STRUCTURED PERFORMANCE EVALUATION

W.C. LYNCH

Rapporteurs: Dr. S. Tsur
Dr. I, Mitrani
Dr, J.H. Hine

99



Abstract

The structured programming technique of successive refinement can be extended to include
a hierarchical description of performance quantities and measures. This technique can be
used at design time for estimating performance and can be used after implementation as a
framework for performance measurement. As an example, the technique is applied to
understand the measured performance of the CHI/OS system.

This talk is devoted to the description of a quantitative analog of structured programming.
A top down technique together with typical values for system variables will be examined.
The aim is to produce a priori estimates of the the behavior of large systems, particularly
operating systems. It should be mentioned that this is nor what we set out to do. Rather,
the technique forced itself upon us as the only way of being able to make sense out of what
otherwise was a large number of unstructured measurements.

Some of the things that can go wrong in operating systems will be shown. The assertion is
that the problems we encountered have been very high level system design problems, in
particular, feedback control problems. We have not observed problems as a result of the
incapability of the hardware to carry the load.

The accompanying figures and diagrams were produced by Mr. E. Klein as a part of his
M.Sc. thesis.

Introduction

What is meant by structured performance evaluation? This is a combination of structured
programming and an examination of certain quantitative measurements. In particular
within an operating system, the technique consists of two parts:

1. A qualitative description of the system in a structured top down manner. This
description consists of a small number of modules and their interconnections. Each
of the modules in turn is described by a standard hierarchical explication such that
the combination of the 1/0 relations of each of the component boxes must
correspond to the 1/0 relations of the enclosing generalised block.

2. A quantitative performance evaluation. In this case, the performance measure used was
the module call rate, i.e., the rate at which each module exercises its underlings.
Although this may seem a very simplified analysis, its derivation required a
painstaking process, and it turned out that the results were more relevant than was
initially thought. The assertion is that it is impossible to estimate the 170 rates of
the various modules without going through much of the analysis.

In general, there are three factors that modify the flow rate through a module.

1. Blocking Factors Very often, a module, upon call, sets aside a larger block for buffering
purposes. The result is that fewer requests come out of that module than enter it,
i.e., a reduction of the traffic through the module.

2. Paging and Cacheing:  These effects exist in particular in the more sophisticated
operating systems, often in disguises unknown to the designer. For example, disk
arms on disk packs (luckily) do not move often as a result of locality phenomena in
the disk references. The net result of these effects is o reduce the traffic through a
module.

100



3. Index Accesses: The effect of accessing indices for each [/0 operation. Often more than
one index is accessed for each 170 operation. These effects tend to increase the
traffic rate through a module.

A consequence of these factors is that a naive approach towards measuring system
performance is often meaningless. A simple measurement of the request rate through some
1/0 channel, for example, would be meaningless since we cannot distinguish between the
various types of requests.

The example that will be used throughout is taken from the CHI/OS operating system. The
first question of interest is: what is the load imposed on the operating system? A system
load summary is given in Figure 1. From the summary, we can see how many times the
operating system is accessed per unit time, i.e.,, how many ER's were executed per unit time.
This is the request rate. The unit time chosen is User Second. Very early in the project, it
was learned that a unit time of real seconds is unsuitable, primarily because the results
depend heavily on the extent of the operating system execution time. In the case of
CHI/0S, which runs on a UNIVAC 1100, the distinction is simple: the operating system
executes entirely in executive mode and the user entirely in user mode. These modes are
displayed in the computers’ PSW. In this case, User Code includes the compilers, any
execution of a library and the execution of the linking loaders. It does not include the
access methods. When the figures from this system are compared with those of other
systems, one has to be careful since both the definition of user mode and the time unit used
may be different. We can see from Figure 1 that the operating system is called

approximately 300 times per 100 user instructions. Assuming that each ER is on the order
of 3000 instructions, we see that, on the average, one operating system instruction is
executed for each user instruction.

Another interesting number is that approximately 89 print lines are generated for each 106
user instructions.  This is rather high, 60 is more likely. This number appears to be
dependent on the systems' turnaround time. When the turnaround time is long, users tend
to print more data, which in turn increases the executive overhead, which in turn increases
the turnaround time. This is a typical example of a positive feedback control loop. Similar
loops exist all over the system and they may be unstable. Such loops, which are the really
important factors in an operating system design, are seldom taken into consideration.

The idle time in Figure 1 is caused by two factors:
1. No work in the machine, i.e., temporary low load.
2. No overlap between processing and 1/0.

Figure 2 shows the idle time distribution as a function of the number of users in the
system. [t is always possible to fit two users into core. Thus, from these resulls, it was
concluded that if there are one or two users in core, the system is idle because of
insufficient load. We arbitrarily say that if there are two or more users in core, the system
is idle because of 170 wait. Figure 2 shows that in CHI/OS almost all idle time is due to a
lack of load, with only 5% idle time when two or more uscrs are in core.

Figure 3 shows the system decomposition on the highest level. The three boxes on the top
line are the major system drivers. The user programs are lumped together in a box labelled
"USERS", the second driver is (he spooling subsystem labelled "SPOOLING", and other
miscellaneous drivers are lumped in a box labelled "MISC". The flow rates of requests
between the boxes are in requests/uvser second. On top of the figure, the user/cpu/real time
ratios are displayed. Consequently, in this case, the user time has to be multiplied by a
factor of ~3 to convert it to real time. Some of the more important boxes are labelled with
a number. These numbers will be used for further hierarchical explication. The users make
calls on the file system. Those calls for files which reside on magnetic tapes are diverted

101



directly to the device handlers. In this system, the file handler is integrated and all the file
requests, whether directed by user or not, are handled in a uniform way. Figure 4 is an
explication of the "USERS" box. Of the various categories of calls on the Operating System
by users, only a few are important. "ITEM OUTPUT" are the requests for print lines
"ITEM INPUT" are the card reading requests plus the input from one line terminals.
"FILE 170" are calls on the file system and "TAPE [/0" is split: those calls on real
magnetic tapes are directed towards the device handlers and the calls to the simulated
magnetic tapes to the file system. Both ITEM OUTPUT and ITEM OUTPUT call on other
modules which are subject to blocking. Consequently the output traffic from FWIP and ER
HANDLER is reduced with respect to their input traffic. Figure 5 is an explication of the
spooling box in Figure 3. As with the user processes, both the CARD READERS and
PRINTERS are subjected to blocking which tend to reduce the traffic flow. The actual
number of printed lines is higher and is on the order of 90/user second. The remainder of
lines being saved on a tape for off-line printing. Figure 6 is an expansion of the MISC box
in Figure 3. As can be seen, the total activity from this box is rather low. This is one of
the results of this analysis: the relative importance of the MISC box was not known
beforehand and could only be ascertained by using this technique. Figure 7 is an
explication of the file system. Two distinct functions are carried out in the file system.
One, the FILE 1/0 is concerned with the promotion of pages through the memory
. hierarchy (i.e., disk, drum, core memory) for processing. The second function
INVENTORY PROCESSES, is responsible for clearing pages from memory and the release
of unnecessary core memory. From the figure, it can be seen that the second function
imposes a substantial load on the system and, since it is invisible to the user, often the
tendency is to forget such overheads. Figure 8 is the expansion of the FILE I/0 processes.
This component, again, comprises of two major subsystems. The left part is mainly
concerned with housekeeping. The right part, which draws most of the load, handles the
transfer of files. This part receives block transfer requests; that is, an initial address and
the number of words to be transferred. The DATA TRANSFER box converts the block
requests into page access requests and, as a result, the flow rate out of this box increases by
20-30%. The main reason for this increase is that often, a number of pages have to be
accessed for each block request. The page is located through a description tree. This is the
function of the FINDSEC module. The FINDSEC module, in turn, calls the RDDIR
module and as a result, the traffic increases by a factor of 3. This reflects the fact that for
an average location request, the tree is searched 3 levels deep bhefore the description is
found. Since a cacheing mechanism is employed, the actual access rate to the disk is much
smaller. [t is clear that from a superficial examination of the external 1/0 rates, the actual
internal traffic, which is quite heavy, would not be observed. The inventory side of the
filing system is expanded in Figure 9. The modules in it have to do with the cleaning up of
various resources and, as before, the traffic is reduced due to chacheing mechanism.

When the system went first into operation, the user/supervisor rate was 1:4. This caused
the user load (o saturate the system. The measured symptom was that too much CPU time
was used and there was no idle time at all. The "10%" rule predicts that 90% of the time is
spent in the execution of 10% of the code. When this was checked. contrary to the
prediction, the distribution of execution time over code was found to be flat. The next step
was to examine the 170 rates. These were found to be in the order of 50-60 accesses/sec,
well below the capacity of the drum in question. An additional problem was that even if
the CPU loading problem would be resolved, the result would be that the 170 rates would
increase by a factor of 3, thus saturating the drum. The next question to be asked was:
"What is the cause of the drum accesses?”" In order (o answer this question, the hierarchical
load tree, which at that time did not exist, was painstakingly constructed from the rough,
unstructured measurements wiich existed at that time.  Eventually, it was found that in the
spooling system (Figure 5), the blocking factor of the TRANSMIT routine was found to be
1:1. This routine was designed as a feedback control routine such that the blocking factor
would increase under heavy ioad and decrease under light load. The measured variable used
was taken mistakenly as print lines/real sec, which, as mentioned earlier, is a bad measure.
The result was that, as the load rose, it generated more lines per user second. Because of
increased executive time, the number of lines per rcal second decreased instead of

102



increased as desired and the blocking factor was decreased instead of increased. This is
another typical positive, unstable feedback loop which could not have been detected without
the detailed hierarchical analysis as described.

Summary

1. One has to go through this technique in order to obtain the data for any kind of more
sophisticated queueing analysis.

2. It is impossible to obtain the various values of the system parameters and other variables
of interest in an unstructured way. The only method is to obtain them in an
orderly, structured fashion.

3. Once the analysis is performed, often other variables whose significance cannot be

ascertained a priori come forward. These variables are often the "missing links" in
the complete, comprehensive description of the system.

103



Figure 1
Chi/OS System Load Summary
10 Aug 76 @ 04:32:42 to 10 Aug 76 @ 17:16:50

Table 1 - Run Summary

Number of Runs 1452
Total User Seconds 13918
User sec / Run 9.59

Table 2 - User Virtual Machines

ERs / User sec ' 264.4
Tape - Mounts / User sec 023
Tape - Accesses / User sec 10.0
File System - Assigns / User sed 1.646
File System - Accesses / User sec 27.9
Lines Printed / User sec 88.8
Cards Punched / User sec 1.37
Other Item Writes / User sec 1.33
Cards Read / User sec 20.2
Other Itwem Reads / User sec ; 234
Program Loads / User sec 1.04

Table 3 - CPU Time Distribution

Total User Seconds 13918
Total Supervisor Seconds 15737
Total Idle Seconds 16650

Total -12.86 hours = 46305

Table 4 - Open Runs and Runs in Core by Real Time

Number of Users Open (% of Time) Active (% of Time)
0 221 221
1 12.6 13.1
2 1 s | 23.6
3 11 27.1
4 8.5 127
5 34.6 13
Total 100.0 100.0

104



Figure 2
Table 5 - Idle Time by Number of Active Users

Number of Users - % of Ildle Time % of Real Time

59.6
1.6

-

b W=

OO e

owaonoo
ul_o,cp_ugow
Vo =owo!™

I-—']
[=1V
(=]

0

=]
(=]

Total

Table 6 - CPU Time Distribution

% User Mode 30.1
% Supervisor Mode 34.0
% ldle - Not enough Work . 3k4
% ldle - 170 Wait 4.6

105



CHI/OS INPUT OUTPUT ACTIVITIES FLOW

10 AUG 76 @ 04:32:42 TO 10 AUG 76 @ 17:17:00

USER:CPU:REAL = 1.00:2.13:3.33

USER (100)

300

MISC

200

SPOOLING

l5.47

FIGURE 3

USERS

100

l73.31

L53.44
Y

400
FILE

SYSTEM

11.63

12341 0.20
y 5.30

DEVICE
HANDLERS

134.92

lll

DISKS

DRUMS

106

i5.52

TAPES




CHI/0S INPUT OUTPUT ACTIVITIES FLOW
10 AUG 76 @ 04:32:42 TO 10 AUG 76 @ 17:17:00
USER:CPUREAL = 1.00:2.13:3.33

FIGURE 4
USER (100)

ITEM
OUTPUT

44.68

FWIP ER
HANDLER

(BF=2.43)

(BF=3.83)

V -
FILE SYSTEM MAGNETIC TAPE

107



CHI/0S INPUT OUTPUT ACTIVITIES FLOW

10 AUG 76 @ 04:32:42 TO 10 AUG 76 @ 17:17:00
USER:CPU:REAL = 1.00:2.13:3.33

FIGURE &

SPOOLING (200)

CARD
READERS

121.76

TRANSMIT
(BF = 1.06)

120.55

PRINTERS
PUNCHES

RECIEVE
(BF = 1.60)

132.90

FILE SYSTEM

108




CHIZOS INPUT OUTPUT ACTIVITIES FLOW
10 AUG 76 @ 04:32:42 TO 10 AUG 76 @ 17:17:00
USER:CPU:REAL = 1.00:2.13:3.33

FIGURE &
MISC PROCESSES (300)

FILE-FILE SLOW
WRITER OVERLAYS

v
FILE SYSTEM

109



j1

CHI/OS INPUT OUTPUT ACTIVITIES FLOW
10 AUG 76 @ 04:32:42 TO 10 AUG 76 @ 17:17:00

USER:CPU:REAL = 1.00:2.13:3.33

FILE SYSTEM

OVERVIEW (400)

l

FILE 170

PROCESSES

TAPE

0.00

DRUM

76.39

FIGURE 7

INVENTORY
PROCESSES

DISK

DRUM

110

v
TAPE




CHI/OS INPUT OUTPUT ACTIVITIES FLOW

10 AUG 76 @ 04:32:42 TO 10 AUG 76 @ 17:17:00
USER:CPU:REAL = 1.00:2.13:3.33

FIGURE 8

FILE SYSTEM
FILE 1/0 PROCESSES (410)

ASG. DASG,
MODE RD, 126.69
= MODE CHG N > DATA
Y o { [~
DATA = 4——  TRANSFER
BF = 1.36 DRUM
TRANSFER - =
»1289
12.43
4 TAPE
DISK | 130 o S
FINDDESC P DISK FINDDESC
s g 583 DRUM
DRUM —
80 29.85
23.76
]
DISK |0.00 DISK
—= < RODIR
RDDIR Soin prow
23.18
Y
g ST L -m"-d
LO.UU ¢/6.18 7.31
v
TAPE DRUM DISK

111



CHI/OS INPUT OUTPUT ACTIVITIES FLOW
10 AUG 76 @ 04:32:42 TO 10 AUG 76 @ 17:17:00

USER:CPU:REAL = 1.00:2.13:3.33

FIGURE 9
FILE SYSTEM

INVENTORY PROCESSES (420)

CLEAN DRUM DIRTY DRUM CORE PAGE DIRTY C. D.
INVENTORY INVENTORY INVENTORY INVENTORY

112





