminal jobs is plotted a s abscissa and 

the number of active batch jobs as ordinate. Since an average batch job 

requirp.s 0.1) mins. of CPU time and is act ive for two minutes, two CPU's eould 

handl e e i ght batch jobs i f there wer e no terminal jobs present. 

the intercept of the CPU saturation line on the batch job axis. 

This give s 

The inter-

cept on the terminal job axis is computed similarly and hence the CPU 

saturation line . The paging line is obtained in an analogous manner, 

r emembering that there are )00 pages of core available. Its signifi cance 

is that no paging is necessary fo~ any combination of average batch and term­

inal jobs r epresented by a point be low this line . 

The average load, obtained by considering the measured load to be 

distributed uniformly ove r all days of the month, is approximately two batch 

and nine terminal jobs. This load, represent ed by P, lies well below both 

the paging and CPU saturation lines. In practice the load va ries with time 

and the actual load point makes excursions within some region determined by 

the loading algorithm. 

12 



If the load consisted of the maximum number of 56 terminal jobs 

approximately 900 pages of store would be required, giving a ratio of 

virtual to real store of 3:1. Loads corresponding to other points on the 

CPU saturation line require lower paging ratios. Other experiments 

indicate that the system can run with such a paging ratio without signif-

icant degradation. Thus the 44% CPU utilization observed during the 

previously described experiment suggests that the system was underloaded. 

---Bench Mark Tests 

Another method of examining system performance is by bench mark 

runs. Professor Arden presented the results of eight test runs involving 

15 standard Fortran programs using different compilers and different system 

configurations. The results of these tests and specifications of the 

system configurations used are given in Table 1 together with Professor 

Arden's comments. The threshold and decrement referred to in runs five and 

six are scheduling algorithm parameters . If the store requirement of a job 

exceeds the threshold then it becomes a candidate for consideration as a 

'privileged' job receiving larger time slices; as additional larger page­

demand jobs are encountered, the threshold is reduced by the decrement. 

Computer Science Education at ~lichigan 

The University of Michigan has two degree programmes involving 

computer science . One of these, entitled Computer, Information and Control 

Engineering, is run by an engineering department, the other is the responsib­

ility of Professor Arden ' s own Department of Computer and Communication 

Sciences (CCS) . 

As its name implies, the interests of the CCS faculty are not 

confined to what may strictly be called computer science. Principle subject 

areas are: 

1 . Computing (primarily systems design). 

2. Automata Theory. 

3. Linguistics (formal and natural). 

4. Natural Systems (the main interest here is in modelling, 

e.g. there are physiologists concerned 

with cell models) . 

Students intending to major in CCS take courses in all these areas as a 'core' 

syllabus; however, Professor Arden described only the 'computing ' courses. 

Although some of the courses offered by the CCS department include instruction 

in numerical methods, formal numerical analysis courses are given by the 

Mathematics Department. 

13 



TABU, I 

Results of Fortran bench Mark run 

DescriEtion CPU ElaEsed 
of run Time Time 

1 • 1-15 H, 1339.659 4269.424 
4 CB, 2 CPU 

2. 1-10 G, 11 -15 H 11 89.989 3219.848 
6 Cll, 2 CPU 

3. 1-8, 10 G 1123. 349 3238.326 
6 CB, 2 CPU 

4. 1-8, 10 G 1094.129 6152 .908 
6 Cll, 1 CPU 

5. 1-8, 10 G 1085.572 6511.185 
3 CB, 1 CPU 
Threshold = 48, 
Decrement = 16. 

6. 1-8, 10 G 1065 . 555 6183.435 
3 Cll, 1 CPU 
Threshold = 16, 
Decrement = O. 

1. 1,2,3, 5,6,1 ,10 920.346 2131.182 
in Watfor, rest H, 
4 CB, 1 CPU, 3 streams 

8. 1,2,3,5,6,1,10 996.365 2510.124 
in Watfor; 4,8 in G; 
9,11-15 in H; 
2 CPU, 6 CB, 9 streams. 

Comments: 

1. Tests 1 to 6 were run with two input streams. 
compiler, G for FORTRAN G. 

in H.T.S. 

Drum Cost Total ~ Billable 
Reads Time CPU Time. 

9026 146 . 60 183 85.6 

814 11 8.91 666 89 .3 

1104 116.91 629 89.3 

1044 114.28 1180 92.1 

25358 114.65 1319 82. 3 

12088 111. 92 1190 89 . 5 

1690 100.60 948 96.4 

1920 101.29 540 92.2 

H stands for the FORTRAN H 

2. Comparison of 3 and 4 indicates an interference between CPU's of at most 
2.5%. 

3. Since all jobs were small by current standards «100k), the benefits of 
pooling storage between multiple CPU's did not appear strongly. 

4. Comparison of 4 and 6 shows that the size of main storage is not a critical 
factor, since all jobs are small. 

5. Comparison of 5 and 6 shows the critical importance of the parameters that 
control the paging algorithm. 

6. Comparison of 4 and 6 shows that neither the cost nor the total time needs 
to increase when paging increases. Paging can be compl etely overlapped, 
even for this small set of jobs. 

1. Tests 1 through 4 were run with 2 drums, the rest with 1 drum. 

14 



---Courses in Comp,te r Sc i ence offered by CCS 

The following two cour ses CCS 273 and CCS 274 are intended to pr ovide 

an introduction to computing for second year unde r graduates. 

CCS 273. 

CCS 274. 

El ement ary Numerical Computing 3 hours per week. 

A course in calculus is a pre-r equisite for this. Students are 

taught to program in FOIlTRAN and some e l ementa ry numer ical 

methods. 

problems. 

Exe r c i ses invo lve writing programs t o solve numerica l 

Elementary Computer Hethods 3 hours pe r week. 

A knowledge of mathemfttics is not a pre-requisite fo r this course 

which is primarily n service cours e fo r students from ar eas where 

formal mathematics is not h eavily used. At least one pro cedure­

ori ented language (usually FOIlTRAN) is taught and through this 

students are introduc ed to algorithms, programs , subrout i nes, 

various data structures ILnd some elementary stat istical and symbol 

manipulation t echniqu es . Exercises run on the comput er ' involve 

searching, sorting and file handling. A special purpose language 

u sually SNOBOL) is introduced and students learn to use t erminal 

faci li ties through some l anguage such as PIJ., BASIC or SPC (a 

subset of PL/ 1). 
The two courses CCS 473 ILnd CCS 47 5 , are designed for senior under­

graduates or first year gr aduate students. 

CCS 473. Introduction to Digital Computing 3 hours pe r week. 

This cours e s erves both as an introductory course to the computing 

a r ea and a l so as a terminal course for students int erested only in 

specific applications. Some mathematics is assumed (first yea r 

college calculus) but no computing. 

Students learn at least three high-level languages. Assembly 

language is introduced but students are not required to do programs 

in this language although they are examined on the material 

presented. 

A major portion of the lecture time is devoted to numerical 

techniques. Beginning with a consideration of round-off errors 

and the effect of approximate arithmetic operations, methods for 

function approximation are introduced and this l eads on to quad­

rature and integration of differential equations. This last topic 

is of particular importance to students interested in modelling 

natural systems. 

15 



CCS 475 

The remainder of the lecture material is devoted to non-

numerical aspects. Topics covered here include symbol 

manipulation, tree structures and sentence parsing. Recent 

problems include parsing, line justification, maze traversing 

and flow chart production. 

The practical work of the course consists of four or five 

problems, at least two of them are numerical and at least one 

non-numerical. 

Digital Computers and Computation 3 hours per week. 

This course is intended only for CCS students, prerequisites are: 

course 274 or 273 and one year of college calculus. The course 

has two main objectives. One is to broaden the student's know-

ledge in the computer science area, the other is to draw together 

material presented in more formal CCS courses (Automata Theory, 

Linguistics etc.) and relate it to practical aspects of computing. 

The first purpose is accomplished by having the students 

implement a variety of algorithms using several different programming 

languages. These exercises are intended to illustrate the following 

topics: 

Recursive formulation 

Logical operations 

String processing 

Symbol manipulation 

Simulation of a machine 

Function approximation 

Integration of differential equations 

The second objective is achieved mainly through appropriate choice 

of example problems. 

Examples 

1. In the lecture course a simple minimal machine, called 

a k-machine, is introduced. This is equivalent to a 

Wang machine. Students are required to simulate this 

and to write and run programs for it. 

2. The relationship between string manipulation algorithms 

and Mark~v normal algorithms is covered. Students are 

required to do an exercise in theorem proving. 

The two courses CCS 573 and CCS 673, are for fifth and sixth year 

postgraduate students. Students taking these courses usually intend to take 

employment in the computer science field and are seeking experience of system 

16 



programming. These courses occupy about one third of a student's time. 

CCS 573 Automatic Programming 

Students taking this course must previously have taken either 

course 473 or 475. The object of the course is to introduce 

students to systems program construction as distinct from 

application programming. As course work they are required 

to write and develop typical systems program components in 

assembly language. The content of the course varies as 

equipment changes and techniques evolve; the current course 

includes the following topics: 

1. Machine Organization and Assembly Language. 

Functional machine description (System 360); 

Data types and storage representations; 

Instruction types and assembly format; 

and Assembler Language. 

2. Data and Storage Structures. 

Distinction between data and storage structures; 

Standard compiler structures; 

Accessing techniques; 

Allocation time; 

Access tables; 

Types of references; 

Storage management; 

and Comparison of list processing languages. 

3. Compiler techniques. 

General word problem; 

Trees and stacks as natural elements; 

Parsing and roll back; 

Functional compiler structure; 

Formal definitions; 

Language types; 

Specialized grammars; 

Grammar transformation; 

and Optimization algorithms. 

4. Internal M.T.S. 

Problems set to students require then to write macros and, for 

example, the parsing part of a compiler and a storage management 

routine. 

17 



CCS 673 Advanc ed System Programming 

This is ef fec ti ve l y a cont inuat ion of the previous course into the 

hardware dependent level and cove rs such topics a s, dynamic storage 

a llocat ion and relocation, interaction between centra l and 

peripheral units, design of system debugging and measurement tools 

and the design of new sUb-systems capabl e of operating unde r or in 

parallel with t h e current system. Additionally, the cours e is 

intended to give students experi ence in functioning as part of a 

group i n the specification and implementation of a substantial sub­

system, including not only the programming aspect but also the 

management of the group itself. 

These two objectives a r e achi eved by getting the clas s to 

implement a group proj ect. In order to keep the task of super-

vising the group within mnnageable proportions the class is limited 

to about 20 student s . Some formal lectures on relevant parts of 

the system are given during the fir s t two or three weeks of the 

term and during this time the students s e l ec t their project. There­

aft er , the function of th e r esponsible faculty member is to a ct as 

advisor to the class, and t o ensure that continuous progress is made 

with the proje ct and that group obj ectives remain reasonable. 

The students themselves choose the subject of their project. 

Usually, the staff suggest two or three possible subjects but the 

students may suggest othe r subj ects as they wish. To date, CCS 673 

has been presented twice and the proj ects chosen were MOMS (Michigan 

On-line Mathematical System) and BASI C II. MOMS is a display driven 

graphi cal mathematics system s imilar to the Culler-Fried system and 

BASI C II is the BASIC terminal system. BASIC II was implem ented 

and debugged under M. T. S. but the final product runs external and 

in parall e l with H.T.S. 

When the proje ct has been chosen the class draw up a precise 

system specification. After this specification has received the 

approval of the staff the class partitions the project into sub­

proj ects with spec ifi cation of interface s and common internal tables. 

The class is then broken into sub-groups and each sub-group assigned 

a sub- proj ec t . The proj ects mentioned above were broken down into 

components as follows: 

MOMS 

Numerical routines 

Command scanning 

Sub-routine definition 

18 



Light pen processing 

Display buffer pushdown and management 

Initialization 

BASIC II 

Lexical scan to postfix 

Symbol table 

Command Lnnguage 

File routines 

Interface to system 

Numerical routines 

Compiler 

System de-bugging 

User de-bugging 

In addition to the groups assigned to specific sub-projects 

there is also a group responsible for the integration of these 

components into a complete system. A work-book is maintained in 

which the current status, and specification, of each sub-project 

is recorded. Usually, the integration group is responsible for 

the accuracy of this book. 

At the end of the course each group must submit full document-

ation and current source decks for its components. Each student 

must also submit answers to a set of questions which ensure that 

he understands not only his own component but also the total system. 

19 




