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Abstract 

The second of Professor Lynch's lectures was devoted to the topic of computer sched uling, 
He pointed out at the very beginning of hi s talk. that there is as much misinformation 
today in the area of schedu ling as there was ten yea rs ago in the area of compi lers and 
language des ign, 

Introduction 

In general, it can be said that the aim of scheduling is to minimize some sort of "waiting 
time", For the purpose of thi s lecture, the objective is to minimize the average waiting time 
over all activities or, which is equivalent, to minimize the sum of the wait ing times of all 
activities (where the waiting time of an "ctivity is the time between its arrival into and 
departure from the system), Why is the total waiting time important? This is obv ious as 
far as external use rs of the system arc concerned - they all , place some premi um on their 
time and do not like to see it wasted, Internall y, it is generally truc that one modu le's 
waiting times determine another module's service ti.m e. Thus, the effects of waiting times 
tend to cascade through the system. 

Furthermore, there is in most cases a direct relationship between waiting time and 
throughp ut, such that minimizing the average waiting time usually leads to maximizing the 
throughp ut. 

Scheduling - Smallest Remaining Time first 

A very simple sched uling model is one of a single-se rver system whe re all requests are 
available at the beginning and all se rvice limes arc known in advance (see Figure I), The 
solution for thi s case is wel l known - the schedule which minimizes the average wait time is 
the one which execu tes the requests in order of in creas ing ser vi ce times. This schedule has 
the additional desirable property that if it is interrupted at any moment and then reapplied 
to the remaining jobs (provided that the se rvi ce time of the cu rrent job is replaced by its 
remaining se rvi ce time), then the resulting sched ul e is the same as the ori ginal one. 

The above model can be generalized by allowing johs to arrive at var ious times. To obtain 
an optimal schedule. requests should now he ranked accord ing to thei r remaining execution 
times and the small est- rank-fi rst cr iterion should be reappl ied at each a rrival instant. This 
may lead to the preemptio n of the curren tl y executed rcq uest if its remaining execution 
time is greater than the one of the new arri val (Figure 2). It is implici tl y assumed tflat the 
cost of "reemptions is ze ro, an oversimplification but a necessary one, if the model is to 
remain tractable, 

Suppose now that only the distribution of serv ice times is known, not the se rvi ce tim es of 
individual requests (Figure 3), It can be , hown that if requcsts are rank ed according to 
thei r expectcd rem:.i n i ng se rvice times (cond i t ioned upon the serv ice time :11 ready recei ved) 
and then are executed sl10rtcst-rank -f irst, with reschcduling at each arri va l Instant. this 
res ults in an optimal schedule. Howevcr. such a scheduling di sc ipline llIay be di ffi cult to 
pill into opcr:llioll if, as in Figure 3, th e ex pecteu rellla ining se rvice time is an incrcas ing 
fun cti on of the servi ce tim e already received. In particlll,u', if a t any moment in tim e the 
johs in the sys tem have cq llal rank (e.g. he(,;luse none of th cm has rece ived any se rvice). 
then none of these jobs Gil l proceed wit hou t the <lthers (hecallse as soon as it receives some 
infinitcs imal amollnt of serv ice, its ra nk increases and it has tu he replaced hy one o f the 
other johs). This means that all such juhs have to pr()cced in parallel. each IIsing a fraction 
of the processo r capac it y; th is di sc ipline is ('; dl ed I'rucc.I'.wr-Shortllg. In pract ice, a 
/luulld- /lobi 11 (or Tilllc-Slici IIg ) di sc i pi i ne is ope rated instead of the processo r- shari ng onc: 
each of the jobs is ~iven. in rotat ion, a finite quantum of se rvice, 
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Thus. if the expected remaining service time is increasing, the optimal scheduling strategy 
becomes quite complex: 

Run the newest jobs until expected remaining service time equals that of the next 
o ldest job (or until it completed). 

Processor-Share (Time-Slice) between jobs of equal rank until a new job arrives (or 
until they complete). 

If, on the other hand, the expected remaining service time is a constant. then preemption 
never occurs and the optimal schedu ling strategy is First-In-First-Out 

It should be pointed out that these ideas - of using the past history of the request to tell 
something about its future behavior - can be applied at all levels of system architecture. 
they can be applied to internal scheduling, di sk scheduling. etc. 

Roll-in/Uoll-out 

The next example is one which involves swapping - the roll in/roll out of interactive jobs 
in order to utili ze resources optima ll y. It is assumed that the object is to minimize the time 
jobs spend in core unproductively (Figure 4). Clearly, there is a trade -off here: if jobs are 
not rolled out between interactions, then the costs of wasting storage a re high: if they are 
swapped too often, then the costs of swapping (a job has to be kept in core until it is 
written out) are high. In performing the optimization, one has to assume some distribution 
for the time between interactions: a distribution with increasing expected remaining time 
was chosen, since this type of distributions reflect the real-I ife behavior of users. 

Rolling o ut is not usually justified immediately after the end of a computation interval; the 
optimal policy waits for time T and if by then a new computation request hasn't arrived, 
rolls the job out (the expected remaining inactive period is now much larger). This policy 
is illustrated on Figure 5. The figure also shows the cost (the average unp roductive time in 
core) as a function of the wait-before-swapping time T. The cost is hi gh for sma ll values 
of T (frequent swapp ing), reaches minimum for a certain valuc T min and then ri ses towards 

. a hori zonta l asymptote as T increases. 

In operating a policy of thi s sort, there is a danger of an unstable positive feedback loop 
developing, which causes system perfo rmance to deteriorate drastically. This happens when 
the operating system notices that CPU utili za ti on is low, and thinking that the current value 
of T is too large, reduces it to a point below thc optimum, which leads to further drop in 
CPU utili7.ation, even more frequent swa pping, etc. 

Disk UCClucsts 

The last model discussed was concerned with se rvicing requ ests for disk input/output. In 
order to make the mode l reali sti c (in rea l- life sys tems the disk arms mo ve in only half of 
all I/O operations), each request is assumed to co nsist of a seque nce of blocks, consecutively 
arrangcu on a s inlJ le cylindcr . The next block in the seque nce (if any) will be requested 
on ly after the prcvi()us has bee n se rviced. The distribution of the intcrblock times is 
known and its mean is small compared to the di ,k arm move time a nd the rotation time. 
The requests arrive in a I'oi sso n stream and arc uniforml y di st ri buted a('fOSS th c cylinders. 
The distribution of the number of blocks in cach request is geometr ic. 

Clearly, th ere are sevcral dcsign dec isions which should be givcn c lrel'ul consideration. One 
of these concer ns th e size o r the physical gap betwcn blocks: too small a gap would not 
allow the nex t block to he requ ested before the di sk rutates past the block and a revolution 
is lost; too large a gap wastes time before the ncxt service can begin. Anot her design 
decision is: how long shou ld we wa it after a block was serviced before moving the arm to 
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the cy linder corresponding to another request sequence (assuming that there is one)? Too 
small a delay wil l ·start the arm moving before the next block of the current request arrives 
(if there is a next block) and will lead to an excessive amount of arm movement; too long a 
delay will cause too much lost tinie before the next request service can begin. 

A mathematical optimization can be performed in order to obtain the best values for the 
above parameters. The shape of the di stribution of interblock times plays a crucial role in 
the optimization . This. again. emphasizes the necess ity for thinking carefu ll y about what 
measurements should be performed and what kind of stat istics should be taken in any given 
system. The answers are not always intuitively obvious. 

Professor Lynch concluded hi s lecture by di sp laying an empirical hi stogram of rotational 
delays in a PDP disk unit (Figure 6) . . The hi stogram shows that a large proportion of 
requests have a rotationa l delay of one revolution and that the average delay is substantially 
greater than ha lf a revolution. thus illustrating the effect of taking bad design decisions on 
system perf orma nee. 
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ASSUMPTIONS - EXAMPLE I 

o ALL REQUESTS AVAILABLE AT THE BEGINNING - TIME 0 

o ALL SERVICE TIMES KNOWN 

SOLUTION 

o RANK EQUAL TO SERVICE TIME 

o SMALLEST RANK FIRST 

Example I Ert = St - Et 

Job 
Service Time 
Arrival Time 

I C 
I 

Time 0 

Job/Rank 
A 4 
B 2 
C 1 
D 3 

A B C D 
4 2 I 3 
0 0 0 0 

I B LJl. I D I D I D I A I A I A I A I 
I I I I I I I I I I 
I 2 3 4 5 . 6 7 8 9 lO 

4 4 4 4 4 4 3 2 I 
2 I 

3 3 3 2 I 

IF WE RESCHEDULE' (E.G . AT TIME = J), WE SHOULD 
USE THE REMAINING SERV ICE TIME RATHER THAN 
THE ORIGINAL SERVICE TIME 

NOTE THAT RESCHEDULING DOES NOT CHANG E 
TilE OPTIMAL SCIIFDULE 

Figure I 
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ASSUMPTIONS - EXAMPLE 2 

o REQUESTS ARRIVE AT VARIOUS TIM ES 

o ALL SERV ICE TIMES KNOWN 

SOLUTION 

. 0 RANK EQUAL TO REMAINING SERVICE TIME 

o SMALLEST RANK ALWAYS FIRST 

o PRE-EMPT IF NECESSAR Y 

o RESCHEDULE ON AN ARRIVAL 

Example 2 Ert = St - Et 

Job A B C D 
Service Time 4 2 1 3 
Arrival Time 0 0 3 0 

L!!. L!!. I D I C I D I D I A I A I A I A I 
I I I I I I I I I I I 

Time 0 1 2 3 4 5 6 7 8 9 10 

Job/Rank WAIT 
A 4 4 4 4 4 4 4 3 2 1 10 
B 2 1 2 
C 1 1 
D 3 3 3 2 ·2 1 6 

19 

Figure 2 
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ASSUMPTIONS - EXAMPLES 3-4 

o REQUESTS ARRIVE AT VARIOUS T IMES 

o ONLY THE SERVICE TIME DISTR IBUTION IS KNOWN 

o PROB( SERV ICE TIME> I) = 4/(2+1)2 

o EXPECTED REMAINING T IM E AFTER T IS 
E( I-T I I > T) = 2+T = E( T) 

SOLUTION 

o RANK EQUAL TO EXPECTED REMA INING SERV ICE T IM E E(T) 

o SMALLEST RANK ALWAYS FIRST 

o RESCHEDULE ON AN ARRIVAL 

Exa mple 3 Er l = 2 + El 

Job 
Service Time 
Arriva l T ime 

A 
4 
o 

B 
2 
o 

C 
1 
o 

I A I 
I I 

B I CID I A I B 

Time o 1 

Job/Rank 
A 2 
B 2 
C 2 
D 2 

3 
2 
2 
2 

I I I I 
2 345 

3 
3 
2 
2 

3 
3 

2 

3 _ 4 
3 3 

3 3 

Example 4 Erl = 2 + Et 

Job 
Service Ti me 
Arri va l Ti me 

I A I B 
I I 

Time o J 

Job/Rank 
A 2 
B 2 
C 
D 2 

3 
2 

2 

A 
4 
o 

~I 
I I 
2 3 

3 
3 

2 

3 
3 
2 
3 

B 
2 
o 

C 
1 
3 

C I A-L.J! 
I I 
4 5 

3 
3 

3 

4 
3 

3 

D 
3 
o 

I D I A I D I A I 
I I I I I 
6 7 8 9 10 

4 

3 

D 
3 
o 

4 

4 

I D I 
I I 
6 7 

4 4 

3 4 
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A.--1 D I A.J 
I I I 
8 9 10 

5 5 

4 

WA IT 
10 
6 
3 

...2 
28 

WA IT 
10 
6 
1 
9 
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IF THE . EXPECTED REMAINING TIME IS INCREASING 

o RUN THE NEWEST JOB UNTIL THE REMAINING TIME EQUALS 
THAT OF THE NEXT OLDEST 

o PROCESSOR SHARE (TIME SLICE) BETWEEN THESE TWO 

o PUSH JOBS INTO THE BACKGROUND AND RUN NEW 
ARRIVALS IN THE FOREGROUND 

Figure 3 
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o SWAPPING - ROLL OUT JOB UNTIL NEXT 
INTERACTIVE INPUT 

o OBJECT - MINIMIZE UNPRODUCTIVE TIME IN CORE 

o IF NO SWAP. THEN WHOLE TIME TO NEXT 
INTERACTION 

o IF SWAP. THEN T IME T TO SWAP DESCISION 
PLUS SWAPPING TIME 

ASSUME TIME TO NEXT INTERACTION HAS 
INCREASING EXPECTED REMAINING TIME 

o WE USE AS AN EXAMPLE 

PROBe INTERACTION TIME> I ) = 4/(2 + 1)2 = 
P(I) 

E( I-T I I > T ) = 2 + T = E( T) 

SOLUTION 

o WAIT T INTO INTERACTION AND THEN 
SWAP OUT IF INTERACTION IS NOT ENDED 

o WHEN INTERACTION IS ENDED THEN SWAP 
IN 

o SWAP OUT AND SWAP IN TIMES ARE EACH R 

Figure 4 
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GA.s&1 ,- -SH<I>RIT INTERACTION TIME LESS THAN T 

OOM-I?UTE L INTERACTION I. COMPUTE 

CASE_21- -LONg ; I NTI:.'IRo,MJTION·'TIM Bc: 

I! 11 Ill< I 1 
I~ IN<ffiRiA<ITION iTIME , 

I1 
11 
~, 

WWR:ODLJCTIVE' TIME IN ClORE AS. A\ EUNCTJON OF 
T t IS.; 

2 

1 
2 - 2R 

8(0) +- P( T )G2 R- E( T)) 

EG: . 2 H SR/(2+-r)2 - 4/(2+-r) 

Figpfe 5 

Tmin = 4 R- 2 

Fig.ure 5 
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178-22 DISK ROT 

SAMPLE SET = 178-22 
# OF SAMPLES = 95235 
SUM = 1709698 
MEAN = 18 
STD DEVIATION =11 
90% LESS THAN 27 
% SAMPLES ) 96 0~ .1J6 
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