GENERAL NET THEORY

C.A. Petri

Rapporteurs: Mr, E. Best
Dr., P.E. Lauer

Dr. M, Shields

Part 1

Those of you who attended this conference last year, may remember
Anatol Holt's lecture 'Formal Methods in System Analysis'. My
intention then, had been, this year, to supplement his lecture by
three hours of concentrated blackboard mathematics, because I felt
that nothing needed adding to Holt's lecture in terms of words and
figures. But I now think that I ought to keep the mathematics to a
minimum, both in order to give a general idea of the content of the

theory, and to raise the entertainment wvalue from negative to zero.

Net theory is a collection of new theoretical, mathematical and
conceptional devices designed for the defining and solving of organ-
isational problems. By that, I mean problems both inside and out-
side the computer; problems of specifying and implementing the
co-operation of a large number of system components concurrently
engaged in partially independent operations and activities. I should
warn you that all my examples are exceedingly, perhaps excessively,
simple. But my aim is to convey the basic ideas and some of the

background and not to explain a full-fledged application example.

Net theory is not, of course, the work of one single person, and
in connection with the material I am going to present I would like,
in particular, to acknowledge the work of Anatol Holt, Fred Commoner,
and my colleagues Hartmann Genrich and Kurt Lautenbach. To begin
with, I think I should explain the purpose of net theory because it
does not seem to be all that clearly understood. Possibly, the
general impression is that its purpose is mainly descriptive.

This, however, is not the case, but rather to supply us with

131

descriptive, deductive and conceptual devices:

— descriptive devices for demonstrating the structure of systems
and of processes supported by a system, in terms of axiomatically

introduced concepts;

- deductive devices for solving application problems such as:

synchronisation problems, concurrency problems, problems
involving mutual exclusion, conflict, arbitration, sequential-

ization, safety, problems of deadlock-avoidance and of endless-

loop avoidance, problems in asynchronous switching logic, and

last but not least, problems arising in an area, not generally
known of as yet, called formal pragmatics, in which we are
concerned with questions of the form 'What, precisely, do we

do?', as opposed to formal semantics in which we are concerned

with questions of the form 'What, precisely, does it mean?';

- conceptual devices producing precise concepts on many levels

or for promoting the communication between the computer expert
and other people; I see this as being a main point of General
Net theory. We can communicate between ourselves very well,
but it is difficult to explain computers to 'innocent' people.
As a conceptual device, net theory should promote this communi-
cation and provide means for introducing new concepts, in a
precise, but nevertheless, easily visualiseable way, hence

the importance of graph-theoretical methods, and of the idea of
the 'token game' played by many independent actors.

Net theory is not primarily a mathematical device, rather it is
accompanied by a simple graphical means of expression consisting,

at the basic level, of four symbols only.

O— O

Figure 1

132

In this example (of a net), the symbols used are only squares,
circles, arrows and little dots. For the time being you might think
of it as describing a computer with two input files and two output
files; the input files are present and connected to the computer

while the output files do not yet exist.

Figure 2a

To start at a very low level, we might compare the graphical
way of expressing nets to more usual graphical tools; consider, for
example, the simple state-transition diagram of Figures 2a and 2b
describing a system of four states and the respective transitions.
Instead of denoting the transitions by arrows, we introduce special
symbols in order to bestow individual existence on them and to be
able to append more than just two arrows to them, possibly leading
to or from other states. We use a dot to denote the holding of a

particular condition at a specific point of time:

133

N

O

Figure 2b

Thus, in this notation, we have the following four types of symbols:

S:(:::) state elements (also called places if they can contain
more than just one token);

S contains symbols denoting 'supply stocks', and items in these
supply stocks are represented by tokens or markers (dots) on the

state elements.

T: ; transition elements, representing for example,

processes; elementary events, of which processes
are built; alterations in the holdings of conditions;

transportations; transformations and so on.

F: —Pp , flow relation, no longer denoting a transition

itself but only the relation between a state and a

transition; f might be read 'from ... to ...'

) , tokens, countable items, resources of any kind.

134

Thus, a net is defined to be a triple (S,T,F) where

S ﬂ‘T = @ (state elements and transition elements
are disjoint sets),

SU T = field (F) (there are neither unconnected
state elements nor transition elements)

F # @ (nets cannot be empty)

FCSxTUTx S (the flow relation holds only

between state elements and transition.elements or vice-versa.
A marked net is a net with a distribution of tokens over the places.

These concepts were introduced on the principle that we should
take over primitive ideas from areas such as the production of goods,
where we can observe and physically handle a distribution of items,
rather than from abstract notions of computation, or of processes
supposed to be occurring in people's minds, and in computers as a

delegated type of mental activity.

Figure 3 shows several production activities, denoted by boxes,
and several places in which resources can reside. We could imagine
ourselves as being the worker in box A using one of the screws
accessible to him (accessibility is denoted by arrows), one nut and
one sheet of each type, and, with the help of the screwdriver (which
he returns after use), producing one object of the type shown in
place Z, No use is made of any of what are generally held to be

"primitive' concepts in computing such as assignment of values.

In this figure we can already observe the main phenomena with

which Special Net Theory is concerned, for example, conflict and

contact. All such activities can be described in terms of a simple

game, I shall restrict myself to condition — event — nets, where

the places can contain at most one token: the holding of the condition
being denoted by the presence of a token. Everything which can be
composed out of squares, circles and arrows in the manner of Figure 4,
might be thought of as a gameboard. Each square and circle may
accommodate respectively one player and one token., The players act
independently except in so far as they are affected by the presence

of tokens on the circles.

135

The rule for this game should be kept very simple. It is
expressed by an axiom and I am going to explain it in every-day terms:
a player such as x residing in the box in Figure 5 obeys the following
rule: 'if all of your inputs are full and all of your outputs are
empty, then you may empty your inputs and fill your outputs, to

score 1'.

° Q

Before X X After

S v & e

Figure 5

Note that the player only may make a move: In formal pragmatics we

introduce the idea of the interest a player has in so doing.

In the special case in which there are no input places the player
is allowed to make a move whenever the output places are empty, and
consistently for the case in which there are no output places, he is

allowed to make a move whenever the input places are marked.

The rule is extended to nets in which places are allowed to
contain more than a single token, in the following way: whenever
possible, remove one token from each input place, and add one token
to each output place, if the capacity for the output places is not
exceeded (every place is assumed to have a capacity which may be

finite or infinite).

138

I would like to show two simple application examples. The
first one appeared in 'Jurimentrics Journal' where the idea of such
a game is used to define in a precise way something which could not
be expressed in the ordinary language of the lawyers. In the example,
it was not clear whether three particular activities had to be
thought of as concurrent or as mutually exclusive. In the paper,
it is shown by means of a gameboard, that the intention of whoever
wrote the particular piece of law was to mutually exclude the three

possibilities.

As an example from computer science, consider Figure 6; the
part of the net shown in bold is supposed to be a gate. It appeared
on the cover of a volume of CACM (vol. 16, No. 8, August 1973).

The transition labelled ACT is supposed to be capable of firing only
whenever there is a token on the place labelled GATE; this token

can be brought into place by firing 'ON' and taken “#way by firing
'OFF'. When considered as a condition-event-net, hoﬁever, the

dotted additions show that this is not the correct basic specifi-
cation of a gate: according to the rule, ACT would never be able to
fire, since either one of its input places is unmarked or one of its
output places is marked. Thig is thus rather a high-level description
and we are still left with the task of decomposing it into basic

specifications,

139

TURN

0 T o

7 3
I | \\
I TURN | \
| ACT OFF ; \
.
GATE ; ;;
| i
| I
|
I | |
| |
S5 B G
3 / 7
\\ _____/ ______ 7
_.—-— —/
Figure 6

Most present applications are in Special Net Theory as opposed
to General Net Theory because the former has been in existence for
a longer. time. Special Net Theory is precisely the theory of those
games which I defined earlier with their associated rule. General
Net Theory is the theory of transforming concepts and results of
Special Net Theory into concepts and results on higher (and lower)

levels of system description, by means of certain kinds of net-mappings.

Some present and intended applications of net theory go back to
the year 1959 when SPLIT and WAIT were proposed as Programming Language
primitives. A little theory was developed in this connection with
the intention of showing that SPLIT and WAIT (being output and input
of what I call transition) are the only language constructs which

are theoretically needed. A late outcome of this piece of theory was

140

used for the ILLIAC IV Fortran Compiler, which used earlier results

about liveness and safeness of nets.

By 1965 there was a full linear algebraic theory of Concurrent

Processes (equivalent to Vector Addition Systems) and the period

1962-74 saw the development of results in switching logic (especially

asynchronous) and of some applications in computer architecture.

In 1974 Suhas Patil (MIT) constructed a direct implementation of

transition nets in terms of TTL; this is supposed to be useful for
process control. There are also a large number of papers dealing

with Operation Systems problems (deadlocks, safety, looping, interrupts

and so on) and with control problems applied in process control this

year,

Since 1971 there have been applications in interdisciplinary
communication in such areas as Physics, Logic, Chemistry and

Jurisprudence. For example, the US Department of Justice has used

Net Theory to define the precise meaning of pieces of legislation,

Since 1972 a theory of communication and organisation is in the state

of being developed. Results have been applied in the Mathematical

Foundation of Computer Science, in Norms and Standards (for example,

the language of Net Theory is used by a Standards Committee in West
Germany for defining the basic concepts of Operating Systems), in
education (mainly in teaching logic and Operating Systems); activities
in my own institute have led to a formalisation of pragmatics, and,
since 1974, to the origination of a theory of communication disciplines,

which I shall discuss later.

What have all these things to do with computer science? I have
already mentioned one purpose of net theory, that of making it
possible to introduce concepts in a precise way. Some of the concept-—
ual levels in the field of computing are demonstrated in Figure 7.
Thus we have, to speak informally, high level concepts such as data
bases, computer architecture, operating systems, files, tasks and so
on, All these concepts are supposed to be firmly based and well-

founded on the idea of algorithm; algorithms, in turn, are supposed

141

to be based on what one might call a 'cartesian product' of logic

and time, which is an abstraction of AND-gates, delays, locks and

so on which are themselves supposed to be correctly implemented by

transistors, diodes, inverter-amplifiers and whatever else we have.

Interests Restrictions

(of individuals, groups) (physical, legal, economic. ..)
Offices, Agencies Channels
Activities Roles

(as in organisation, administration)

Data bases, Computer Architecture

Operating Systems

Files, Tasks

o w e

(Algorithms:) if, do, :=, identifier

(logic x time:) AND-gates, delays, locks...

transistors, diodes, inv.,-amplifiers...

Information flow graphs: flux, influence (1967)

Transition nets: repetition, alternative actionj

synchrony, enlogy (1962-74)

Occurrence nets: partial order in time (1968)

Concurrency structure (1976)

Conceptual Levels above, within, and

below computer science

Figure 7

142

We also have conceptual levels outside the computer which are
certainly higher, such as the interests of groups or individuals,
restrictions of legal, economic and other kinds, for which we have

almost no formalism. On the slightly lower level of administration

and organisation we have things such as offices and channels,
activities and roles; the topics A Holt talked about last year. The
higher we look in this hierarchy the more diffuse and less formal

and precise our descriptions tend to be.

General Net Theory was conceived with the intention of achieving
higher precision and the possibility of formal deduction in the

upper areas of Figure 7 to _the extent that such precision is welcome.

In order to make progress in the direction of more precision and
formal methods in the higher levels it turned out to be necessary to
question the foundations of the supposedly lowest levels, below which
nothing was thought to exist. I think that on the basis of results
of General Net Theory we can certainly distinguish at least (I would
rather like to say, precisely) four levels below the level of 'logic
x time', and that, as a consequence, this marriage of logic and time
is not possible because logic and time are sisters. Both propositional
logic (or boolean algebra or whatever form you give it) and a concept
of time (in so far as we have one) arise in stepping upwards from
level 0 to level 2. I shall go into more details about levels 0-3

later, but for the moment, a short outline will suffice.

The lowest level O is only of theoretical importance; its use is
in demonstrating that everything on the higher levels can be formally

constructed using nothing other than the relation of concurrency.

At level 1 we have a partial ordering in time of condition and event
occurrences, first described by A. Holt in 1968. Level 2 is the level
of transition nets, which I explained earlier in terms of a game;

here we do have repetition and alternative action, and we have two

structures which are of practical interest: namely the synchromic
structure and the so-called enlogic structure containing all factually

and logically valid statements about a transition net. And there

143

is another intermediate level, level 3, of information flow graphs;

in 1967 two phenomena, which might be called flux and influence were

detected. In most practical problems it is unlikely that one would
need to carry an analysis through the whole range of levels, rather
one will be moving between two adjacent levels. And this, I think,
can better be demonstrated on the lower rather than the higher
levels, for in the former we have full formality, while in the latter
we would have the additional task of first achieving formality from
informal descriptions. An example is shown in Figure 8: on the left-
hand side we have a process described by an occurrence netj; the
occurrences might be thought of as activities performed by players
who are never able to make more than one move. Thus every occurrence
is unique. The states involved are omitted for clarity. A net of
this type needs no marking; the marking could be deduced in the
following way: everything not connected by a directed sequence of
arrows is defined to be concurrent, and a maximal set of concurrent
items can be thought of as being marked. Such a collection might be
called a certain time, for instance the time T shown,; consisting of
the ending of condition a, the beginning of condition c¢ and the
holding of condition b, A time containing only holdings of conditions
might be called a case; for instance containing the holdings of
conditions a and d, as shown in Figure 8. The labelling of the net
indicates which occurrences are holdings of the same condition; this
labelling implies a mapping (net morphism) yielding the net on the
right=hand side, where the case {a,d} is indicated by tokens.

By way of a transition to the more formal part of my lecture,
I would like to give you an outline of General Net Theory. We have

four primitive concepts.

state elements S,

transition elements.T,

flow direction relation ¥ and

coexistence relation coex.

144

a case

(::5///// r'y
{a, d}

SSERNN, o N ¥ =

mapping

. % Level 2:
A transition net.

Level 1, with intended mapping
indicated by labels: A partial

ordering of Event Occurrences

Figure 8

145

The latter becomes, at the lowest level, the concurrency relation co.

We also have some defined concepts:

the set X:=8UT of elements under considerat&on,

the partitioning connecting relation P:=(FUF)N(8xT) indicating

"proximity' without reference to orientation,
the input relation Z:=PNF and

-
the output relation Q:=PNF.

Then we need seven axioms which are sufficient to set up the
whole theory except in the case of certain applications, where it is
convenient to add further assumptions in order to achieve more power.

The first four are axioms of formal nets, without empirical content:

0. Fc sxT U TxS
1. F#£4

2. SNT=¢

3. dom (F) U cod (F) = X

The actual content of the theory is conveyed by the remaining
three axioms: In contrast to ordinary ways of thinking, the relations
coex and co are assumed as being only reflexive and symmetrical, as

follows from

= i
4 @0 =XxX ~ (FF* U FF*) on level 1.

("Level 1" is short for 'Occurrence net with partial ordering

of occurrences generated by F, and therefore without F-cycles'.)

Coexistence is not transitive; the temporal order of concurrent events

is known (from Physics) to be dependent not on the events and their
objective relation to each other but on the observer's state alone.
If we assumed transitivity in our axiom scheme then the theory would
verge on the trivial. For the purposes of computer science, this

intransitivity mainly reflects the possible independence of occurrences

which are not actions of the same physical component in the computer

or the system surrounding it.

146

For event structures we have two additional axioms (events being

members of class T, the class of transition elements)u
5. The Extensionality axiom

means, that the identity of an event is characterised only by those
changes it effects in the world and by nothing else; not for instance,
by side conditions on which the event may depend but the holding of
which is not altered by the occurrence. For example, the truth value
of the boolean expression involved in the execution of an 'if -~
statement' is ordinarily not changed by the execution of the

'if - statement'. Therefore the 'if - statement' is a complex
structure, and not a primitive one in terms of General Net Theory.

It must be decomposed in order to be operationally defined; we may
then distinguish several types of 'if - statements' and tell precisely
by what they are distinguished. The extenionality axiom means that
every event is a coincidence class of changes; this implies that the

« «
intersection between F and F is empty (F N F = @#). Thus, in the

Production Scheme example, the process in which a screwdriver is
used but put back in its place is not an elementary event as defined
here; again, it must be decomposed in order to define it precisely.

Finally, we have:

6. the axiom of 'Relative indeterminism' (I might just as
well have called it 'relative determinism')s If a transition net
contains a conflict, then the system described by it possesses a
non-empty environment, This axiom is not really necessary for deve-
loping the formalism but for defining the scope of the formalism. Ve
do not really want to develop a theory of games but a theory of

information flow, and in this connection I have the feeling that

computer science is, compared to physics, in a kind of pre-Newtonian
stage, since we do not know the natural laws of information flow.

To remedy this defect slightly, axiom 6 is proposed; it says that
information flow is the same thing as conflict resolution. Therefore
the reverse of conflict resolution is the same thing as the reverse

of information flow; this is quite an abstract and seemingly nonsensical

147

thing to say but it might encourage you to give the matter a little
thought. A precise definition of conflict will be given later. This
axiom concentrates the interest on conflict free nets, which are quite
easily described. Nets with conflict or with higher order phenomena
(confusioﬁ, skew events) are very difficult to deal with, without

this axiom. Axiom 6 also means that whenever we encounter a case of

conflict, a non-determinate situation, in the description of a system

it is because the description of the environment is absent or not

sufficiently detailed. Thus the existence of conflicts is traceable
back to the cut between system and environment; it is only in our

minds that we observe the conflict, because we have arbitrarily made
the distinection between an 'inside' and an 'outside': if we describe

the environment in more detail, then the conflict would disappear.

One mathematical description of General Net Theory is in terms

of the category of nets. Of course nobody wanting to apply the

theory needs to know about category theory, but things become very
easy and concise indeed in terms of category theory. The objects of
our category are all nets (tuples (S,T,F), (S,T,Z,Q) of (X,P,F),
equivalently). Morphisms are mappings from net to net preserving

the relations 'P U identity' and 'F U identity'; this mainly means
that mappings are continuous in the sense of topology, and direction-
preserving. Morphisms preserve those purely formal relations but
transform the relation co (and whatever can be derived from this
relation) into more complex relations in higher levels; these trans-

formations are the objects of the formal study.

148

Part 2

I now want to go on to talk about General Net Theory, restricting
myself, for reasons of time, to one level only, that of condition-
event nets, the fundamentals of which I have already described.

There are four basic phenomena that I propose to discuss and which
I call concession, contact, conflict and confusion (Figure 9); the
theory of these phenomena is the content of Net Theory on the level
of transition nets. The tools of Net Theory I shall be talking
about are linear algebra, applied to condition-event nets and to
place-transition nets; the formalism of net completion, which leads
to the subject of system invariants; and continuous mappings, which

allow us to move between the different conceptual levels (Figure 7).

I won't go into details on this last point here, but I shall
indicate the differences between net theory as a systems theory on
this low level and other systems theories. Basically, the differ-
ence is that other systems theories do not set out to deal explicitly
with concurrency. By concurrency I mean a binary relation in the set
of conditions and events of a net; two elements are concurrent when
they might be considered 'simultaneous' according to some frame of
reference. This binary relation is certainly reflexive and symmetric
but it is not transitive; to assume it to be so would be to idealise
in a way which is not acceptable when we wish to describe a system

with a high degree of precision.

On a higher level there is a difference between net theory and
other systems theories in the treatment of measurement data, based
on a distinction between 'analogue' and 'digital' and between
'continuous' and 'discrete' models; this distinction is not made in
net theory (for example, a net of open intervals S and of points T
can b; associated with the continuum R of real numbers). On a lower
level there is the distinction that we do not deal with side conditions
of elementary events. This is usually considered an inadequacy of
net theory because it seems to imply that we are incapable of talking

about the conditional execution (= occurrence) of events. The fact

149

is, however, that conditional execution is a higher level concept,
which may be precisely defined (in several ways with different
meanings) in terms of lower level concepts involving only pre- and
post-conditions but not side-conditions. To attempt to use side-
conditions in order to discuss conditional execution would be mean-—
ingless in terms of transition nets of level 2. The absence of side-
conditions is thus not an inadequacy of net theory but rather one of

its main points,

Returning to the axioms; zero to three say what a net is; they
describe how the 'game board' must be constructed; they provide a
language in which we may talk about the relation co (the concurrency
relation), which constitutes the content of the theory. The

extensionality axiom (five) restricts elementary processes - events -

to consist of changes of conditions and nothing else; in this context
we cannot meaningfully talk about side-conditions, i.e. conditions
which are pre— and post-conditions of the same event. Finally we

have the axiom of Relative Indeterminism, which says that conflict

resolution is the same thing as information flow.

We are now in a position to consider the four fundamental
phenomena in condition - event nets (Figure 9). A transition is
said to have concession (Figure 9 (a)) when all its input places are
marked and none of its output places are marked. A transition may
fire in exactly this situation although it is not committed to do
so. If we think for a moment of a player sitting in box 'A', it is
possible that some other player might be capable of removing the
token at p1 or p2. In other words 'A' may be able to lose concession

- without actually having fired.

In the situation of contact (Figure 9 (b)) a transition has all

its input places marked but has also some output places marked.

150

The fundamental situations in nets of conditions and events

a) Concession]
('fireability') \O

(:lgl\\\ 2) p3 o
b) Contact @/
- \O » :

§ o

pl
p2 .
x —CO
¢) Conflict (X p1 P3
p3
(1) g p—0 . (ii)
p2
d) Confusion >
[P -
el e2 e3 el e2
(i) 'symmetric' (ii) 'asymmetric'
Figure 9

151

Reverse
a') Concession 2

> Pl p3 : -
Reverse <:z;\\\\\
b') Contact C)ﬁ(///J
<" p2 p4 GJ‘/ \3

pl

p2 C:)q;_____

Reverse
¢') Conflict (7Y pl p3

p3

{£) B | Q‘N (ii)

Reverse
d') Confusion

el e2 el

(i) 'symmetric' (ii) 'asymmetric'

Figure 9 continued

152

It might appear at first sight that a transition in the situation
of contact ought to have concession; after all, each of its precon-
ditions hold so why should not the transition be able to fire?
However, what would be the consequences of the firing of 'A'

(Figure 9 (b))? Either p3 would as a result contain two tokens -
which would be absurd, since p3 represents a condition, and what
could its containing two tokens possibly mean? - or else the tokens
on pl and p2 would disappear and no new token would be placed on p3.
But this would mean (by the extensionality axiom) that an event
distinct from 'A' had taken place, namely an event B # A, connecting

pl and p2 to p4 only:

So if B is not explicitly contained in the set of events, the change
effected by it cannot occur. There is no such thing as a partial

occurrence of 'A',

We conclude from the extensionality axiom that no transition

in contact may fire, that is, contact and concession are mutually

exclusive.

Thirdly we have the situation of conflict (Figure 9 (c¢)), in
which two conceded events have either a common pre-condition or a
common post-condition. As in the contact situation one might be
tempted to argue that since each event has concession, each should
be allowed to execute; as in the contact situation, we show that the

simultaneous firing of the two events would be an infringement of

153

the extensionality axiom. Thus in (Figure 9 (c) (i)) for A and B to
occur simultaneously would not be the same as the situation defined

by (i) but rather an occurrence of an event C % A,B:

O — O—L]
\O

(ii) demonstrates a situation in which two events have a common
post-condition. We may argue, similarly, that a hypothetical firing

of both events concurrently:

(= O—
(O)—

infringes the extensionality axiom, since its corresponding change

of state corresponds rather to an occurrence of the form

z>c——o ~ oo

154

This is immediately obvious when we consider production schemes,
where tokens represent material objects which may be transferred
either one way or the other but not both. Conflicts have to be

resolved, they cannot be ignored.

The final situation of interest is that of confusion (Figure 9
(d)). As you can see, there are two types: a symmetrical and an
asymmetrical., , 1In the former, three events are involved all of
which have concession and two pairs of which, (e1, e2) and (e2, e3),
are in conflict. el and e3 are not in conflict, however; they are
entirely independent and could, indeed, happen concurrently. In a
situation of confusion it is possible that a conceded event may get
out of conflict (i) or into conflict (ii) and retain concession.
This is perhaps a little abstract but there is a simple example -
the usual solution to the mutual exclusion problem - which I shall

show you later and which does involve confusion. (Figure 14).

Axiom six (Relative indeterminism) suggests that in a confusion
situation information flow is not objective because in such a case
it would be up to the observer whether the occurrence of a parti-
cular event constituted a conflict resolution or not, that is to
say whether information flow had taken place at all. Thus, in
Figure 9 (d)(i) el is in conflict with e2. When e3 is executed,
el gets out of conflict without either itself or its 'conflict
partner’ e2 having occurred; has there been a flow of information
or not? This situation is indeed confused and unfortunately it
comes up quite frequently. We should think of confusion within the
context of axiom six as follows: when we encounter such a situation
we may conclude that we have drawn the boundary between the system
and its environment in an awkward manner and that we should draw
it somewhere else in order to reduce confusion to mere conflict
resolution. It follows that we really don't need to set up a theory
of confusion - which would indeed be difficult to do. It has, in

fact, been tried more than once and seems almost impossible.

155

Having described the four basic phenomena the theory of which
is the content of net theory on the level of transition nets we now

go on to look at the subject of algebraic descriptions (Figure 10).

|

Figure 10

If the transition rule, for place-transition nets, is formulated as
I have done earlier, then processes in nets may be described by a
simple algebraic formalism. This means that what is possible in
the theory of net processes is very clear indeed because the theory
of linear integer equations and inequalities such as the ones that

result from our algebraic formulation is old and well developed.

An algebraic description of processes in nets may be achieved
in the following manner: to each state element assign a number s
denoting the number of tokens residing in it - thus in the case in
vhich g state element represents a condition, s must be either O or
1. W?'m&y also set up the connectivity matrix, C, of the graph of
the net; in this matrix rows correspond to state elemgnts and

columns to transition elements and

156

-1 if (pi,tj) €Z (an arrow runs from p; to tj)
Cij = 1 i (pi,tj) €0 (an arrow runs from tj to pi)
0 otherwise.
The relation between the quantity changes of s, the number of
tokens, 'tokens(pi)‘9 on each place. p; and the number of occurrences
[occ(tk)' of each event tk from the beginning to the end of any

process is given by the formula

(1) bs = C.ot with s = (tokens(p1),oono,tokens(pn))
t o= (occ(t1),(,.,,occ(tm))

the number of tokens having to be bounded between O and some number

s which could be considered as the capacity of the i-th place,

i,max
s, . Written in vector form:-

(2) O0ssss,
The equality (1) may seem familiar from physics and there 1is,
in fact, a definite connection except that here C is not a scalar
(the velocity of light) but a matrix whose elements are 0, 1 or -1,
and s and t are not real numbers but integer vectors. The entirety

of the algebraic description is contained in (1) and (2).

I would now like to go back to an example I gave earlier
(Figure 4) when I was explaining the nature of the 'gameboard'. We
cannot tell just by locking at it what sort of thing can happen in
the game, what meaning it might have;, to what use it might be put,
what properties, algebraic or otherwise, the game on this net will

have if we give it the initial marking shown here (Figure 11).

157

Example of a net morphism

Figure 11

158

(inset)

Now we can map this net onto the smaller net shown (Figure 11 -

inset); the mapping might be indicated by drawing boxes or circular
figures round net elements which are mapped onto the same element

of the , second net. This net is much simpler than the original; its
conditions have only one input and output each. The two tokens can
just wander around it like pointers of a clock and these two clocks
or cycles are synchronised in such a way that no deadlock can take
place. Now, if we go back from the second to the first net we can
attach a meaning to box A (Figure 11) namely that it can be regarded
as a switching element which computes the logical 'exclusive-or' of
the two inputs B1 and B2. Resolution of the conflict between players
'a' and 'b' results in there being a token on either p3 or p4;

This token distribution may be regarded as a bit; there is another
bit on (p5, pb6) and these two are combined by 'A' in such a way that
(p7, p8) carries the exclusive-or of the input bits, while (p9, p10)
reproduces the input bit on (p5, p6). This latter fact means that
the construction has the special property that input can be recomputed
from output. (1 P9 is marked then p5 must have been marked before
the exeuction of 'A'). Thus no information is gained or lost,

merely recombined. The input and output of information to the
system takes place only at the time of resolution of the conflicts
associated with p1 and p2. The environment of the system would have
to have additional inputs to a,b,c and d (Figure 11, dotted lines);
the marking of these input places would show the bits input to the
system from the outside. Similarly, there are resolutions of reverse
conflict at e, £ and g, h and in order that the information which
tells us that a token on p11 had come from p7 as opposed to p8 (say)
is not 'lost to the universe', the system's environment would have
to have outputs from e and f (Figure 11, dotted lines) so that the
bit pattern on p7, p8 can be reproduced.

159

We have given in Figure 11 an example of a net morphism. In
general a morphism must not disrupt the net and must preserve
direction. In other words if we draw a box round a number of net
elements, in order that the net be not disrupted only transition
type elements in the box may be connected to the outside of it -

we cannot have something like this:-

Axiom 0 infringed

O

A corresponding rule applies when we collect net elements in dotted

circles (that is, map them onto a state element). These rules ensure

that the image of a net under a net morphism is, mathematically

speaking, a net.

I would now like to introduce an application problem, Suppose
we have two systems A and B (Figure 12). Let us consider two simple
tasks of system coordination: firstly to synchronise the two systems;

i !

and secondly to effect the mutual exclusion of the conditions 'a

and "b'.

o [F—O—{1x »[F—O—I»
O OO
v F—O—{ e »[F—O—{

Task 1: Synchronise A and B
Task 2: Effect mutual exclusion of a and b

Figure 12

160

There are two parts to each task; the first is that of descri-
ption and the second is that of solution. Thus, in the first task
we must specify exactly what we mean by 'synchronise A and B'.

This description might be something like this: select from each
system a transition element and imagine a place connecting these

two, thus:-
t t/

____ﬂﬂ <--~——E

|
i .
| |
i s i (8=, oos ey oy, oo

-
|
I
|
|
I~

By synchronisation, I mean that this imaginary place would require
only a finite capacity (s, say): t may fire at most s times more
than t', for otherwise more than s tokens would accumulate on the
imaginary place, infringing the capacity restriction. The smallest
natural number s will be called the synchronic distance between t

and t' - I shall talk more about this later.

That, then is a description of the first task, what about the
solution? One way of achieving synchronisation is by attaching to

the systems two state elements of unlimited capacity (Figure 13a);

50 [@

]
1

o
o

a) Solution of task 1 © b) Solution of task 1

(unsafe) (safe)

Figure 13

161

PR

5 i Lerd om

B3

s B v (s o)

from the point of view of basic hardware considerations, this
solution is considered unproblematic and is, in fact, used. This
construction bhas the property that it is not safe, however. If

the capacity bounds of these state elements are set to equal one,
by defining them to be conditions, for example, then there is the
possibility of a contact situation developing - by firing A1 and A2,
B1 and B2 to put tokens on pl and p2 and then firing A3, A4 and A1,
after which A2, with tokens on p1 and p3, will be in a contact
situation. Now, in a system with the possibility of contact we
must take a close look at the technical implementation, and if in
this implementation it is not possible to distinguish between one
pulse and twe pulses coming at the same time, the effects of which
accumulate on the new places, then this lack of safeness leads to

a system deadlock.

This solution, then, is unsafe and may be used only if the
technical limitations for the duration of these processes and

holdings of states are known,

There is a safe solution to this task: (Figure 13b) I won't go
into details about the firing behaviour of this system except to
point out that the synchronic distance between A2 and B2 is two:

they may fire concurrently.

We now proceed to the second of the two tasks, that of effecting
mutual exclusion of the states 'a' and 'b', and as in the first
case we begin with a description of the task; 'a' and 'b' are in

mutual exclusion if an imaginary transition connecting them, thus
| |

b
A~

is always dead (can never have concession).

162

B

53

Al

.)d

P

N

P
s

Solution of task 2 (with confusion)
Figure 14

A solution te this problem is shown in Figure 14; there is the
introduction of an additional piece of net with a conflict at p4.
This is the way the problem is usually solved. Unfortunately this
system has the possibility of confusion; after A1 and B1 have fired,
for instance, places p3, p4 and p5 will all be marked giving a case
of symmetrical confusion (cf.Figure 9). Thus something more needs
to be said about the system. We have a solution, but a solution
in which the boundary between the system and its environment has
been ineptly drawn and in which it is not possible to trace inform-
ation flow; if the .net of this solution is regarded as a systém then
information flow through the system is not objective. But it is
clear what goes on in it. If p3, p4 and p5 are all marked then it
would depend on the enviromment (on chance, as it is often rashly
formulated) whether A2 or B2 is executed first; they cannot occur
concurrently by the extensionality axiom. After the critical section
has been passed, a token will appear on p6 and then, via a firing of
C, reappear on p4 allowing the composite system to continue operating

indefinitely, possibly without any occurrence of B2, or of A2.

163

In order to talk more generally about the techniques we used
in the description of the two tasks I have just been talking about,
we must look at the main classes of T-elements of level-two nets.
There are three types of transitional forms on this level: trans-
itional forms which are such that a player can reside in them and
make moves, transitional forms such that a player may reside in them
but may never make a move and transitional forms in which no player
may reside. That these three classes are exhaustive is a theorem in

net theory on this level.

o | /Oe =

Figure 15 c

Consider the transition T of Figure 15. If this is a transitional
form of the first kind (a process), then at some time 'a' and 'b' may
hold and an occurrence of t causes the holding of 'a' and 'b' to be

replaced by the holding of 'e¢', 'd' and 'e':-

Process: aAb is replaced by cAdhe

If 4+ is a transitional form of the second type, then in all cases
either t does not have all its inputs marked or is in contact. We
could refer to + in this situation as a dead transition, but I would
rather speak of it as a fact; this transitional form represents
precisely a logical fact about the marking class of the whole net;
that is, about everything which can be the case in the net. It

represents the following proposition which holds in all cases:-

Fact: aAb implies cVdVe

This proposition says precisely that t never has concession. For t

to have concession, we must have the following

164

aAbA™cA—dN e

Thus, that t has never concession is equivalent to

= aAbA—eA—d e)
which is, of course, logically equivalent to the above implication.

In our description of the mutual exclusion problem we defined
'a' and 'b' to be mutually exclusive if a transition introduced into
the net having beth 'a' and 'b' as inputs were a fact (namely, that

in all cases., =—av—b holds).

A violation is a transitional form in which no player should
be allowed to reside. Unlike a fact, a violation would sometimes
have concession, but it should not be allowed to fire as this would
lead to a non-case; an example of a non-case would be a single object

being in two states at the same time.

As I have said, there is a theorem about transitional forms on
this level which says that the class of all T-elements consists of
processes, facts and violations. How is this shown? Imagine we
have the full class of all possible markings of some initially
marked net (I shall not say how this class is constructed; we only
need the concept here). A case is a maximal set of concurrently
holding conditions and nothing else. Now, if we have such a marking
class C we can iell for every possible transitional form which we
can attach to the conditions shown in the net (in every possible way)
whether this transitional form may carry cases to cases by substi-
tution - call the class of such transitions CC - or whether it may
carry cases to non-cases - these transitions constitute the class CN.
We can define processes as those transitional forms belonging to CC
and violations as those belonging to CN - CC. The theorem states
that all other transitional forms are facts: facts = T - (CN U CC).
Well, this complete set of transitional forms which can be attached
yields a certain super-net of the given net; and the super-net,
together with the natural classification of its T-elements, is called

the enloiec structure of the original net. We call it this because

Expansion Rule:

If precond(A) C precond(B)
and postcond(A) € postcond(B)
and A is a fact, then B is a

B fact.

"bridge"

O

Resolution Rule: A and B are facts #® C is a fact (see text)

Figure 16

166

we can use 1t to deduce from the net axioms alone, without using
theorems from logic, theorems such as the following: any transitional
form whose set of preconditions (respectively postconditions) is
contained within the set of preconditions (respectively postconditions)
of some given fact will also be a fact. This is called the expansion
rule. Another such theorem says that if we have a 'bridge' between
two facts then we may deduce that the transitional form having the
same inputs and outputs as the two facts taken together, except for
the state element constituting the 'bridge', will also be a fact.

We call this the resolution rule. I+t is known that the expansion

and resolution rules are deductively complete. Thus we have here a
form of propositional logic, in the guise of operations on nets, but
which is applicable not only to the idealised product of static
logical structure and time which I mentioned earlier as the supposed
basis of algorithms but also to situations in which conditions are
subject to concurrent, not necessarily sequentially controlled change.
Adequate logical characterisation of such situations requires a logic
of change which countenances a non-transitive (nonmidealised)
concurrency., We could use this simple calculus of facts to teach
logic - and in fact this has been done. (Note that this understanding
of logic is based upon the understanding of the "transition" rule of

the token game alone).

To return to the use of level-two elements for specification:
transitional forms classify into processes, facts and violations,
(with many important subclasses not described here) and the entirety
of state element forms are places with capacities of various sizes -
from zero to infinity. Now for specification purposes we can see that
places with capacity equal to zero denote coincidence between events,
that those of capacity one denote conditions and that those of capacity

n denote the synchronic distance n., For example, the input and output

events of a buffer of capacity n have synchronic distance n. We can
use these concepts - as before when describing tasks of synchronising
two example systems. and of effecting mutual exclusion between states

in them - to precisely define properties of the system by attaching

167

891
Ll eandty

|

Basic uses of Level 2 Elements for Specification

1 @ O

)

(event) process fact violation coincidence condition synchrony
1 1 2 6 8
O—L 5Ok --O -3/
: mutex v/j T .
uninterruptable

I:HC‘DB ---—;6}6_--_4—;___67

synchronous alternating

I
safe = :
|

v

QL0
i®

- no other entry

- 4
conf#ict-free

e

vl

elements with specific properties to the system. In Figure 17,

for example, we can specify the mutual exclusion of states 1 and 2
by appending fact 1; coincidence between transitions 2 and 3 using
state 33 we can specify the safety of the net, the absence of a
contact situation, by specifying, using a fact, that certain states
can never be marked simultaneously (as, for example, states four

and five and transition 4); we can specify concurrency or synchron-
icity in the usual sense by defining the capacity of an adjoined
state element (as in the case of state 6) to be two; we can specify
that processes five and six are alternating by defining the capacity
of state seven to be one; we can specify that the process consisting
of the two partial processes six and seven is uninterruptable by
appending violation symbol eight; we can specify liveness in that
area of the net, and likewise in all cycles, by appending state
element eight with infinite capacity; we can specify absence of
possible conflict by adjoining fact nine. Finally we can specify
that this system, if regarded as a flow diagram for example, has no
other entry except the entry shown at state element 9, by adjoining

a violation symbol here, pointing to state element 9.

169

